Best Google Cloud Dataflow Alternatives in 2025
Find the top alternatives to Google Cloud Dataflow currently available. Compare ratings, reviews, pricing, and features of Google Cloud Dataflow alternatives in 2025. Slashdot lists the best Google Cloud Dataflow alternatives on the market that offer competing products that are similar to Google Cloud Dataflow. Sort through Google Cloud Dataflow alternatives below to make the best choice for your needs
-
1
Striim
Striim
Data integration for hybrid clouds Modern, reliable data integration across both your private cloud and public cloud. All this in real-time, with change data capture and streams. Striim was developed by the executive and technical team at GoldenGate Software. They have decades of experience in mission critical enterprise workloads. Striim can be deployed in your environment as a distributed platform or in the cloud. Your team can easily adjust the scaleability of Striim. Striim is fully secured with HIPAA compliance and GDPR compliance. Built from the ground up to support modern enterprise workloads, whether they are hosted in the cloud or on-premise. Drag and drop to create data flows among your sources and targets. Real-time SQL queries allow you to process, enrich, and analyze streaming data. -
2
Composable is an enterprise-grade DataOps platform designed for business users who want to build data-driven products and create data intelligence solutions. It can be used to design data-driven products that leverage disparate data sources, live streams, and event data, regardless of their format or structure. Composable offers a user-friendly, intuitive dataflow visual editor, built-in services that facilitate data engineering, as well as a composable architecture which allows abstraction and integration of any analytical or software approach. It is the best integrated development environment for discovering, managing, transforming, and analysing enterprise data.
-
3
Esper Enterprise Edition
EsperTech Inc.
Esper Enterprise Edition offers a robust platform designed for both linear and elastic scalability, as well as reliable event processing that can withstand faults. It comes equipped with an EPL editor and debugger, supports hot deployment, and provides comprehensive reporting on metrics and memory usage, including detailed breakdowns per EPL. Additionally, it features Data Push capabilities for seamless multi-tier delivery from CEP to browsers and manages both logical and physical subscribers and their subscriptions effectively. Its web-based user interface allows users to oversee various distributed engine instances using JavaScript and HTML5, while also enabling the creation of composable and interactive displays for visualizing distributed event streams through charts, gauges, timelines, and grids. Furthermore, it includes JDBC-compliant client and server endpoints to ensure interoperability across systems. Notably, Esper Enterprise Edition is a proprietary commercial product developed by EsperTech, with source code accessibility granted solely for the support of customers. Such versatility and functionality make it a robust choice for enterprises seeking efficient event processing solutions. -
4
Apache Beam
Apache Software Foundation
Batch and streaming data processing can be streamlined effortlessly. With the capability to write once and run anywhere, it is ideal for mission-critical production tasks. Beam allows you to read data from a wide variety of sources, whether they are on-premises or cloud-based. It seamlessly executes your business logic across both batch and streaming scenarios. The outcomes of your data processing efforts can be written to the leading data sinks available in the market. This unified programming model simplifies operations for all members of your data and application teams. Apache Beam is designed for extensibility, with frameworks like TensorFlow Extended and Apache Hop leveraging its capabilities. You can run pipelines on various execution environments (runners), which provides flexibility and prevents vendor lock-in. The open and community-driven development model ensures that your applications can evolve and adapt to meet specific requirements. This adaptability makes Beam a powerful choice for organizations aiming to optimize their data processing strategies. -
5
Google Cloud Dataproc
Google
Dataproc enhances the speed, simplicity, and security of open source data and analytics processing in the cloud. You can swiftly create tailored OSS clusters on custom machines to meet specific needs. Whether your project requires additional memory for Presto or GPUs for machine learning in Apache Spark, Dataproc facilitates the rapid deployment of specialized clusters in just 90 seconds. The platform offers straightforward and cost-effective cluster management options. Features such as autoscaling, automatic deletion of idle clusters, and per-second billing contribute to minimizing the overall ownership costs of OSS, allowing you to allocate your time and resources more effectively. Built-in security measures, including default encryption, guarantee that all data remains protected. With the JobsAPI and Component Gateway, you can easily manage permissions for Cloud IAM clusters without the need to configure networking or gateway nodes, ensuring a streamlined experience. Moreover, the platform's user-friendly interface simplifies the management process, making it accessible for users at all experience levels. -
6
Google Cloud Data Fusion
Google
