Best Elham.ai Alternatives in 2025
Find the top alternatives to Elham.ai currently available. Compare ratings, reviews, pricing, and features of Elham.ai alternatives in 2025. Slashdot lists the best Elham.ai alternatives on the market that offer competing products that are similar to Elham.ai. Sort through Elham.ai alternatives below to make the best choice for your needs
-
1
Vertex AI
Google
732 RatingsFully managed ML tools allow you to build, deploy and scale machine-learning (ML) models quickly, for any use case. Vertex AI Workbench is natively integrated with BigQuery Dataproc and Spark. You can use BigQuery to create and execute machine-learning models in BigQuery by using standard SQL queries and spreadsheets or you can export datasets directly from BigQuery into Vertex AI Workbench to run your models there. Vertex Data Labeling can be used to create highly accurate labels for data collection. Vertex AI Agent Builder empowers developers to design and deploy advanced generative AI applications for enterprise use. It supports both no-code and code-driven development, enabling users to create AI agents through natural language prompts or by integrating with frameworks like LangChain and LlamaIndex. -
2
Baidu AI Cloud Machine Learning (BML) serves as a comprehensive platform for enterprises and AI developers, facilitating seamless data pre-processing, model training, evaluation, and deployment services. This all-in-one AI development and deployment system empowers users to efficiently manage every aspect of their projects. With BML, tasks such as data preparation, model training, and service deployment can be executed in a streamlined manner. The platform boasts a high-performance cluster training environment, an extensive array of algorithm frameworks, and numerous model examples, along with user-friendly prediction service tools. This setup enables users to concentrate on refining their models and algorithms to achieve superior prediction outcomes. Additionally, the interactive programming environment supports data processing and code debugging, making it easier for users to iterate on their work. Furthermore, the CPU instance allows for the installation of third-party software libraries and customization of the environment, providing users with the flexibility they need to tailor their machine learning projects. Overall, BML stands out as a valuable resource for anyone looking to enhance their AI development experience.
-
3
Labelbox
Labelbox
The training data platform for AI teams. A machine learning model can only be as good as the training data it uses. Labelbox is an integrated platform that allows you to create and manage high quality training data in one place. It also supports your production pipeline with powerful APIs. A powerful image labeling tool for segmentation, object detection, and image classification. You need precise and intuitive image segmentation tools when every pixel is important. You can customize the tools to suit your particular use case, including custom attributes and more. The performant video labeling editor is for cutting-edge computer visual. Label directly on the video at 30 FPS, with frame level. Labelbox also provides per-frame analytics that allow you to create faster models. It's never been easier to create training data for natural language intelligence. You can quickly and easily label text strings, conversations, paragraphs, or documents with fast and customizable classification. -
4
Oracle Machine Learning
Oracle
Machine learning reveals concealed patterns and valuable insights within enterprise data, ultimately adding significant value to businesses. Oracle Machine Learning streamlines the process of creating and deploying machine learning models for data scientists by minimizing data movement, incorporating AutoML technology, and facilitating easier deployment. Productivity for data scientists and developers is enhanced while the learning curve is shortened through the use of user-friendly Apache Zeppelin notebook technology based on open source. These notebooks accommodate SQL, PL/SQL, Python, and markdown interpreters tailored for Oracle Autonomous Database, enabling users to utilize their preferred programming languages when building models. Additionally, a no-code interface that leverages AutoML on Autonomous Database enhances accessibility for both data scientists and non-expert users, allowing them to harness powerful in-database algorithms for tasks like classification and regression. Furthermore, data scientists benefit from seamless model deployment through the integrated Oracle Machine Learning AutoML User Interface, ensuring a smoother transition from model development to application. This comprehensive approach not only boosts efficiency but also democratizes machine learning capabilities across the organization. -
5
MLBox
Axel ARONIO DE ROMBLAY
MLBox is an advanced Python library designed for Automated Machine Learning. This library offers a variety of features, including rapid data reading, efficient distributed preprocessing, comprehensive data cleaning, robust feature selection, and effective leak detection. It excels in hyper-parameter optimization within high-dimensional spaces and includes cutting-edge predictive models for both classification and regression tasks, such as Deep Learning, Stacking, and LightGBM, along with model interpretation for predictions. The core MLBox package is divided into three sub-packages: preprocessing, optimization, and prediction. Each sub-package serves a specific purpose: the preprocessing module focuses on data reading and preparation, the optimization module tests and fine-tunes various learners, and the prediction module handles target predictions on test datasets, ensuring a streamlined workflow for machine learning practitioners. Overall, MLBox simplifies the machine learning process, making it accessible and efficient for users. -
6
SquareFactory
SquareFactory
