What Integrates with Datagaps ETL Validator?

Find out what Datagaps ETL Validator integrations exist in 2025. Learn what software and services currently integrate with Datagaps ETL Validator, and sort them by reviews, cost, features, and more. Below is a list of products that Datagaps ETL Validator currently integrates with:

  • 1
    Snowflake Reviews

    Snowflake

    Snowflake

    $2 compute/month
    1,394 Ratings
    See Software
    Learn More
    Snowflake is a cloud-native data platform that combines data warehousing, data lakes, and data sharing into a single solution. By offering elastic scalability and automatic scaling, Snowflake enables businesses to handle vast amounts of data while maintaining high performance at low cost. The platform's architecture allows users to separate storage and compute, offering flexibility in managing workloads. Snowflake supports real-time data sharing and integrates seamlessly with other analytics tools, enabling teams to collaborate and gain insights from their data more efficiently. Its secure, multi-cloud architecture makes it a strong choice for enterprises looking to leverage data at scale.
  • 2
    Salesforce Reviews
    Top Pick

    Salesforce

    Salesforce

    $25.00/month/user
    60 Ratings
    Salesforce empowers sales teams to enhance their effectiveness and reach their objectives more efficiently. As the leading CRM platform globally, Salesforce goes beyond basic functionalities. It equips teams with essential tools designed to expand their client portfolios, discover new prospects, and finalize transactions swiftly from any location. The platform boasts an extensive array of features, such as managing contacts, tracking opportunities, overseeing leads, integrating emails, generating reports and dashboards, forecasting sales, and enabling file synchronization and sharing, among many others. This means you can spend less time sifting through spreadsheets and more time focusing on your business operations. With no need for additional hardware or software, our user-friendly setup assistant allows you to optimize sales processes and address customer inquiries in mere minutes. By linking data across sales, service, and marketing, you can provide buyers with smooth and personalized experiences. Gain a holistic understanding of each customer, including their accounts, activity history, and relationships. Moreover, integrating social data can offer even richer insights into your customers' behaviors and preferences.
  • 3
    Microsoft Power BI Reviews
    Top Pick

    Microsoft Power BI

    Microsoft

    $10 per user per month
    8 Ratings
    Power BI provides advanced data analysis, leveraging AI features to transform complex datasets into visual insights. It integrates data into a single source, OneLake, reducing duplication and streamlining analysis. The platform enhances decision-making by integrating insights into everyday tools like Microsoft 365 and is bolstered by Microsoft Fabric for data team empowerment. Power BI is scalable, handling extensive data without performance loss, and integrates well with Microsoft's ecosystem for coherent data management. Its AI tools are user-friendly and contribute to efficient and accurate insights, supported by strong data governance measures. The Copilot function in Power BI enables quick and efficient report creation. Power BI Pro licenses individuals for self-service analytics, while the free account offers data connection and visualization capabilities. The platform ensures ease of use and accessibility, backed by comprehensive training. It has shown a notable return on investment and economic benefits, as reported in a Forrester study. Gartner's Magic Quadrant recognizes Power BI for its ability to execute and completeness of vision.
  • 4
    Tableau Reviews
    Top Pick
    Utilize Tableau to acquire, create, and evaluate business data while deriving valuable insights through its comprehensive business intelligence (BI) and analytics capabilities. This powerful tool enables users to gather information from a variety of sources, including spreadsheets, SQL databases, Salesforce, and various cloud applications. With Tableau's real-time visual analytics and interactive dashboards, users can dissect and analyze datasets, leading to pertinent insights and the identification of new business opportunities. Additionally, Tableau offers customization options that cater to a wide range of industry sectors, such as finance, telecommunications, and beyond, ensuring that it meets the unique needs of each vertical. As a result, organizations can leverage Tableau to enhance decision-making processes and drive growth effectively.
  • 5
    Azure Synapse Analytics Reviews
    Azure Synapse represents the advanced evolution of Azure SQL Data Warehouse. It is a comprehensive analytics service that integrates enterprise data warehousing with Big Data analytics capabilities. Users can query data flexibly, choosing between serverless or provisioned resources, and can do so at scale. By merging these two domains, Azure Synapse offers a cohesive experience for ingesting, preparing, managing, and delivering data, catering to the immediate requirements of business intelligence and machine learning applications. This integration enhances the efficiency and effectiveness of data-driven decision-making processes.
  • 6
    Oracle Analytics Cloud Reviews

    Oracle Analytics Cloud

    Oracle

    $16 User Per Month - Oracle An
    Oracle Analytics is a comprehensive platform designed for all analytics user roles, integrating AI and machine learning across the board to boost productivity and enable smarter business decisions. Whether you opt for Oracle Analytics Cloud, our cloud-native service, or Oracle Analytics Server, our on-premises solution, you can ensure robust security and governance without compromise.
  • 7
    Azure Databricks Reviews
    Harness the power of your data and create innovative artificial intelligence (AI) solutions using Azure Databricks, where you can establish your Apache Sparkā„¢ environment in just minutes, enable autoscaling, and engage in collaborative projects within a dynamic workspace. This platform accommodates multiple programming languages such as Python, Scala, R, Java, and SQL, along with popular data science frameworks and libraries like TensorFlow, PyTorch, and scikit-learn. With Azure Databricks, you can access the most current versions of Apache Spark and effortlessly connect with various open-source libraries. You can quickly launch clusters and develop applications in a fully managed Apache Spark setting, benefiting from Azure's expansive scale and availability. The clusters are automatically established, optimized, and adjusted to guarantee reliability and performance, eliminating the need for constant oversight. Additionally, leveraging autoscaling and auto-termination features can significantly enhance your total cost of ownership (TCO), making it an efficient choice for data analysis and AI development. This powerful combination of tools and resources empowers teams to innovate and accelerate their projects like never before.
  • 8
    Datagaps DataOps Suite Reviews
    The Datagaps DataOps Suite serves as a robust platform aimed at automating and refining data validation procedures throughout the complete data lifecycle. It provides comprehensive testing solutions for various functions such as ETL (Extract, Transform, Load), data integration, data management, and business intelligence (BI) projects. Among its standout features are automated data validation and cleansing, workflow automation, real-time monitoring with alerts, and sophisticated BI analytics tools. This suite is compatible with a diverse array of data sources, including relational databases, NoSQL databases, cloud environments, and file-based systems, which facilitates smooth integration and scalability. By utilizing AI-enhanced data quality assessments and adjustable test cases, the Datagaps DataOps Suite improves data accuracy, consistency, and reliability, positioning itself as a vital resource for organizations seeking to refine their data operations and maximize returns on their data investments. Furthermore, its user-friendly interface and extensive support documentation make it accessible for teams of various technical backgrounds, thereby fostering a more collaborative environment for data management.
  • Previous
  • You're on page 1
  • Next