Open core technology facilitates the integration of hybrid and multi-cloud environments. Built on the open-source initiative CDAP, Data Fusion guarantees portability of data pipelines for its users. The extensive compatibility of CDAP with both on-premises and public cloud services enables Cloud Data Fusion users to eliminate data silos and access previously unreachable insights. Additionally, its seamless integration with Google’s top-tier big data tools enhances the user experience. By leveraging Google Cloud, Data Fusion not only streamlines data security but also ensures that data is readily available for thorough analysis. Whether you are constructing a data lake utilizing Cloud Storage and Dataproc, transferring data into BigQuery for robust data warehousing, or transforming data for placement into a relational database like Cloud Spanner, the integration capabilities of Cloud Data Fusion promote swift and efficient development while allowing for rapid iteration. This comprehensive approach ultimately empowers businesses to derive greater value from their data assets. -
7
Informatica Data Engineering Streaming
Informatica
Informatica's AI-driven Data Engineering Streaming empowers data engineers to efficiently ingest, process, and analyze real-time streaming data, offering valuable insights. The advanced serverless deployment feature, coupled with an integrated metering dashboard, significantly reduces administrative burdens. With CLAIRE®-enhanced automation, users can swiftly construct intelligent data pipelines that include features like automatic change data capture (CDC). This platform allows for the ingestion of thousands of databases, millions of files, and various streaming events. It effectively manages databases, files, and streaming data for both real-time data replication and streaming analytics, ensuring a seamless flow of information. Additionally, it aids in the discovery and inventorying of all data assets within an organization, enabling users to intelligently prepare reliable data for sophisticated analytics and AI/ML initiatives. By streamlining these processes, organizations can harness the full potential of their data assets more effectively than ever before. -
8
Cloud Dataprep
Google
Trifacta's Cloud Dataprep is an advanced data service designed for the visual exploration, cleansing, and preparation of both structured and unstructured datasets, facilitating analysis, reporting, and machine learning tasks. Its serverless architecture allows it to operate at any scale, eliminating the need for users to manage or deploy infrastructure. With each interaction in the user interface, the system intelligently suggests and forecasts your next ideal data transformation, removing the necessity for manual coding. As a partner service of Trifacta, Cloud Dataprep utilizes their renowned data preparation technology to enhance functionality. Google collaborates closely with Trifacta to ensure a fluid user experience, which bypasses the requirement for initial software installations, separate licensing fees, or continuous operational burdens. Fully managed and capable of scaling on demand, Cloud Dataprep effectively adapts to your evolving data preparation requirements, allowing you to concentrate on your analytical pursuits. This innovative service ultimately empowers users to streamline their workflows and maximize productivity. -
9
Cloudera DataFlow
Cloudera
Cloudera DataFlow for the Public Cloud (CDF-PC) is a versatile, cloud-based data distribution solution that utilizes Apache NiFi, enabling developers to seamlessly connect to diverse data sources with varying structures, process that data, and deliver it to a wide array of destinations. This platform features a flow-oriented low-code development approach that closely matches the preferences of developers when creating, developing, and testing their data distribution pipelines. CDF-PC boasts an extensive library of over 400 connectors and processors that cater to a broad spectrum of hybrid cloud services, including data lakes, lakehouses, cloud warehouses, and on-premises sources, ensuring efficient and flexible data distribution. Furthermore, the data flows created can be version-controlled within a catalog, allowing operators to easily manage deployments across different runtimes, thereby enhancing operational efficiency and simplifying the deployment process. Ultimately, CDF-PC empowers organizations to harness their data effectively, promoting innovation and agility in data management. -
10
Google Cloud Datastream
Google
A user-friendly, serverless service for change data capture and replication that provides access to streaming data from a variety of databases including MySQL, PostgreSQL, AlloyDB, SQL Server, and Oracle. This solution enables near real-time analytics in BigQuery, allowing for quick insights and decision-making. With a straightforward setup that includes built-in secure connectivity, organizations can achieve faster time-to-value. The platform is designed to scale automatically, eliminating the need for resource provisioning or management. Utilizing a log-based mechanism, it minimizes the load and potential disruptions on source databases, ensuring smooth operation. This service allows for reliable data synchronization across diverse databases, storage systems, and applications, while keeping latency low and reducing any negative impact on source performance. Organizations can quickly activate the service, enjoying the benefits of a scalable solution with no infrastructure overhead. Additionally, it facilitates seamless data integration across the organization, leveraging the power of Google Cloud services such as BigQuery, Spanner, Dataflow, and Data Fusion, thus enhancing overall operational efficiency and data accessibility. This comprehensive approach not only streamlines data processes but also empowers teams to make informed decisions based on timely data insights. -
11
Maxeler Technologies
Maxeler Technologies
