Best Devstral Alternatives in 2025

Find the top alternatives to Devstral currently available. Compare ratings, reviews, pricing, and features of Devstral alternatives in 2025. Slashdot lists the best Devstral alternatives on the market that offer competing products that are similar to Devstral. Sort through Devstral alternatives below to make the best choice for your needs

  • 1
    Mistral Small 3.1 Reviews
    Mistral Small 3.1 represents a cutting-edge, multimodal, and multilingual AI model that has been released under the Apache 2.0 license. This upgraded version builds on Mistral Small 3, featuring enhanced text capabilities and superior multimodal comprehension, while also accommodating an extended context window of up to 128,000 tokens. It demonstrates superior performance compared to similar models such as Gemma 3 and GPT-4o Mini, achieving impressive inference speeds of 150 tokens per second. Tailored for adaptability, Mistral Small 3.1 shines in a variety of applications, including instruction following, conversational support, image analysis, and function execution, making it ideal for both business and consumer AI needs. The model's streamlined architecture enables it to operate efficiently on hardware such as a single RTX 4090 or a Mac equipped with 32GB of RAM, thus supporting on-device implementations. Users can download it from Hugging Face and access it through Mistral AI's developer playground, while it is also integrated into platforms like Google Cloud Vertex AI, with additional accessibility on NVIDIA NIM and more. This flexibility ensures that developers can leverage its capabilities across diverse environments and applications.
  • 2
    Mistral AI Reviews
    Mistral AI stands out as an innovative startup in the realm of artificial intelligence, focusing on open-source generative solutions. The company provides a diverse array of customizable, enterprise-level AI offerings that can be implemented on various platforms, such as on-premises, cloud, edge, and devices. Among its key products are "Le Chat," a multilingual AI assistant aimed at boosting productivity in both personal and professional settings, and "La Plateforme," a platform for developers that facilitates the creation and deployment of AI-driven applications. With a strong commitment to transparency and cutting-edge innovation, Mistral AI has established itself as a prominent independent AI laboratory, actively contributing to the advancement of open-source AI and influencing policy discussions. Their dedication to fostering an open AI ecosystem underscores their role as a thought leader in the industry.
  • 3
    Mistral NeMo Reviews
    Introducing Mistral NeMo, our latest and most advanced small model yet, featuring a cutting-edge 12 billion parameters and an expansive context length of 128,000 tokens, all released under the Apache 2.0 license. Developed in partnership with NVIDIA, Mistral NeMo excels in reasoning, world knowledge, and coding proficiency within its category. Its architecture adheres to industry standards, making it user-friendly and a seamless alternative for systems currently utilizing Mistral 7B. To facilitate widespread adoption among researchers and businesses, we have made available both pre-trained base and instruction-tuned checkpoints under the same Apache license. Notably, Mistral NeMo incorporates quantization awareness, allowing for FP8 inference without compromising performance. The model is also tailored for diverse global applications, adept in function calling and boasting a substantial context window. When compared to Mistral 7B, Mistral NeMo significantly outperforms in understanding and executing detailed instructions, showcasing enhanced reasoning skills and the ability to manage complex multi-turn conversations. Moreover, its design positions it as a strong contender for multi-lingual tasks, ensuring versatility across various use cases.
  • 4
    Mistral 7B Reviews
    Mistral 7B is a language model with 7.3 billion parameters that demonstrates superior performance compared to larger models such as Llama 2 13B on a variety of benchmarks. It utilizes innovative techniques like Grouped-Query Attention (GQA) for improved inference speed and Sliding Window Attention (SWA) to manage lengthy sequences efficiently. Released under the Apache 2.0 license, Mistral 7B is readily available for deployment on different platforms, including both local setups and prominent cloud services. Furthermore, a specialized variant known as Mistral 7B Instruct has shown remarkable capabilities in following instructions, outperforming competitors like Llama 2 13B Chat in specific tasks. This versatility makes Mistral 7B an attractive option for developers and researchers alike.
  • 5
    Voxtral Reviews
    Voxtral models represent cutting-edge open-source systems designed for speech understanding, available in two sizes: a larger 24 B variant aimed at production-scale use and a smaller 3 B variant suitable for local and edge applications, both of which are provided under the Apache 2.0 license. These models excel in delivering precise transcription while featuring inherent semantic comprehension, accommodating long-form contexts of up to 32 K tokens and incorporating built-in question-and-answer capabilities along with structured summarization. They automatically detect languages across a range of major tongues and enable direct function-calling to activate backend workflows through voice commands. Retaining the textual strengths of their Mistral Small 3.1 architecture, Voxtral can process audio inputs of up to 30 minutes for transcription tasks and up to 40 minutes for comprehension, consistently surpassing both open-source and proprietary competitors in benchmarks like LibriSpeech, Mozilla Common Voice, and FLEURS. Users can access Voxtral through downloads on Hugging Face, API endpoints, or by utilizing private on-premises deployments, and the model also provides options for domain-specific fine-tuning along with advanced features tailored for enterprise needs, thus enhancing its applicability across various sectors.
  • 6
    Pixtral Large Reviews
    Pixtral Large is an expansive multimodal model featuring 124 billion parameters, crafted by Mistral AI and enhancing their previous Mistral Large 2 framework. This model combines a 123-billion-parameter multimodal decoder with a 1-billion-parameter vision encoder, allowing it to excel in the interpretation of various content types, including documents, charts, and natural images, all while retaining superior text comprehension abilities. With the capability to manage a context window of 128,000 tokens, Pixtral Large can efficiently analyze at least 30 high-resolution images at once. It has achieved remarkable results on benchmarks like MathVista, DocVQA, and VQAv2, outpacing competitors such as GPT-4o and Gemini-1.5 Pro. Available for research and educational purposes under the Mistral Research License, it also has a Mistral Commercial License for business applications. This versatility makes Pixtral Large a valuable tool for both academic research and commercial innovations.
  • 7
    Ministral 3B Reviews
    Mistral AI has launched two cutting-edge models designed for on-device computing and edge applications, referred to as "les Ministraux": Ministral 3B and Ministral 8B. These innovative models redefine the standards of knowledge, commonsense reasoning, function-calling, and efficiency within the sub-10B category. They are versatile enough to be utilized or customized for a wide range of applications, including managing complex workflows and developing specialized task-focused workers. Capable of handling up to 128k context length (with the current version supporting 32k on vLLM), Ministral 8B also incorporates a unique interleaved sliding-window attention mechanism to enhance both speed and memory efficiency during inference. Designed for low-latency and compute-efficient solutions, these models excel in scenarios such as offline translation, smart assistants that don't rely on internet connectivity, local data analysis, and autonomous robotics. Moreover, when paired with larger language models like Mistral Large, les Ministraux can effectively function as streamlined intermediaries, facilitating function-calling within intricate multi-step workflows, thereby expanding their applicability across various domains. This combination not only enhances performance but also broadens the scope of what can be achieved with AI in edge computing.
  • 8
    Solar Mini Reviews