A comprehensive platform for managing projects, models, and hosting, designed for organizations to transform their data and algorithms into cohesive, execution-ready AI strategies. Effortlessly build, train, and oversee models while ensuring security throughout the process. Create AI-driven products that can be accessed at any time and from any location. This approach minimizes the risks associated with AI investments and enhances strategic adaptability. It features fully automated processes for model testing, evaluation, deployment, scaling, and hardware load balancing, catering to both real-time low-latency high-throughput inference and longer batch inference. The pricing structure operates on a pay-per-second-of-use basis, including a service-level agreement (SLA) and comprehensive governance, monitoring, and auditing features. The platform boasts an intuitive interface that serves as a centralized hub for project management, dataset creation, visualization, and model training, all facilitated through collaborative and reproducible workflows. This empowers teams to work together seamlessly, ensuring that the development of AI solutions is efficient and effective. -
7
FinetuneFast
FinetuneFast
FinetuneFast is the go-to platform for rapidly finetuning AI models and deploying them effortlessly, allowing you to start generating income online without complications. Its standout features include the ability to finetune machine learning models in just a few days rather than several weeks, along with an advanced ML boilerplate designed for applications ranging from text-to-image generation to large language models and beyond. You can quickly construct your first AI application and begin earning online, thanks to pre-configured training scripts that enhance the model training process. The platform also offers efficient data loading pipelines to ensure smooth data processing, along with tools for hyperparameter optimization that significantly boost model performance. With multi-GPU support readily available, you'll experience enhanced processing capabilities, while the no-code AI model finetuning option allows for effortless customization. Deployment is made simple with a one-click process, ensuring that you can launch your models swiftly and without hassle. Moreover, FinetuneFast features auto-scaling infrastructure that adjusts seamlessly as your models expand, API endpoint generation for straightforward integration with various systems, and a comprehensive monitoring and logging setup for tracking real-time performance. In this way, FinetuneFast not only simplifies the technical aspects of AI development but also empowers you to focus on monetizing your creations efficiently. -
8
Alibaba Cloud Machine Learning Platform for AI
Alibaba Cloud
$1.872 per hourAn all-inclusive platform that offers a wide array of machine learning algorithms tailored to fulfill your data mining and analytical needs. The Machine Learning Platform for AI delivers comprehensive machine learning solutions, encompassing data preprocessing, feature selection, model development, predictions, and performance assessment. This platform integrates these various services to enhance the accessibility of artificial intelligence like never before. With a user-friendly web interface, the Machine Learning Platform for AI allows users to design experiments effortlessly by simply dragging and dropping components onto a canvas. The process of building machine learning models is streamlined into a straightforward, step-by-step format, significantly boosting efficiency and lowering costs during experiment creation. Featuring over one hundred algorithm components, the Machine Learning Platform for AI addresses diverse scenarios, including regression, classification, clustering, text analysis, finance, and time series forecasting, catering to a wide range of analytical tasks. This comprehensive approach ensures that users can tackle any data challenge with confidence and ease. -
9
Weights & Biases
Weights & Biases
Utilize Weights & Biases (WandB) for experiment tracking, hyperparameter tuning, and versioning of both models and datasets. With just five lines of code, you can efficiently monitor, compare, and visualize your machine learning experiments. Simply enhance your script with a few additional lines, and each time you create a new model version, a fresh experiment will appear in real-time on your dashboard. Leverage our highly scalable hyperparameter optimization tool to enhance your models' performance. Sweeps are designed to be quick, easy to set up, and seamlessly integrate into your current infrastructure for model execution. Capture every aspect of your comprehensive machine learning pipeline, encompassing data preparation, versioning, training, and evaluation, making it incredibly straightforward to share updates on your projects. Implementing experiment logging is a breeze; just add a few lines to your existing script and begin recording your results. Our streamlined integration is compatible with any Python codebase, ensuring a smooth experience for developers. Additionally, W&B Weave empowers developers to confidently create and refine their AI applications through enhanced support and resources. -
10
Huawei Cloud ModelArts
Huawei Cloud
ModelArts, an all-encompassing AI development platform from Huawei Cloud, is crafted to optimize the complete AI workflow for both developers and data scientists. This platform encompasses a comprehensive toolchain that facilitates various phases of AI development, including data preprocessing, semi-automated data labeling, distributed training, automated model creation, and versatile deployment across cloud, edge, and on-premises systems. It is compatible with widely used open-source AI frameworks such as TensorFlow, PyTorch, and MindSpore, while also enabling the integration of customized algorithms to meet unique project requirements. The platform's end-to-end development pipeline fosters enhanced collaboration among DataOps, MLOps, and DevOps teams, resulting in improved development efficiency by as much as 50%. Furthermore, ModelArts offers budget-friendly AI computing resources with a range of specifications, supporting extensive distributed training and accelerating inference processes. This flexibility empowers organizations to adapt their AI solutions to meet evolving business challenges effectively. -
11
Sagify
Sagify
Sagify enhances AWS Sagemaker by abstracting its intricate details, allowing you to devote your full attention to Machine Learning. While Sagemaker serves as the core ML engine, Sagify provides a user-friendly interface tailored for data scientists. By simply implementing two functions—train and predict—you can efficiently train, fine-tune, and deploy numerous ML models. This streamlined approach enables you to manage all your ML models from a single platform, eliminating the hassle of low-level engineering tasks. With Sagify, you can say goodbye to unreliable ML pipelines, as it guarantees consistent training and deployment on AWS. Thus, by focusing on just two functions, you gain the ability to handle hundreds of ML models effortlessly. -