Maxeler's cutting-edge dataflow solutions seamlessly fit into operational data centers, allowing for straightforward programming and management. These high-performance systems are specifically crafted to work within production server settings, ensuring compatibility with common operating systems and management applications. Our robust management software oversees resource allocation, scheduling, and data transfer throughout the dataflow computing framework. Furthermore, Maxeler dataflow nodes operate with standard Linux distributions, such as Red Hat Enterprise versions 4 and 5, without the need for any alterations. Any application designed for acceleration can function on a Maxeler node as a conventional Linux executable. Developers can create new applications by integrating the dataflow library into their existing code and utilizing simple function interfaces to access its capabilities. The MaxCompiler tool offers comprehensive debugging support throughout the development process, featuring a high-speed simulator that allows for code validation prior to implementation. This ensures that developers can optimize their applications effectively while minimizing the risk of errors. Additionally, Maxeler’s commitment to innovation guarantees that users can take advantage of the latest advancements in dataflow technology. -
12
The Streaming service is a real-time, serverless platform for event streaming that is compatible with Apache Kafka, designed specifically for developers and data scientists. It is seamlessly integrated with Oracle Cloud Infrastructure (OCI), Database, GoldenGate, and Integration Cloud. Furthermore, the service offers ready-made integrations with numerous third-party products spanning various categories, including DevOps, databases, big data, and SaaS applications. Data engineers can effortlessly establish and manage extensive big data pipelines. Oracle takes care of all aspects of infrastructure and platform management for event streaming, which encompasses provisioning, scaling, and applying security updates. Additionally, by utilizing consumer groups, Streaming effectively manages state for thousands of consumers, making it easier for developers to create applications that can scale efficiently. This comprehensive approach not only streamlines the development process but also enhances overall operational efficiency.
-
13
WarpStream
WarpStream
$2,987 per monthWarpStream serves as a data streaming platform that is fully compatible with Apache Kafka, leveraging object storage to eliminate inter-AZ networking expenses and disk management, while offering infinite scalability within your VPC. The deployment of WarpStream occurs through a stateless, auto-scaling agent binary, which operates without the need for local disk management. This innovative approach allows agents to stream data directly to and from object storage, bypassing local disk buffering and avoiding any data tiering challenges. Users can instantly create new “virtual clusters” through our control plane, accommodating various environments, teams, or projects without the hassle of dedicated infrastructure. With its seamless protocol compatibility with Apache Kafka, WarpStream allows you to continue using your preferred tools and software without any need for application rewrites or proprietary SDKs. By simply updating the URL in your Kafka client library, you can begin streaming immediately, ensuring that you never have to compromise between reliability and cost-effectiveness again. Additionally, this flexibility fosters an environment where innovation can thrive without the constraints of traditional infrastructure. -
14
DeltaStream
DeltaStream
DeltaStream is an integrated serverless streaming processing platform that integrates seamlessly with streaming storage services. Imagine it as a compute layer on top your streaming storage. It offers streaming databases and streaming analytics along with other features to provide an integrated platform for managing, processing, securing and sharing streaming data. DeltaStream has a SQL-based interface that allows you to easily create stream processing apps such as streaming pipelines. It uses Apache Flink, a pluggable stream processing engine. DeltaStream is much more than a query-processing layer on top Kafka or Kinesis. It brings relational databases concepts to the world of data streaming, including namespacing, role-based access control, and enables you to securely access and process your streaming data, regardless of where it is stored. -
15
DataOps DataFlow
Datagaps
Contact usApache Spark provides a holistic component-based platform to automate Data Reconciliation tests for modern Data Lake and Cloud Data Migration Projects. DataOps DataFlow provides a modern web-based solution to automate the testing of ETL projects, Data Warehouses, and Data Migrations. Use Dataflow to load data from a variety of data sources, compare the data, and load differences into S3 or a Database. Create and run dataflow quickly and easily. A top-of-the-class testing tool for Big Data Testing DataOps DataFlow integrates with all modern and advanced sources of data, including RDBMS and NoSQL databases, Cloud and file-based. -
16
Google Cloud Pub/Sub
Google
Google Cloud Pub/Sub offers a robust solution for scalable message delivery, allowing users to choose between pull and push modes. It features auto-scaling and auto-provisioning capabilities that can handle anywhere from zero to hundreds of gigabytes per second seamlessly. Each publisher and subscriber operates with independent quotas and billing, making it easier to manage costs. The platform also facilitates global message routing, which is particularly beneficial for simplifying systems that span multiple regions. High availability is effortlessly achieved through synchronous cross-zone message replication, coupled with per-message receipt tracking for dependable delivery at any scale. With no need for extensive planning, its auto-everything capabilities from the outset ensure that workloads are production-ready immediately. In addition to these features, advanced options like filtering, dead-letter delivery, and exponential backoff are incorporated without compromising scalability, which further streamlines application development. This service provides a swift and dependable method for processing small records at varying volumes, serving as a gateway for both real-time and batch data pipelines that integrate with BigQuery, data lakes, and operational databases. It can also be employed alongside ETL/ELT pipelines within Dataflow, enhancing the overall data processing experience. By leveraging its capabilities, businesses can focus more on innovation rather than infrastructure management. -