    Solar Mini

    Upstage AI

    $0.1 per 1M tokens
    Solar Mini is an advanced pre-trained large language model that matches the performance of GPT-3.5 while providing responses 2.5 times faster, all while maintaining a parameter count of under 30 billion. In December 2023, it secured the top position on the Hugging Face Open LLM Leaderboard by integrating a 32-layer Llama 2 framework, which was initialized with superior Mistral 7B weights, coupled with a novel method known as "depth up-scaling" (DUS) that enhances the model's depth efficiently without the need for intricate modules. Following the DUS implementation, the model undergoes further pretraining to restore and boost its performance, and it also includes instruction tuning in a question-and-answer format, particularly tailored for Korean, which sharpens its responsiveness to user prompts, while alignment tuning ensures its outputs align with human or sophisticated AI preferences. Solar Mini consistently surpasses rivals like Llama 2, Mistral 7B, Ko-Alpaca, and KULLM across a range of benchmarks, demonstrating that a smaller model can still deliver exceptional performance. This showcases the potential of innovative architectural strategies in the development of highly efficient AI models.
  • 9
    Mistral Large Reviews
    Mistral Large stands as the premier language model from Mistral AI, engineered for sophisticated text generation and intricate multilingual reasoning tasks such as text comprehension, transformation, and programming code development. This model encompasses support for languages like English, French, Spanish, German, and Italian, which allows it to grasp grammar intricacies and cultural nuances effectively. With an impressive context window of 32,000 tokens, Mistral Large can retain and reference information from lengthy documents with accuracy. Its abilities in precise instruction adherence and native function-calling enhance the development of applications and the modernization of tech stacks. Available on Mistral's platform, Azure AI Studio, and Azure Machine Learning, it also offers the option for self-deployment, catering to sensitive use cases. Benchmarks reveal that Mistral Large performs exceptionally well, securing its position as the second-best model globally that is accessible via an API, just behind GPT-4, illustrating its competitive edge in the AI landscape. Such capabilities make it an invaluable tool for developers seeking to leverage advanced AI technology.
  • 10
    Codestral Embed Reviews
    Codestral Embed marks Mistral AI's inaugural venture into embedding models, focusing specifically on code and engineered for optimal code retrieval and comprehension. It surpasses other prominent code embedding models in the industry, including Voyage Code 3, Cohere Embed v4.0, and OpenAI’s large embedding model, showcasing its superior performance. This model is capable of generating embeddings with varying dimensions and levels of precision; for example, even at a dimension of 256 and int8 precision, it maintains a competitive edge over rival models. The embeddings are organized by relevance, enabling users to select the top n dimensions, which facilitates an effective balance between quality and cost. Codestral Embed shines particularly in retrieval applications involving real-world code data, excelling in evaluations such as SWE-Bench, which uses actual GitHub issues and their solutions, along with Text2Code (GitHub), which enhances context for tasks like code completion or editing. Its versatility and performance make it a valuable tool for developers looking to leverage advanced code understanding capabilities.
  • 11
    Mistral Large 2 Reviews
    Mistral AI has introduced the Mistral Large 2, a sophisticated AI model crafted to excel in various domains such as code generation, multilingual understanding, and intricate reasoning tasks. With an impressive 128k context window, this model accommodates a wide array of languages, including English, French, Spanish, and Arabic, while also supporting an extensive list of over 80 programming languages. Designed for high-throughput single-node inference, Mistral Large 2 is perfectly suited for applications requiring large context handling. Its superior performance on benchmarks like MMLU, coupled with improved capabilities in code generation and reasoning, guarantees both accuracy and efficiency in results. Additionally, the model features enhanced function calling and retrieval mechanisms, which are particularly beneficial for complex business applications. This makes Mistral Large 2 not only versatile but also a powerful tool for developers and businesses looking to leverage advanced AI capabilities.
  • 12
    Qwen2.5-Max Reviews
    Qwen2.5-Max is an advanced Mixture-of-Experts (MoE) model created by the Qwen team, which has been pretrained on an extensive dataset of over 20 trillion tokens and subsequently enhanced through methods like Supervised Fine-Tuning (SFT) and Reinforcement Learning from Human Feedback (RLHF). Its performance in evaluations surpasses that of models such as DeepSeek V3 across various benchmarks, including Arena-Hard, LiveBench, LiveCodeBench, and GPQA-Diamond, while also achieving strong results in other tests like MMLU-Pro. This model is available through an API on Alibaba Cloud, allowing users to easily integrate it into their applications, and it can also be interacted with on Qwen Chat for a hands-on experience. With its superior capabilities, Qwen2.5-Max represents a significant advancement in AI model technology.
  • 13
    NativeMind Reviews