12
Accern
Accern
The Accern No-Code NLP Platform empowers citizen data scientists to extract insights from unstructured data, minimize time to value and maximize ROI with pre-built AI/ML/NLP solutions. Recognized as the first No-Code NLP platform and industry leader with the highest accuracy scores, Accern also enables data scientists to customize end-to-end workflows that enhance existing models and enrich BI dashboards. -
13
Edge Impulse
Edge Impulse
Create sophisticated embedded machine learning applications without needing a doctorate. Gather data from sensors, audio sources, or cameras using devices, files, or cloud services to develop personalized datasets. Utilize automatic labeling tools that range from object detection to audio segmentation to streamline your workflow. Establish and execute reusable scripts that efficiently process extensive data sets in parallel through our cloud platform. Seamlessly integrate custom data sources, continuous integration and delivery tools, and deployment pipelines using open APIs to enhance your project’s capabilities. Speed up the development of custom ML pipelines with readily available DSP and ML algorithms that simplify the process. Make informed hardware choices by assessing device performance alongside flash and RAM specifications at every stage of development. Tailor DSP feature extraction algorithms and craft unique machine learning models using Keras APIs. Optimize your production model by analyzing visual insights related to datasets, model efficacy, and memory usage. Strive to achieve an ideal equilibrium between DSP configurations and model architecture, all while keeping memory and latency restrictions in mind. Furthermore, continually iterate on your models to ensure they evolve alongside your changing requirements and technological advancements. -
14
SensiML Analytics Studio
SensiML
The SensiML Analytics Toolkit enables the swift development of smart IoT sensor devices while simplifying the complexities of data science. It focuses on creating compact algorithms designed to run on small IoT endpoints instead of relying on cloud processing. By gathering precise, traceable, and version-controlled datasets, it enhances data integrity. The toolkit employs advanced AutoML code generation to facilitate the rapid creation of autonomous device code. Users can select their preferred interface and level of AI expertise while maintaining full oversight of all algorithm components. It also supports the development of edge tuning models that adapt behavior based on incoming data over time. The SensiML Analytics Toolkit automates every step necessary for crafting optimized AI recognition code for IoT sensors. Utilizing an expanding library of sophisticated machine learning and AI algorithms, the overall workflow produces code capable of learning from new data, whether during development or after deployment. Moreover, non-invasive applications for rapid disease screening that intelligently classify multiple bio-sensing inputs serve as essential tools for aiding healthcare decision-making processes. This capability positions the toolkit as an invaluable resource in both tech and healthcare sectors. -
15
Valohai
Valohai
$560 per monthModels may be fleeting, but pipelines have a lasting presence. The cycle of training, evaluating, deploying, and repeating is essential. Valohai stands out as the sole MLOps platform that fully automates the entire process, from data extraction right through to model deployment. Streamline every aspect of this journey, ensuring that every model, experiment, and artifact is stored automatically. You can deploy and oversee models within a managed Kubernetes environment. Simply direct Valohai to your code and data, then initiate the process with a click. The platform autonomously launches workers, executes your experiments, and subsequently shuts down the instances, relieving you of those tasks. You can work seamlessly through notebooks, scripts, or collaborative git projects using any programming language or framework you prefer. The possibilities for expansion are limitless, thanks to our open API. Each experiment is tracked automatically, allowing for easy tracing from inference back to the original data used for training, ensuring full auditability and shareability of your work. This makes it easier than ever to collaborate and innovate effectively. -
16
Key Ward
Key Ward
€9,000 per yearEffortlessly manage, process, and transform CAD, FE, CFD, and test data with ease. Establish automatic data pipelines for machine learning, reduced order modeling, and 3D deep learning applications. Eliminate the complexity of data science without the need for coding. Key Ward's platform stands out as the pioneering end-to-end no-code engineering solution, fundamentally changing the way engineers work with their data, whether it be experimental or CAx. By harnessing the power of engineering data intelligence, our software empowers engineers to seamlessly navigate their multi-source data, extracting immediate value through integrated advanced analytics tools while also allowing for the custom development of machine learning and deep learning models, all within a single platform with just a few clicks. Centralize, update, extract, sort, clean, and prepare your diverse data sources for thorough analysis, machine learning, or deep learning applications automatically. Additionally, leverage our sophisticated analytics tools on your experimental and simulation data to uncover correlations, discover dependencies, and reveal underlying patterns that can drive innovation in engineering processes. Ultimately, this approach streamlines workflows, enhancing productivity and enabling more informed decision-making in engineering endeavors. -
17
Alibaba Cloud Model Studio
Alibaba
