Azore CFD
Azore is software for computational fluid dynamics. It analyzes fluid flow and heat transfers. CFD allows engineers and scientists to analyze a wide range of fluid mechanics problems, thermal and chemical problems numerically using a computer. Azore can simulate a wide range of fluid dynamics situations, including air, liquids, gases, and particulate-laden flow. Azore is commonly used to model the flow of liquids through a piping or evaluate water velocity profiles around submerged items. Azore can also analyze the flow of gases or air, such as simulating ambient air velocity profiles as they pass around buildings, or investigating the flow, heat transfer, and mechanical equipment inside a room. Azore CFD is able to simulate virtually any incompressible fluid flow model. This includes problems involving conjugate heat transfer, species transport, and steady-state or transient fluid flows.
Learn more
Jama Connect
Jama Connect®, a product development platform, uniquely creates Living Requirements™. This digital thread is created through siloed, test, and risk activities to provide end to end compliance, risk mitigation, process improvement, and compliance. Companies creating complex products, systems, and software can now define, align, and execute on what they need. This reduces the time and effort required to prove compliance and saves on rework. You can be sure of success by choosing a solution that is easy-to-use, flexible, and offers support and services that are adoption-oriented.
Learn more
Orbital Stack
Orbital Stack, an AI and CFD web-based program, provides earlier qualitative guidance. It compares a wide range of land-use options and shapes, and highlights any red flags. It allows for climate-conscious, high performance developments that are not possible with traditional studies.
Orbital Stack was developed by world-renowned experts in microclimate engineering and wind. It is a game-changer in the architecture and building design industry, providing our clients direct access for wind comfort and safety analysis as well as thermal comfort and shadowing analysis and cladding pressure simulations. This allows architects to quickly understand the climate effects of their proposed building designs and make better decisions, resulting in more resilient and high-performing projects.
Learn more
Ansys Motor-CAD
Ansys Motor-CAD serves as a specialized tool for the design of electric machines, facilitating rapid multiphysics simulations throughout the entire torque-speed operating range. It allows design engineers to assess various motor configurations and concepts to create designs that maximize performance, efficiency, and compactness. With its four integrated modules—EMag, Therm, Lab, and Mech—Motor-CAD enables quick and iterative multiphysics calculations, significantly reducing the time from initial concept to finalized design. This efficiency in calculations and streamlined data input processes provides users with the opportunity to investigate a broader array of motor topologies and thoroughly evaluate the effects of advanced loss mechanisms in the early phases of electromechanical design. The latest release boasts enhanced capabilities for design optimization, multiphysics analysis, and system modeling tailored specifically for electric motors, ensuring that engineers have the tools they need for cutting-edge development. Ultimately, Motor-CAD's fast multiphysics simulation capabilities across the full torque-speed range empower engineers to innovate and refine electric motor designs with unprecedented efficiency.
Learn more