    NativeMind serves as a completely open-source AI assistant that operates directly within your browser through Ollama integration, maintaining total privacy by refraining from sending any data to external servers. All processes, including model inference and prompt handling, take place locally, which eliminates concerns about syncing, logging, or data leaks. Users can effortlessly transition between various powerful open models like DeepSeek, Qwen, Llama, Gemma, and Mistral, requiring no extra configurations, while taking advantage of native browser capabilities to enhance their workflows. Additionally, NativeMind provides efficient webpage summarization; it maintains ongoing, context-aware conversations across multiple tabs; offers local web searches that can answer questions straight from the page; and delivers immersive translations that keep the original format intact. Designed with an emphasis on both efficiency and security, this extension is fully auditable and supported by the community, ensuring enterprise-level performance suitable for real-world applications without the risk of vendor lock-in or obscure telemetry. Moreover, the user-friendly interface and seamless integration make it an appealing choice for those seeking a reliable AI assistant that prioritizes their privacy.
  • 14
    Llama 2 Reviews
    Introducing the next iteration of our open-source large language model, this version features model weights along with initial code for the pretrained and fine-tuned Llama language models, which span from 7 billion to 70 billion parameters. The Llama 2 pretrained models have been developed using an impressive 2 trillion tokens and offer double the context length compared to their predecessor, Llama 1. Furthermore, the fine-tuned models have been enhanced through the analysis of over 1 million human annotations. Llama 2 demonstrates superior performance against various other open-source language models across multiple external benchmarks, excelling in areas such as reasoning, coding capabilities, proficiency, and knowledge assessments. For its training, Llama 2 utilized publicly accessible online data sources, while the fine-tuned variant, Llama-2-chat, incorporates publicly available instruction datasets along with the aforementioned extensive human annotations. Our initiative enjoys strong support from a diverse array of global stakeholders who are enthusiastic about our open approach to AI, including companies that have provided valuable early feedback and are eager to collaborate using Llama 2. The excitement surrounding Llama 2 signifies a pivotal shift in how AI can be developed and utilized collectively.
  • 15
    EXAONE Deep Reviews
    EXAONE Deep represents a collection of advanced language models that are enhanced for reasoning, created by LG AI Research, and come in sizes of 2.4 billion, 7.8 billion, and 32 billion parameters. These models excel in a variety of reasoning challenges, particularly in areas such as mathematics and coding assessments. Significantly, the EXAONE Deep 2.4B model outshines other models of its size, while the 7.8B variant outperforms both open-weight models of similar dimensions and the proprietary reasoning model known as OpenAI o1-mini. Furthermore, the EXAONE Deep 32B model competes effectively with top-tier open-weight models in the field. The accompanying repository offers extensive documentation that includes performance assessments, quick-start guides for leveraging EXAONE Deep models with the Transformers library, detailed explanations of quantized EXAONE Deep weights formatted in AWQ and GGUF, as well as guidance on how to run these models locally through platforms like llama.cpp and Ollama. Additionally, this resource serves to enhance user understanding and accessibility to the capabilities of EXAONE Deep models.
  • 16
    bolt.diy Reviews
    bolt.diy is an open-source platform that empowers developers to effortlessly create, run, modify, and deploy comprehensive web applications utilizing a variety of large language models (LLMs). It encompasses a diverse selection of models, such as OpenAI, Anthropic, Ollama, OpenRouter, Gemini, LMStudio, Mistral, xAI, HuggingFace, DeepSeek, and Groq. The platform facilitates smooth integration via the Vercel AI SDK, enabling users to tailor and enhance their applications with their preferred LLMs. With an intuitive user interface, bolt.diy streamlines AI development workflows, making it an excellent resource for both experimentation and production-ready solutions. Furthermore, its versatility ensures that developers of all skill levels can harness the power of AI in their projects efficiently.
  • 17
    Falcon Mamba 7B Reviews

    Falcon Mamba 7B

    Technology Innovation Institute (TII)

    Free
    Falcon Mamba 7B marks a significant milestone as the inaugural open-source State Space Language Model (SSLM), presenting a revolutionary architecture within the Falcon model family. Celebrated as the premier open-source SSLM globally by Hugging Face, it establishes a new standard for efficiency in artificial intelligence. In contrast to conventional transformers, SSLMs require significantly less memory and can produce lengthy text sequences seamlessly without extra resource demands. Falcon Mamba 7B outperforms top transformer models, such as Meta’s Llama 3.1 8B and Mistral’s 7B, demonstrating enhanced capabilities. This breakthrough not only highlights Abu Dhabi’s dedication to pushing the boundaries of AI research but also positions the region as a pivotal player in the global AI landscape. Such advancements are vital for fostering innovation and collaboration in technology.
  • 18
    OpenPipe Reviews