Model Studio serves as Alibaba Cloud's comprehensive generative AI platform, empowering developers to create intelligent applications that are attuned to business needs by utilizing top-tier foundation models such as Qwen-Max, Qwen-Plus, Qwen-Turbo, the Qwen-2/3 series, visual-language models like Qwen-VL/Omni, and the video-centric Wan series. With this platform, users can easily tap into these advanced GenAI models through user-friendly OpenAI-compatible APIs or specialized SDKs, eliminating the need for any infrastructure setup. The platform encompasses a complete development workflow, allowing for experimentation with models in a dedicated playground, conducting both real-time and batch inferences, and fine-tuning using methods like SFT or LoRA. After fine-tuning, users can evaluate and compress their models, speed up deployment, and monitor performance—all within a secure, isolated Virtual Private Cloud (VPC) designed for enterprise-level security. Furthermore, one-click Retrieval-Augmented Generation (RAG) makes it easy to customize models by integrating specific business data into their outputs. The intuitive, template-based interfaces simplify prompt engineering and facilitate the design of applications, making the entire process more accessible for developers of varying skill levels. Overall, Model Studio empowers organizations to harness the full potential of generative AI efficiently and securely. -
18
Peltarion
Peltarion
The Peltarion Platform is an accessible low-code environment for deep learning that empowers users to swiftly create AI-driven solutions that can scale commercially. It facilitates the entire process of building, adjusting, refining, and deploying deep learning models seamlessly. This comprehensive platform enables you to manage everything from data uploads to model creation and deployment in one place. Renowned organizations such as NASA, Tesla, Dell, and Harvard have leveraged the Peltarion Platform and its earlier version to address complex challenges. Users can either develop their own AI models or take advantage of our pre-trained options, utilizing a simple drag-and-drop interface, including access to the latest advancements. You have complete control over the entire development cycle, from construction and training to fine-tuning and deployment of AI solutions, all seamlessly integrated. By operationalizing AI through this platform, businesses can unlock significant value. For those with no background in AI, our Faster AI course is designed to provide foundational knowledge, and upon completion of seven concise modules, participants will gain the ability to create and customize their own AI models on the Peltarion platform, fostering a new generation of AI practitioners. This initiative not only enhances individual skill sets but also contributes to the broader adoption of AI technology in various industries. -
19
evoML
TurinTech AI
evoML enhances the efficiency of developing high-quality machine learning models by simplifying and automating the comprehensive data science process, enabling the conversion of raw data into meaningful insights in mere days rather than several weeks. It takes charge of vital tasks such as automatic data transformation that identifies anomalies and rectifies imbalances, employs genetic algorithms for feature engineering, conducts parallel evaluations of multiple model candidates, optimizes using multi-objective criteria based on custom metrics, and utilizes GenAI technology for generating synthetic data, which is especially useful for swift prototyping while adhering to data privacy regulations. Users maintain complete ownership of and can modify the generated model code, facilitating smooth deployment as APIs, databases, or local libraries, thereby preventing vendor lock-in and promoting clear, auditable workflows. Additionally, evoML equips teams with user-friendly visualizations, interactive dashboards, and detailed charts to detect patterns, outliers, and anomalies across various applications, including anomaly detection, time-series forecasting, and fraud prevention. With its robust features, evoML not only accelerates the modeling process but also empowers users to make data-driven decisions with confidence. -
20
PI.EXCHANGE
PI.EXCHANGE
$39 per monthEffortlessly link your data to the engine by either uploading a file or establishing a connection to a database. Once connected, you can begin to explore your data through various visualizations, or you can prepare it for machine learning modeling using data wrangling techniques and reusable recipes. Maximize the potential of your data by constructing machine learning models with regression, classification, or clustering algorithms—all without requiring any coding skills. Discover valuable insights into your dataset through tools that highlight feature importance, explain predictions, and allow for scenario analysis. Additionally, you can make forecasts and easily integrate them into your current systems using our pre-configured connectors, enabling you to take immediate action based on your findings. This streamlined process empowers you to unlock the full value of your data and drive informed decision-making. -
21
Tencent Cloud TI Platform
Tencent
The Tencent Cloud TI Platform serves as a comprehensive machine learning service tailored for AI engineers, facilitating the AI development journey from data preprocessing all the way to model building, training, and evaluation, as well as deployment. This platform is preloaded with a variety of algorithm components and supports a range of algorithm frameworks, ensuring it meets the needs of diverse AI applications. By providing a seamless machine learning experience that encompasses the entire workflow, the Tencent Cloud TI Platform enables users to streamline the process from initial data handling to the final assessment of models. Additionally, it empowers even those new to AI to automatically construct their models, significantly simplifying the training procedure. The platform's auto-tuning feature further boosts the efficiency of parameter optimization, enabling improved model performance. Moreover, Tencent Cloud TI Platform offers flexible CPU and GPU resources that can adapt to varying computational demands, alongside accommodating different billing options, making it a versatile choice for users with diverse needs. This adaptability ensures that users can optimize costs while efficiently managing their machine learning workflows. -
22
Metacoder
Wazoo Mobile Technologies LLC
$89 per user/month Metacoder makes data processing faster and more efficient. Metacoder provides data analysts with the flexibility and tools they need to make data analysis easier. Metacoder automates data preparation steps like cleaning, reducing the time it takes to inspect your data before you can get up and running. It is a good company when compared to other companies. Metacoder is cheaper than similar companies and our management is actively developing based upon our valued customers' feedback. Metacoder is primarily used to support predictive analytics professionals in their work. We offer interfaces for database integrations, data cleaning, preprocessing, modeling, and display/interpretation of results. We make it easy to manage the machine learning pipeline and help organizations share their work. Soon, we will offer code-free solutions for image, audio and video as well as biomedical data. -
