Delska
Delska is a data center and network operator that provides tailor-made IT and network services for businesses. With 5 data centers (one under construction, launching in 2025) in Latvia and Lithuania, and points of presence in Germany, Netherlands, and Sweden, we offer a comprehensive regional data center and network ecosystem. By 2030, we aim to achieve net-zero CO2 emissions, setting standard for sustainable IT infrastructure in the Baltic region.
In addition to cloud computing, colocation, data security, network, and other services, we have launched the self-service cloud platform myDelska for swift virtual machine deployment, IT resources management, and soon-to-come bare metal services.
Key features:
• Unlimited traffic and predictable monthly costs
• API integration
• Flexible firewall configurations
• Backup solutions
• Real-time network topology
• Latency measurement map
• Alpine Linux, Ubuntu, Debian, Windows OS, openSUSE and other operating systems
Since June 2024, Delska has merged 2 companies—DEAC European Data Center and Data Logistics Center (DLC). Both operate under their respective legal entities, which are owned by Quaero European Infrastructure Fund II.
Learn more
Azore CFD
Azore is software for computational fluid dynamics. It analyzes fluid flow and heat transfers. CFD allows engineers and scientists to analyze a wide range of fluid mechanics problems, thermal and chemical problems numerically using a computer. Azore can simulate a wide range of fluid dynamics situations, including air, liquids, gases, and particulate-laden flow. Azore is commonly used to model the flow of liquids through a piping or evaluate water velocity profiles around submerged items. Azore can also analyze the flow of gases or air, such as simulating ambient air velocity profiles as they pass around buildings, or investigating the flow, heat transfer, and mechanical equipment inside a room. Azore CFD is able to simulate virtually any incompressible fluid flow model. This includes problems involving conjugate heat transfer, species transport, and steady-state or transient fluid flows.
Learn more
Ansys Icepak
Ansys Icepak serves as a computational fluid dynamics (CFD) solver specifically designed for managing thermal issues in electronic devices. It offers insights into airflow, temperature distributions, and heat transfer phenomena within integrated circuit packages, printed circuit boards (PCBs), electronic assemblies, and power electronics. By leveraging the top-tier Ansys Fluent CFD solver, Ansys Icepak delivers robust cooling solutions tailored for electronic components, allowing for thorough thermal and fluid flow evaluations. The software operates through the Ansys Electronics Desktop (AEDT) graphical user interface (GUI), facilitating comprehensive analyses of heat transfer involving conduction, convection, and radiation. Moreover, it boasts sophisticated features for modeling both laminar and turbulent flow conditions, as well as conducting species analysis that incorporates radiation and convection effects. Ansys’ extensive PCB design platform empowers users to perform simulations on PCBs, ICs, and packages, enabling a precise assessment of complete electronic systems, thereby enhancing design efficiency and performance optimization. Thus, Ansys Icepak stands out as an essential tool for engineers aiming to improve thermal management in their electronic designs.
Learn more
Ansys Motor-CAD
Ansys Motor-CAD serves as a specialized tool for the design of electric machines, facilitating rapid multiphysics simulations throughout the entire torque-speed operating range. It allows design engineers to assess various motor configurations and concepts to create designs that maximize performance, efficiency, and compactness. With its four integrated modules—EMag, Therm, Lab, and Mech—Motor-CAD enables quick and iterative multiphysics calculations, significantly reducing the time from initial concept to finalized design. This efficiency in calculations and streamlined data input processes provides users with the opportunity to investigate a broader array of motor topologies and thoroughly evaluate the effects of advanced loss mechanisms in the early phases of electromechanical design. The latest release boasts enhanced capabilities for design optimization, multiphysics analysis, and system modeling tailored specifically for electric motors, ensuring that engineers have the tools they need for cutting-edge development. Ultimately, Motor-CAD's fast multiphysics simulation capabilities across the full torque-speed range empower engineers to innovate and refine electric motor designs with unprecedented efficiency.
Learn more