    OpenPipe

    OpenPipe

    $1.20 per 1M tokens
    OpenPipe offers an efficient platform for developers to fine-tune their models. It allows you to keep your datasets, models, and evaluations organized in a single location. You can train new models effortlessly with just a click. The system automatically logs all LLM requests and responses for easy reference. You can create datasets from the data you've captured, and even train multiple base models using the same dataset simultaneously. Our managed endpoints are designed to handle millions of requests seamlessly. Additionally, you can write evaluations and compare the outputs of different models side by side for better insights. A few simple lines of code can get you started; just swap out your Python or Javascript OpenAI SDK with an OpenPipe API key. Enhance the searchability of your data by using custom tags. Notably, smaller specialized models are significantly cheaper to operate compared to large multipurpose LLMs. Transitioning from prompts to models can be achieved in minutes instead of weeks. Our fine-tuned Mistral and Llama 2 models routinely exceed the performance of GPT-4-1106-Turbo, while also being more cost-effective. With a commitment to open-source, we provide access to many of the base models we utilize. When you fine-tune Mistral and Llama 2, you maintain ownership of your weights and can download them whenever needed. Embrace the future of model training and deployment with OpenPipe's comprehensive tools and features.
  • 19
    Microsoft Foundry Models Reviews
    Microsoft Foundry Models centralizes more than 11,000 leading AI models, offering enterprises a single place to explore, compare, fine-tune, and deploy AI for any use case. It includes top-performing models from OpenAI, Anthropic, Cohere, Meta, Mistral AI, DeepSeek, Black Forest Labs, and Microsoft’s own Azure OpenAI offerings. Teams can search by task—such as reasoning, generation, multimodal, or domain-specific workloads—and instantly test models in a built-in playground. Foundry Models simplifies customization with ready-to-use fine-tuning pipelines that require no infrastructure setup. Developers can upload internal datasets to benchmark and evaluate model accuracy, ensuring the right fit for production environments. With seamless deployment into managed instances, organizations get automatic scaling, traffic management, and secure hosting. The platform is backed by Azure’s enterprise-grade security and over 100 compliance certifications, supporting regulated industries and global operations. By integrating discovery, testing, tuning, and deployment, Foundry Models dramatically shortens AI development cycles and speeds time to value.
  • 20
    Kimi K2 Reviews
    Kimi K2 represents a cutting-edge series of open-source large language models utilizing a mixture-of-experts (MoE) architecture, with a staggering 1 trillion parameters in total and 32 billion activated parameters tailored for optimized task execution. Utilizing the Muon optimizer, it has been trained on a substantial dataset of over 15.5 trillion tokens, with its performance enhanced by MuonClip’s attention-logit clamping mechanism, resulting in remarkable capabilities in areas such as advanced knowledge comprehension, logical reasoning, mathematics, programming, and various agentic operations. Moonshot AI offers two distinct versions: Kimi-K2-Base, designed for research-level fine-tuning, and Kimi-K2-Instruct, which is pre-trained for immediate applications in chat and tool interactions, facilitating both customized development and seamless integration of agentic features. Comparative benchmarks indicate that Kimi K2 surpasses other leading open-source models and competes effectively with top proprietary systems, particularly excelling in coding and intricate task analysis. Furthermore, it boasts a generous context length of 128 K tokens, compatibility with tool-calling APIs, and support for industry-standard inference engines, making it a versatile option for various applications. The innovative design and features of Kimi K2 position it as a significant advancement in the field of artificial intelligence language processing.
  • 21
    Mistral Small Reviews
    On September 17, 2024, Mistral AI revealed a series of significant updates designed to improve both the accessibility and efficiency of their AI products. Among these updates was the introduction of a complimentary tier on "La Plateforme," their serverless platform that allows for the tuning and deployment of Mistral models as API endpoints, which gives developers a chance to innovate and prototype at zero cost. In addition, Mistral AI announced price reductions across their complete model range, highlighted by a remarkable 50% decrease for Mistral Nemo and an 80% cut for Mistral Small and Codestral, thereby making advanced AI solutions more affordable for a wider audience. The company also launched Mistral Small v24.09, a model with 22 billion parameters that strikes a favorable balance between performance and efficiency, making it ideal for various applications such as translation, summarization, and sentiment analysis. Moreover, they released Pixtral 12B, a vision-capable model equipped with image understanding features, for free on "Le Chat," allowing users to analyze and caption images while maintaining strong text-based performance. This suite of updates reflects Mistral AI's commitment to democratizing access to powerful AI technologies for developers everywhere.
  • 22
    CodeNext Reviews