23
Automaton AI
Automaton AI
Utilizing Automaton AI's ADVIT platform, you can effortlessly create, manage, and enhance high-quality training data alongside DNN models, all from a single interface. The system automatically optimizes data for each stage of the computer vision pipeline, allowing for a streamlined approach to data labeling processes and in-house data pipelines. You can efficiently handle both structured and unstructured datasets—be it video, images, or text—while employing automatic functions that prepare your data for every phase of the deep learning workflow. Once the data is accurately labeled and undergoes quality assurance, you can proceed with training your own model effectively. Deep neural network training requires careful hyperparameter tuning, including adjustments to batch size and learning rates, which are essential for maximizing model performance. Additionally, you can optimize and apply transfer learning to enhance the accuracy of your trained models. After the training phase, the model can be deployed into production seamlessly. ADVIT also supports model versioning, ensuring that model development and accuracy metrics are tracked in real-time. By leveraging a pre-trained DNN model for automatic labeling, you can further improve the overall accuracy of your models, paving the way for more robust applications in the future. This comprehensive approach to data and model management significantly enhances the efficiency of machine learning projects. -
24
Amazon SageMaker JumpStart
Amazon
Amazon SageMaker JumpStart serves as a comprehensive hub for machine learning (ML), designed to expedite your ML development process. This platform allows users to utilize various built-in algorithms accompanied by pretrained models sourced from model repositories, as well as foundational models that facilitate tasks like article summarization and image creation. Furthermore, it offers ready-made solutions aimed at addressing prevalent use cases in the field. Additionally, users have the ability to share ML artifacts, such as models and notebooks, within their organization to streamline the process of building and deploying ML models. SageMaker JumpStart boasts an extensive selection of hundreds of built-in algorithms paired with pretrained models from well-known hubs like TensorFlow Hub, PyTorch Hub, HuggingFace, and MxNet GluonCV. Furthermore, the SageMaker Python SDK allows for easy access to these built-in algorithms, which cater to various common ML functions, including data classification across images, text, and tabular data, as well as conducting sentiment analysis. This diverse range of features ensures that users have the necessary tools to effectively tackle their unique ML challenges. -
25
Oracle Data Science
Oracle
A data science platform designed to enhance productivity offers unmatched features that facilitate the development and assessment of superior machine learning (ML) models. By leveraging enterprise-trusted data swiftly, businesses can achieve greater flexibility and meet their data-driven goals through simpler deployment of ML models. Cloud-based solutions enable organizations to uncover valuable business insights efficiently. The journey of constructing a machine learning model is inherently iterative, and this ebook meticulously outlines the stages involved in its creation. Readers can engage with notebooks to either build or evaluate various machine learning algorithms. Experimenting with AutoML can yield impressive data science outcomes, allowing users to create high-quality models with greater speed and ease. Moreover, automated machine learning processes quickly analyze datasets, recommending the most effective data features and algorithms while also fine-tuning models and clarifying their results. This comprehensive approach ensures that businesses can harness the full potential of their data, driving innovation and informed decision-making. -
26
Core ML
Apple
Core ML utilizes a machine learning algorithm applied to a specific dataset to generate a predictive model. This model enables predictions based on incoming data, providing solutions for tasks that would be challenging or impossible to code manually. For instance, you could develop a model to classify images or identify particular objects within those images directly from their pixel data. Following the model's creation, it is essential to incorporate it into your application and enable deployment on users' devices. Your application leverages Core ML APIs along with user data to facilitate predictions and to refine or retrain the model as necessary. You can utilize the Create ML application that comes with Xcode to build and train your model. Models generated through Create ML are formatted for Core ML and can be seamlessly integrated into your app. Alternatively, a variety of other machine learning libraries can be employed, and you can use Core ML Tools to convert those models into the Core ML format. Once the model is installed on a user’s device, Core ML allows for on-device retraining or fine-tuning, enhancing its accuracy and performance. This flexibility enables continuous improvement of the model based on real-world usage and feedback. -
27
Your software can see objects in video and images. A few dozen images can be used to train a computer vision model. This takes less than 24 hours. We support innovators just like you in applying computer vision. Upload files via API or manually, including images, annotations, videos, and audio. There are many annotation formats that we support and it is easy to add training data as you gather it. Roboflow Annotate was designed to make labeling quick and easy. Your team can quickly annotate hundreds upon images in a matter of minutes. You can assess the quality of your data and prepare them for training. Use transformation tools to create new training data. See what configurations result in better model performance. All your experiments can be managed from one central location. You can quickly annotate images right from your browser. Your model can be deployed to the cloud, the edge or the browser. Predict where you need them, in half the time.