    CodeNext

    CodeNext

    $15 per month
    CodeNext.ai is an innovative AI-driven coding assistant tailored for Xcode developers, featuring advanced context-aware code completion alongside interactive chat capabilities. It is compatible with numerous top-tier AI models, such as OpenAI, Azure OpenAI, Google AI, Mistral, Anthropic, Deepseek, Ollama, and others, allowing developers the convenience to select and switch models according to their preferences. The tool offers smart, instant code suggestions as you type, significantly boosting productivity and coding effectiveness. Additionally, its chat functionality empowers developers to communicate in natural language for tasks like writing code, debugging, refactoring, and executing various coding operations within or outside the codebase. CodeNext.ai also incorporates custom chat plugins, facilitating the execution of terminal commands and shortcuts right within the chat interface, thereby optimizing the overall development process. Ultimately, this sophisticated assistant not only simplifies coding tasks but also enhances collaboration and streamlines the workflow for developers.
  • 23
    Mixtral 8x7B Reviews
    The Mixtral 8x7B model is an advanced sparse mixture of experts (SMoE) system that boasts open weights and is released under the Apache 2.0 license. This model demonstrates superior performance compared to Llama 2 70B across various benchmarks while achieving inference speeds that are six times faster. Recognized as the leading open-weight model with a flexible licensing framework, Mixtral also excels in terms of cost-efficiency and performance. Notably, it competes with and often surpasses GPT-3.5 in numerous established benchmarks, highlighting its significance in the field. Its combination of accessibility, speed, and effectiveness makes it a compelling choice for developers seeking high-performing AI solutions.
  • 24
    Mistral Medium 3 Reviews
    Mistral Medium 3 is an innovative AI model designed to offer high performance at a significantly lower cost, making it an attractive solution for enterprises. It integrates seamlessly with both on-premises and cloud environments, supporting hybrid deployments for more flexibility. This model stands out in professional use cases such as coding, STEM tasks, and multimodal understanding, where it achieves near-competitive results against larger, more expensive models. Additionally, Mistral Medium 3 allows businesses to deploy custom post-training and integrate it into existing systems, making it adaptable to various industry needs. With its impressive performance in coding tasks and real-world human evaluations, Mistral Medium 3 is a cost-effective solution that enables companies to implement AI into their workflows. Its enterprise-focused features, including continuous pretraining and domain-specific fine-tuning, make it a reliable tool for sectors like healthcare, financial services, and energy.
  • 25
    Ministral 8B Reviews
    Mistral AI has unveiled two cutting-edge models specifically designed for on-device computing and edge use cases, collectively referred to as "les Ministraux": Ministral 3B and Ministral 8B. These innovative models stand out due to their capabilities in knowledge retention, commonsense reasoning, function-calling, and overall efficiency, all while remaining within the sub-10B parameter range. They boast support for a context length of up to 128k, making them suitable for a diverse range of applications such as on-device translation, offline smart assistants, local analytics, and autonomous robotics. Notably, Ministral 8B incorporates an interleaved sliding-window attention mechanism, which enhances both the speed and memory efficiency of inference processes. Both models are adept at serving as intermediaries in complex multi-step workflows, skillfully managing functions like input parsing, task routing, and API interactions based on user intent, all while minimizing latency and operational costs. Benchmark results reveal that les Ministraux consistently exceed the performance of similar models across a variety of tasks, solidifying their position in the market. As of October 16, 2024, these models are now available for developers and businesses, with Ministral 8B being offered at a competitive rate of $0.1 for every million tokens utilized. This pricing structure enhances accessibility for users looking to integrate advanced AI capabilities into their solutions.
  • 26
    NLP Cloud Reviews

    NLP Cloud

    NLP Cloud

    $29 per month
    We offer fast and precise AI models optimized for deployment in production environments. Our inference API is designed for high availability, utilizing cutting-edge NVIDIA GPUs to ensure optimal performance. We have curated a selection of top open-source natural language processing (NLP) models from the community, making them readily available for your use. You have the flexibility to fine-tune your own models, including GPT-J, or upload your proprietary models for seamless deployment in production. From your user-friendly dashboard, you can easily upload or train/fine-tune AI models, allowing you to integrate them into production immediately without the hassle of managing deployment factors such as memory usage, availability, or scalability. Moreover, you can upload an unlimited number of models and deploy them as needed, ensuring that you can continuously innovate and adapt to your evolving requirements. This provides a robust framework for leveraging AI technologies in your projects.
  • 27
    Mistral Medium 3.1 Reviews
    Mistral Medium 3.1 represents a significant advancement in multimodal foundation models, launched in August 2025, and is engineered to provide superior reasoning, coding, and multimodal functionalities while significantly simplifying deployment processes and minimizing costs. This model is an evolution of the highly efficient Mistral Medium 3 architecture, which is celebrated for delivering top-tier performance at a fraction of the cost—up to eight times less than many leading large models—while also improving tone consistency, responsiveness, and precision across a variety of tasks and modalities. It is designed to operate effectively in hybrid environments, including on-premises and virtual private cloud systems, and competes strongly with high-end models like Claude Sonnet 3.7, Llama 4 Maverick, and Cohere Command A. Mistral Medium 3.1 is particularly well-suited for professional and enterprise applications, excelling in areas such as coding, STEM reasoning, and language comprehension across multiple formats. Furthermore, it ensures extensive compatibility with personalized workflows and existing infrastructure, making it a versatile choice for various organizational needs. As businesses seek to leverage AI in more complex scenarios, Mistral Medium 3.1 stands out as a robust solution to meet those challenges.
  • 28
    LongLLaMA Reviews
    This repository showcases the research preview of LongLLaMA, an advanced large language model that can manage extensive contexts of up to 256,000 tokens or potentially more. LongLLaMA is developed on the OpenLLaMA framework and has been fine-tuned utilizing the Focused Transformer (FoT) technique. The underlying code for LongLLaMA is derived from Code Llama. We are releasing a smaller 3B base variant of the LongLLaMA model, which is not instruction-tuned, under an open license (Apache 2.0), along with inference code that accommodates longer contexts available on Hugging Face. This model's weights can seamlessly replace LLaMA in existing systems designed for shorter contexts, specifically those handling up to 2048 tokens. Furthermore, we include evaluation results along with comparisons to the original OpenLLaMA models, thereby providing a comprehensive overview of LongLLaMA's capabilities in the realm of long-context processing.
  • 29
    Solar Pro 2 Reviews

    Solar Pro 2

    Upstage AI

    $0.1 per 1M tokens
    Upstage has unveiled Solar Pro 2, a cutting-edge large language model designed for frontier-scale applications, capable of managing intricate tasks and workflows in various sectors including finance, healthcare, and law. This model is built on a streamlined architecture with 31 billion parameters, ensuring exceptional multilingual capabilities, particularly in Korean, where it surpasses even larger models on key benchmarks such as Ko-MMLU, Hae-Rae, and Ko-IFEval, while maintaining strong performance in English and Japanese as well. In addition to its advanced language comprehension and generation abilities, Solar Pro 2 incorporates a sophisticated Reasoning Mode that significantly enhances the accuracy of multi-step tasks across a wide array of challenges, from general reasoning assessments (MMLU, MMLU-Pro, HumanEval) to intricate mathematics problems (Math500, AIME) and software engineering tasks (SWE-Bench Agentless), achieving problem-solving efficiency that rivals or even surpasses that of models with double the parameters. Furthermore, its enhanced tool-use capabilities allow the model to effectively engage with external APIs and data, broadening its applicability in real-world scenarios. This innovative design not only demonstrates exceptional versatility but also positions Solar Pro 2 as a formidable player in the evolving landscape of AI technologies.
  • 30
    Falcon-40B Reviews

    Falcon-40B

    Technology Innovation Institute (TII)

    Free
    Falcon-40B is a causal decoder-only model consisting of 40 billion parameters, developed by TII and trained on 1 trillion tokens from RefinedWeb, supplemented with carefully selected datasets. It is distributed under the Apache 2.0 license. Why should you consider using Falcon-40B? This model stands out as the leading open-source option available, surpassing competitors like LLaMA, StableLM, RedPajama, and MPT, as evidenced by its ranking on the OpenLLM Leaderboard. Its design is specifically tailored for efficient inference, incorporating features such as FlashAttention and multiquery capabilities. Moreover, it is offered under a flexible Apache 2.0 license, permitting commercial applications without incurring royalties or facing restrictions. It's important to note that this is a raw, pretrained model and is generally recommended to be fine-tuned for optimal performance in most applications. If you need a version that is more adept at handling general instructions in a conversational format, you might want to explore Falcon-40B-Instruct as a potential alternative.
  • 31
    Magistral Reviews
    Magistral is the inaugural language model family from Mistral AI that emphasizes reasoning, offered in two variants: Magistral Small, a 24 billion parameter open-weight model accessible under Apache 2.0 via Hugging Face, and Magistral Medium, a more robust enterprise-grade version that can be accessed through Mistral's API, the Le Chat platform, and various major cloud marketplaces. Designed for specific domains, it excels in transparent, multilingual reasoning across diverse tasks such as mathematics, physics, structured calculations, programmatic logic, decision trees, and rule-based systems, generating outputs that follow a chain of thought in the user's preferred language, which can be easily tracked and validated. This release signifies a transition towards more compact yet highly effective transparent AI reasoning capabilities. Currently, Magistral Medium is in preview on platforms including Le Chat, the API, SageMaker, WatsonX, Azure AI, and Google Cloud Marketplace. Its design is particularly suited for general-purpose applications that necessitate extended thought processes and improved accuracy compared to traditional non-reasoning language models. The introduction of Magistral represents a significant advancement in the pursuit of sophisticated reasoning in AI applications.
  • 32
    Tülu 3 Reviews
    Tülu 3 is a cutting-edge language model created by the Allen Institute for AI (Ai2) that aims to improve proficiency in fields like knowledge, reasoning, mathematics, coding, and safety. It is based on the Llama 3 Base and undergoes a detailed four-stage post-training regimen: careful prompt curation and synthesis, supervised fine-tuning on a wide array of prompts and completions, preference tuning utilizing both off- and on-policy data, and a unique reinforcement learning strategy that enhances targeted skills through measurable rewards. Notably, this open-source model sets itself apart by ensuring complete transparency, offering access to its training data, code, and evaluation tools, thus bridging the performance divide between open and proprietary fine-tuning techniques. Performance assessments reveal that Tülu 3 surpasses other models with comparable sizes, like Llama 3.1-Instruct and Qwen2.5-Instruct, across an array of benchmarks, highlighting its effectiveness. The continuous development of Tülu 3 signifies the commitment to advancing AI capabilities while promoting an open and accessible approach to technology.
  • 33
    GPT-5 mini Reviews