-
28
Neuton AutoML
Neuton.AI
$0Neuton.AI, an automated solution, empowering users to build accurate predictive models and make smart predictions with: Zero code solution Zero need for technical skills Zero need for data science knowledge -
29
Evidently AI
Evidently AI
$500 per monthAn open-source platform for monitoring machine learning models offers robust observability features. It allows users to evaluate, test, and oversee models throughout their journey from validation to deployment. Catering to a range of data types, from tabular formats to natural language processing and large language models, it is designed with both data scientists and ML engineers in mind. This tool provides everything necessary for the reliable operation of ML systems in a production environment. You can begin with straightforward ad hoc checks and progressively expand to a comprehensive monitoring solution. All functionalities are integrated into a single platform, featuring a uniform API and consistent metrics. The design prioritizes usability, aesthetics, and the ability to share insights easily. Users gain an in-depth perspective on data quality and model performance, facilitating exploration and troubleshooting. Setting up takes just a minute, allowing for immediate testing prior to deployment, validation in live environments, and checks during each model update. The platform also eliminates the hassle of manual configuration by automatically generating test scenarios based on a reference dataset. It enables users to keep an eye on every facet of their data, models, and testing outcomes. By proactively identifying and addressing issues with production models, it ensures sustained optimal performance and fosters ongoing enhancements. Additionally, the tool's versatility makes it suitable for teams of any size, enabling collaborative efforts in maintaining high-quality ML systems. -
30
Ludwig
Uber AI
Ludwig serves as a low-code platform specifically designed for the development of tailored AI models, including large language models (LLMs) and various deep neural networks. With Ludwig, creating custom models becomes a straightforward task; you only need a simple declarative YAML configuration file to train an advanced LLM using your own data. It offers comprehensive support for learning across multiple tasks and modalities. The framework includes thorough configuration validation to identify invalid parameter combinations and avert potential runtime errors. Engineered for scalability and performance, it features automatic batch size determination, distributed training capabilities (including DDP and DeepSpeed), parameter-efficient fine-tuning (PEFT), 4-bit quantization (QLoRA), and the ability to handle larger-than-memory datasets. Users enjoy expert-level control, allowing them to manage every aspect of their models, including activation functions. Additionally, Ludwig facilitates hyperparameter optimization, offers insights into explainability, and provides detailed metric visualizations. Its modular and extensible architecture enables users to experiment with various model designs, tasks, features, and modalities with minimal adjustments in the configuration, making it feel like a set of building blocks for deep learning innovations. Ultimately, Ludwig empowers developers to push the boundaries of AI model creation while maintaining ease of use. -
31
Snorkel AI
Snorkel AI
AI is today blocked by a lack of labeled data. Not models. The first data-centric AI platform powered by a programmatic approach will unblock AI. With its unique programmatic approach, Snorkel AI is leading a shift from model-centric AI development to data-centric AI. By replacing manual labeling with programmatic labeling, you can save time and money. You can quickly adapt to changing data and business goals by changing code rather than manually re-labeling entire datasets. Rapid, guided iteration of the training data is required to develop and deploy AI models of high quality. Versioning and auditing data like code leads to faster and more ethical deployments. By collaborating on a common interface, which provides the data necessary to train models, subject matter experts can be integrated. Reduce risk and ensure compliance by labeling programmatically, and not sending data to external annotators. -
32
Kraken
Big Squid
$100 per monthKraken caters to a wide range of users, from analysts to data scientists, by providing a user-friendly, no-code automated machine learning platform. It is designed to streamline and automate various data science processes, including data preparation, cleaning, algorithm selection, model training, and deployment. With a focus on making these tasks accessible, Kraken is particularly beneficial for analysts and engineers who may have some experience in data analysis. The platform’s intuitive, no-code interface and integrated SONAR© training empower users to evolve into citizen data scientists effortlessly. For data scientists, advanced functionalities enhance productivity and efficiency. Whether your routine involves using Excel or flat files for reporting or conducting ad-hoc analysis, Kraken simplifies the model-building process with features like drag-and-drop CSV uploads and an Amazon S3 connector. Additionally, the Data Connectors in Kraken enable seamless integration with various data warehouses, business intelligence tools, and cloud storage solutions, ensuring that users can work with their preferred data sources effortlessly. This versatility makes Kraken an indispensable tool for anyone looking to leverage machine learning without requiring extensive coding knowledge. -
33
Arize AI
Arize AI
$50/month Arize's machine-learning observability platform automatically detects and diagnoses problems and improves models. Machine learning systems are essential for businesses and customers, but often fail to perform in real life. Arize is an end to-end platform for observing and solving issues in your AI models. Seamlessly enable observation for any model, on any platform, in any environment. SDKs that are lightweight for sending production, validation, or training data. You can link real-time ground truth with predictions, or delay. You can gain confidence in your models' performance once they are deployed. Identify and prevent any performance or prediction drift issues, as well as quality issues, before they become serious. Even the most complex models can be reduced in time to resolution (MTTR). Flexible, easy-to use tools for root cause analysis are available. -
34
Dataiku serves as a sophisticated platform for data science and machine learning, aimed at facilitating teams in the construction, deployment, and management of AI and analytics projects on a large scale. It enables a diverse range of users, including data scientists and business analysts, to work together in developing data pipelines, crafting machine learning models, and preparing data through various visual and coding interfaces. Supporting the complete AI lifecycle, Dataiku provides essential tools for data preparation, model training, deployment, and ongoing monitoring of projects. Additionally, the platform incorporates integrations that enhance its capabilities, such as generative AI, thereby allowing organizations to innovate and implement AI solutions across various sectors. This adaptability positions Dataiku as a valuable asset for teams looking to harness the power of AI effectively.