    GPT-5 mini

    OpenAI

    $0.25 per 1M tokens
    OpenAI’s GPT-5 mini is a cost-efficient, faster version of the flagship GPT-5 model, designed to handle well-defined tasks and precise inputs with high reasoning capabilities. Supporting text and image inputs, GPT-5 mini can process and generate large amounts of content thanks to its extensive 400,000-token context window and a maximum output of 128,000 tokens. This model is optimized for speed, making it ideal for developers and businesses needing quick turnaround times on natural language processing tasks while maintaining accuracy. The pricing model offers significant savings, charging $0.25 per million input tokens and $2 per million output tokens, compared to the higher costs of the full GPT-5. It supports many advanced API features such as streaming responses, function calling, and fine-tuning, while excluding audio input and image generation capabilities. GPT-5 mini is compatible with a broad range of API endpoints including chat completions, real-time responses, and embeddings, making it highly flexible. Rate limits vary by usage tier, supporting from hundreds to tens of thousands of requests per minute, ensuring reliability for different scale needs. This model strikes a balance between performance and cost, suitable for applications requiring fast, high-quality AI interaction without extensive resource use.
  • 34
    Mistral Saba Reviews
    Mistral Saba is an advanced model boasting 24 billion parameters, developed using carefully selected datasets from the Middle East and South Asia. It outperforms larger models—those more than five times its size—in delivering precise and pertinent responses, all while being notably faster and more cost-effective. Additionally, it serves as an excellent foundation for creating highly specialized regional adaptations. This model can be accessed via an API and is also capable of being deployed locally to meet customers' security requirements. Similar to the recently introduced Mistral Small 3, it is lightweight enough to operate on single-GPU systems, achieving response rates exceeding 150 tokens per second. Reflecting the deep cultural connections between the Middle East and South Asia, Mistral Saba is designed to support Arabic alongside numerous Indian languages, with a particular proficiency in South Indian languages like Tamil. This diverse linguistic capability significantly boosts its adaptability for multinational applications in these closely linked regions. Furthermore, the model’s design facilitates an easier integration into various platforms, enhancing its usability across different industries.
  • 35
    Llama 3.1 Reviews
    Introducing an open-source AI model that can be fine-tuned, distilled, and deployed across various platforms. Our newest instruction-tuned model comes in three sizes: 8B, 70B, and 405B, giving you options to suit different needs. With our open ecosystem, you can expedite your development process using a diverse array of tailored product offerings designed to meet your specific requirements. You have the flexibility to select between real-time inference and batch inference services according to your project's demands. Additionally, you can download model weights to enhance cost efficiency per token while fine-tuning for your application. Improve performance further by utilizing synthetic data and seamlessly deploy your solutions on-premises or in the cloud. Take advantage of Llama system components and expand the model's capabilities through zero-shot tool usage and retrieval-augmented generation (RAG) to foster agentic behaviors. By utilizing 405B high-quality data, you can refine specialized models tailored to distinct use cases, ensuring optimal functionality for your applications. Ultimately, this empowers developers to create innovative solutions that are both efficient and effective.
  • 36
    Qwen3-Coder Reviews
    Qwen3-Coder is a versatile coding model that comes in various sizes, prominently featuring the 480B-parameter Mixture-of-Experts version with 35B active parameters, which naturally accommodates 256K-token contexts that can be extended to 1M tokens. This model achieves impressive performance that rivals Claude Sonnet 4, having undergone pre-training on 7.5 trillion tokens, with 70% of that being code, and utilizing synthetic data refined through Qwen2.5-Coder to enhance both coding skills and overall capabilities. Furthermore, the model benefits from post-training techniques that leverage extensive, execution-guided reinforcement learning, which facilitates the generation of diverse test cases across 20,000 parallel environments, thereby excelling in multi-turn software engineering tasks such as SWE-Bench Verified without needing test-time scaling. In addition to the model itself, the open-source Qwen Code CLI, derived from Gemini Code, empowers users to deploy Qwen3-Coder in dynamic workflows with tailored prompts and function calling protocols, while also offering smooth integration with Node.js, OpenAI SDKs, and environment variables. This comprehensive ecosystem supports developers in optimizing their coding projects effectively and efficiently.
  • 37
    Mathstral Reviews
    In honor of Archimedes, whose 2311th anniversary we celebrate this year, we are excited to introduce our inaugural Mathstral model, a specialized 7B architecture tailored for mathematical reasoning and scientific exploration. This model features a 32k context window and is released under the Apache 2.0 license. Our intention behind contributing Mathstral to the scientific community is to enhance the pursuit of solving advanced mathematical challenges that necessitate intricate, multi-step logical reasoning. The launch of Mathstral is part of our wider initiative to support academic endeavors, developed in conjunction with Project Numina. Much like Isaac Newton during his era, Mathstral builds upon the foundation laid by Mistral 7B, focusing on STEM disciplines. It demonstrates top-tier reasoning capabilities within its category, achieving remarkable results on various industry-standard benchmarks. Notably, it scores 56.6% on the MATH benchmark and 63.47% on the MMLU benchmark, showcasing the performance differences by subject between Mathstral 7B and its predecessor, Mistral 7B, further emphasizing the advancements made in mathematical modeling. This initiative aims to foster innovation and collaboration within the mathematical community.
  • 38
    Qwen2.5-1M Reviews
    Qwen2.5-1M, an open-source language model from the Qwen team, has been meticulously crafted to manage context lengths reaching as high as one million tokens. This version introduces two distinct model variants, namely Qwen2.5-7B-Instruct-1M and Qwen2.5-14B-Instruct-1M, representing a significant advancement as it is the first instance of Qwen models being enhanced to accommodate such large context lengths. In addition to this, the team has released an inference framework that is based on vLLM and incorporates sparse attention mechanisms, which greatly enhance the processing speed for 1M-token inputs, achieving improvements between three to seven times. A detailed technical report accompanies this release, providing in-depth insights into the design choices and the results from various ablation studies. This transparency allows users to fully understand the capabilities and underlying technology of the models.
  • 39
    GPT-5 nano Reviews

    GPT-5 nano

    OpenAI

    $0.05 per 1M tokens
    OpenAI’s GPT-5 nano is the most cost-effective and rapid variant of the GPT-5 series, tailored for tasks like summarization, classification, and other well-defined language problems. Supporting both text and image inputs, GPT-5 nano can handle extensive context lengths of up to 400,000 tokens and generate detailed outputs of up to 128,000 tokens. Its emphasis on speed makes it ideal for applications that require quick, reliable AI responses without the resource demands of larger models. With highly affordable pricing — just $0.05 per million input tokens and $0.40 per million output tokens — GPT-5 nano is accessible to a wide range of developers and businesses. The model supports key API functionalities including streaming responses, function calling, structured output, and fine-tuning capabilities. While it does not support web search or audio input, it efficiently handles code interpretation, image generation, and file search tasks. Rate limits scale with usage tiers to ensure reliable access across small to enterprise deployments. GPT-5 nano offers an excellent balance of speed, affordability, and capability for lightweight AI applications.
  • 40
    Falcon-7B Reviews

    Falcon-7B

    Technology Innovation Institute (TII)

    Free
    Falcon-7B is a causal decoder-only model comprising 7 billion parameters, developed by TII and trained on an extensive dataset of 1,500 billion tokens from RefinedWeb, supplemented with specially selected corpora, and it is licensed under Apache 2.0. What are the advantages of utilizing Falcon-7B? This model surpasses similar open-source alternatives, such as MPT-7B, StableLM, and RedPajama, due to its training on a remarkably large dataset of 1,500 billion tokens from RefinedWeb, which is further enhanced with carefully curated content, as evidenced by its standing on the OpenLLM Leaderboard. Additionally, it boasts an architecture that is finely tuned for efficient inference, incorporating technologies like FlashAttention and multiquery mechanisms. Moreover, the permissive nature of the Apache 2.0 license means users can engage in commercial applications without incurring royalties or facing significant limitations. This combination of performance and flexibility makes Falcon-7B a strong choice for developers seeking advanced modeling capabilities.
  • 41
    Phi-4-reasoning Reviews
    Phi-4-reasoning is an advanced transformer model featuring 14 billion parameters, specifically tailored for tackling intricate reasoning challenges, including mathematics, programming, algorithm development, and strategic planning. Through a meticulous process of supervised fine-tuning on select "teachable" prompts and reasoning examples created using o3-mini, it excels at generating thorough reasoning sequences that optimize computational resources during inference. By integrating outcome-driven reinforcement learning, Phi-4-reasoning is capable of producing extended reasoning paths. Its performance notably surpasses that of significantly larger open-weight models like DeepSeek-R1-Distill-Llama-70B and nears the capabilities of the comprehensive DeepSeek-R1 model across various reasoning applications. Designed for use in settings with limited computing power or high latency, Phi-4-reasoning is fine-tuned with synthetic data provided by DeepSeek-R1, ensuring it delivers precise and methodical problem-solving. This model's ability to handle complex tasks with efficiency makes it a valuable tool in numerous computational contexts.
  • 42
    Chinchilla Reviews
    Chinchilla is an advanced language model that operates with a compute budget comparable to Gopher while having 70 billion parameters and utilizing four times the amount of data. This model consistently and significantly surpasses Gopher (280 billion parameters), as well as GPT-3 (175 billion), Jurassic-1 (178 billion), and Megatron-Turing NLG (530 billion), across a wide variety of evaluation tasks. Additionally, Chinchilla's design allows it to use significantly less computational power during the fine-tuning and inference processes, which greatly enhances its applicability in real-world scenarios. Notably, Chinchilla achieves a remarkable average accuracy of 67.5% on the MMLU benchmark, marking over a 7% enhancement compared to Gopher, showcasing its superior performance in the field. This impressive capability positions Chinchilla as a leading contender in the realm of language models.
  • 43
    Claude Opus 4.1 Reviews
    Claude Opus 4.1 represents a notable incremental enhancement over its predecessor, Claude Opus 4, designed to elevate coding, agentic reasoning, and data-analysis capabilities while maintaining the same level of deployment complexity. This version boosts coding accuracy to an impressive 74.5 percent on SWE-bench Verified and enhances the depth of research and detailed tracking for agentic search tasks. Furthermore, GitHub has reported significant advancements in multi-file code refactoring, and Rakuten Group emphasizes its ability to accurately identify precise corrections within extensive codebases without introducing any bugs. Independent benchmarks indicate that junior developer test performance has improved by approximately one standard deviation compared to Opus 4, reflecting substantial progress consistent with previous Claude releases. Users can access Opus 4.1 now, as it is available to paid subscribers of Claude, integrated into Claude Code, and can be accessed through the Anthropic API (model ID claude-opus-4-1-20250805), as well as via platforms like Amazon Bedrock and Google Cloud Vertex AI. Additionally, it integrates effortlessly into existing workflows, requiring no further setup beyond the selection of the updated model, thus enhancing the overall user experience and productivity.
  • 44
    StarCoder Reviews
    StarCoder and StarCoderBase represent advanced Large Language Models specifically designed for code, developed using openly licensed data from GitHub, which encompasses over 80 programming languages, Git commits, GitHub issues, and Jupyter notebooks. In a manner akin to LLaMA, we constructed a model with approximately 15 billion parameters trained on a staggering 1 trillion tokens. Furthermore, we tailored the StarCoderBase model with 35 billion Python tokens, leading to the creation of what we now refer to as StarCoder. Our evaluations indicated that StarCoderBase surpasses other existing open Code LLMs when tested against popular programming benchmarks and performs on par with or even exceeds proprietary models like code-cushman-001 from OpenAI, the original Codex model that fueled early iterations of GitHub Copilot. With an impressive context length exceeding 8,000 tokens, the StarCoder models possess the capability to handle more information than any other open LLM, thus paving the way for a variety of innovative applications. This versatility is highlighted by our ability to prompt the StarCoder models through a sequence of dialogues, effectively transforming them into dynamic technical assistants that can provide support in diverse programming tasks.
  • 45
    MiniMax M2 Reviews

    MiniMax M2

    MiniMax

    $0.30 per million input tokens
    MiniMax M2 is an open-source foundational model tailored for agent-driven applications and coding tasks, achieving an innovative equilibrium of efficiency, velocity, and affordability. It shines in comprehensive development environments, adeptly managing programming tasks, invoking tools, and executing intricate, multi-step processes, complete with features like Python integration, while offering impressive inference speeds of approximately 100 tokens per second and competitive API pricing at around 8% of similar proprietary models. The model includes a "Lightning Mode" designed for rapid, streamlined agent operations, alongside a "Pro Mode" aimed at thorough full-stack development, report creation, and the orchestration of web-based tools; its weights are entirely open source, allowing for local deployment via vLLM or SGLang. MiniMax M2 stands out as a model ready for production use, empowering agents to autonomously perform tasks such as data analysis, software development, tool orchestration, and implementing large-scale, multi-step logic across real organizational contexts. With its advanced capabilities, this model is poised to revolutionize the way developers approach complex programming challenges.