-
35
Snitch AI
Snitch AI
$1,995 per yearStreamlining quality assurance for machine learning, Snitch cuts through the clutter to highlight the most valuable insights for enhancing your models. It allows you to monitor performance metrics that extend beyond mere accuracy through comprehensive dashboards and analytical tools. You can pinpoint issues within your data pipeline and recognize distribution changes before they impact your predictions. Once deployed, maintain your model in production while gaining insight into its performance and data throughout its lifecycle. Enjoy flexibility with your data security, whether in the cloud, on-premises, private cloud, or hybrid environments, while choosing your preferred installation method for Snitch. Seamlessly integrate Snitch into your existing MLops framework and continue using your favorite tools! Our installation process is designed for quick setup, ensuring that learning and operating the product are straightforward and efficient. Remember, accuracy alone can be deceptive; therefore, it’s crucial to assess your models for robustness and feature significance before launch. Obtain actionable insights that will help refine your models, and make comparisons with historical metrics and your models' established baselines to drive continuous improvement. This comprehensive approach not only bolsters performance but also fosters a deeper understanding of your machine learning processes. -
36
RapidMiner
Altair
FreeRapidMiner is redefining enterprise AI so anyone can positively shape the future. RapidMiner empowers data-loving people from all levels to quickly create and implement AI solutions that drive immediate business impact. Our platform unites data prep, machine-learning, and model operations. This provides a user experience that is both rich in data science and simplified for all others. Customers are guaranteed success with our Center of Excellence methodology, RapidMiner Academy and no matter what level of experience or resources they have. -
37
Scale GenAI Platform
Scale AI
Build, test and optimize Generative AI apps that unlock the value in your data. Our industry-leading ML expertise, our state-of-the art test and evaluation platform and advanced retrieval augmented-generation (RAG) pipelines will help you optimize LLM performance to meet your domain-specific needs. We provide an end-toend solution that manages the entire ML Lifecycle. We combine cutting-edge technology with operational excellence to help teams develop high-quality datasets, because better data leads better AI. -
38
Sixgill Sense
Sixgill
The entire process of machine learning and computer vision is streamlined and expedited through a single no-code platform. Sense empowers users to create and implement AI IoT solutions across various environments, whether in the cloud, at the edge, or on-premises. Discover how Sense delivers ease, consistency, and transparency for AI/ML teams, providing robust capabilities for machine learning engineers while remaining accessible for subject matter experts. With Sense Data Annotation, you can enhance your machine learning models by efficiently labeling video and image data, ensuring the creation of high-quality training datasets. The platform also features one-touch labeling integration, promoting ongoing machine learning at the edge and simplifying the management of all your AI applications, thereby maximizing efficiency and effectiveness. This comprehensive approach makes Sense an invaluable tool for a wide range of users, regardless of their technical background. -
39
Emly Labs
Emly Labs
$99/month Emly Labs, an AI framework, is designed to make AI accessible to users of all technical levels via a user-friendly interface. It offers AI project-management with tools that automate workflows for faster execution. The platform promotes team collaboration, innovation, and data preparation without code. It also integrates external data to create robust AI models. Emly AutoML automates model evaluation and data processing, reducing the need for human input. It prioritizes transparency with AI features that are easily explained and robust auditing to ensure compliance. Data isolation, role-based accessibility, and secure integrations are all security measures. Emly's cost effective infrastructure allows for on-demand resource provisioning, policy management and risk reduction. -
40
Hopsworks
Logical Clocks
$1 per monthHopsworks is a comprehensive open-source platform designed to facilitate the creation and management of scalable Machine Learning (ML) pipelines, featuring the industry's pioneering Feature Store for ML. Users can effortlessly transition from data analysis and model creation in Python, utilizing Jupyter notebooks and conda, to executing robust, production-ready ML pipelines without needing to acquire knowledge about managing a Kubernetes cluster. The platform is capable of ingesting data from a variety of sources, whether they reside in the cloud, on-premise, within IoT networks, or stem from your Industry 4.0 initiatives. You have the flexibility to deploy Hopsworks either on your own infrastructure or via your chosen cloud provider, ensuring a consistent user experience regardless of the deployment environment, be it in the cloud or a highly secure air-gapped setup. Moreover, Hopsworks allows you to customize alerts for various events triggered throughout the ingestion process, enhancing your workflow efficiency. This makes it an ideal choice for teams looking to streamline their ML operations while maintaining control over their data environments. -
41
Profet AI
Profet AI
Profet AI’s No-Code AutoML Platform, which is end-to-end and can be used by manufacturers as their Virtual Data Scientist, provides a complete solution for data analysis. It allows IT/domain experts to quickly build high-quality predictive models and deploy Industrial AI apps to solve their daily production and digitalization challenges. Profet AI AutoML Platform has been widely adopted by leading companies in the world across industries. These include leading EMS, Semi OSAT, PCB design houses, IC design houses, display panel and material solution providers. We use the successful cases of industry leading companies to benefit our customers and implement AI within a week. -
42
Kepler
Stradigi AI
Utilize Kepler's Automated Data Science Workflows to eliminate the necessity for coding and prior machine learning knowledge. Quickly onboard to produce insights that are tailored specifically to your organization's data and needs. Benefit from ongoing updates and additional workflows developed by our expert AI and ML team through our SaaS platform. Enhance AI capabilities and speed up the realization of value with a solution that adapts alongside your business using the existing team and expertise you have. Tackle intricate business challenges using sophisticated AI and machine learning features without requiring any technical ML skills. Take advantage of cutting-edge, comprehensive automation, a vast collection of AI algorithms, and the quick deployment of machine learning models. Organizations are increasingly turning to Kepler to streamline and automate essential business operations, resulting in heightened productivity and agility while fostering an environment of continuous improvement and innovation. By leveraging Kepler's solutions, businesses can ensure they remain competitive and responsive to ever-evolving market demands. -
43
Amazon SageMaker Data Wrangler significantly shortens the data aggregation and preparation timeline for machine learning tasks from several weeks to just minutes. This tool streamlines data preparation and feature engineering, allowing you to execute every phase of the data preparation process—such as data selection, cleansing, exploration, visualization, and large-scale processing—through a unified visual interface. You can effortlessly select data from diverse sources using SQL, enabling rapid imports. Following this, the Data Quality and Insights report serves to automatically assess data integrity and identify issues like duplicate entries and target leakage. With over 300 pre-built data transformations available, SageMaker Data Wrangler allows for quick data modification without the need for coding. After finalizing your data preparation, you can scale the workflow to encompass your complete datasets, facilitating model training, tuning, and deployment in a seamless manner. This comprehensive approach not only enhances efficiency but also empowers users to focus on deriving insights from their data rather than getting bogged down in the preparation phase.
-
44
Segmind
Segmind
$5Segmind simplifies access to extensive computing resources, making it ideal for executing demanding tasks like deep learning training and various intricate processing jobs. It offers environments that require no setup within minutes, allowing for easy collaboration among team members. Additionally, Segmind's MLOps platform supports comprehensive management of deep learning projects, featuring built-in data storage and tools for tracking experiments. Recognizing that machine learning engineers often lack expertise in cloud infrastructure, Segmind takes on the complexities of cloud management, enabling teams to concentrate on their strengths and enhance model development efficiency. As training machine learning and deep learning models can be time-consuming and costly, Segmind allows for effortless scaling of computational power while potentially cutting costs by up to 70% through managed spot instances. Furthermore, today's ML managers often struggle to maintain an overview of ongoing ML development activities and associated expenses, highlighting the need for robust management solutions in the field. By addressing these challenges, Segmind empowers teams to achieve their goals more effectively. -
45
ClearML
ClearML
$15ClearML is an open-source MLOps platform that enables data scientists, ML engineers, and DevOps to easily create, orchestrate and automate ML processes at scale. Our frictionless and unified end-to-end MLOps Suite allows users and customers to concentrate on developing ML code and automating their workflows. ClearML is used to develop a highly reproducible process for end-to-end AI models lifecycles by more than 1,300 enterprises, from product feature discovery to model deployment and production monitoring. You can use all of our modules to create a complete ecosystem, or you can plug in your existing tools and start using them. ClearML is trusted worldwide by more than 150,000 Data Scientists, Data Engineers and ML Engineers at Fortune 500 companies, enterprises and innovative start-ups.