17
Pathway
Pathway
Scalable Python framework designed to build real-time intelligent applications, data pipelines, and integrate AI/ML models -
18
Amazon Kinesis
Amazon
Effortlessly gather, manage, and scrutinize video and data streams as they occur. Amazon Kinesis simplifies the process of collecting, processing, and analyzing streaming data in real-time, empowering you to gain insights promptly and respond swiftly to emerging information. It provides essential features that allow for cost-effective processing of streaming data at any scale while offering the adaptability to select the tools that best align with your application's needs. With Amazon Kinesis, you can capture real-time data like video, audio, application logs, website clickstreams, and IoT telemetry, facilitating machine learning, analytics, and various other applications. This service allows you to handle and analyze incoming data instantaneously, eliminating the need to wait for all data to be collected before starting the processing. Moreover, Amazon Kinesis allows for the ingestion, buffering, and real-time processing of streaming data, enabling you to extract insights in a matter of seconds or minutes, significantly reducing the time it takes compared to traditional methods. Overall, this capability revolutionizes how businesses can respond to data-driven opportunities as they arise. -
19
Amazon MSK
Amazon
$0.0543 per hourAmazon Managed Streaming for Apache Kafka (Amazon MSK) simplifies the process of creating and operating applications that leverage Apache Kafka for handling streaming data. As an open-source framework, Apache Kafka enables the construction of real-time data pipelines and applications. Utilizing Amazon MSK allows you to harness the native APIs of Apache Kafka for various tasks, such as populating data lakes, facilitating data exchange between databases, and fueling machine learning and analytical solutions. However, managing Apache Kafka clusters independently can be quite complex, requiring tasks like server provisioning, manual configuration, and handling server failures. Additionally, you must orchestrate updates and patches, design the cluster to ensure high availability, secure and durably store data, establish monitoring systems, and strategically plan for scaling to accommodate fluctuating workloads. By utilizing Amazon MSK, you can alleviate many of these burdens and focus more on developing your applications rather than managing the underlying infrastructure. -
20
Apache NiFi
Apache Software Foundation
A user-friendly, robust, and dependable system for data processing and distribution is offered by Apache NiFi, which facilitates the creation of efficient and scalable directed graphs for routing, transforming, and mediating data. Among its various high-level functions and goals, Apache NiFi provides a web-based user interface that ensures an uninterrupted experience for design, control, feedback, and monitoring. It is designed to be highly configurable, loss-tolerant, and capable of low latency and high throughput, while also allowing for dynamic prioritization of data flows. Additionally, users can alter the flow in real-time, manage back pressure, and trace data provenance from start to finish, as it is built with extensibility in mind. You can also develop custom processors and more, which fosters rapid development and thorough testing. Security features are robust, including SSL, SSH, HTTPS, and content encryption, among others. The system supports multi-tenant authorization along with internal policy and authorization management. Also, NiFi consists of various web applications, such as a web UI, web API, documentation, and custom user interfaces, necessitating the configuration of your mapping to the root path for optimal functionality. This flexibility and range of features make Apache NiFi an essential tool for modern data workflows. -
21
Azure Stream Analytics
Microsoft
Explore Azure Stream Analytics, a user-friendly real-time analytics solution tailored for essential workloads. Create a comprehensive serverless streaming pipeline effortlessly within a matter of clicks. Transition from initial setup to full production in mere minutes with SQL, which can be easily enhanced with custom code and integrated machine learning features for complex use cases. Rely on the assurance of a financially backed SLA as you handle your most challenging workloads, knowing that performance and reliability are prioritized. This service empowers organizations to harness real-time data effectively, ensuring timely insights and informed decision-making. -
22
Google Cloud Bigtable
Google
Google Cloud Bigtable provides a fully managed, scalable NoSQL data service that can handle large operational and analytical workloads. Cloud Bigtable is fast and performant. It's the storage engine that grows with your data, from your first gigabyte up to a petabyte-scale for low latency applications and high-throughput data analysis. Seamless scaling and replicating: You can start with one cluster node and scale up to hundreds of nodes to support peak demand. Replication adds high availability and workload isolation to live-serving apps. Integrated and simple: Fully managed service that easily integrates with big data tools such as Dataflow, Hadoop, and Dataproc. Development teams will find it easy to get started with the support for the open-source HBase API standard. -
23
Redpanda
Redpanda Data
Introducing revolutionary data streaming features that enable unparalleled customer experiences. The Kafka API and its ecosystem are fully compatible with Redpanda, which boasts predictable low latencies and ensures zero data loss. Redpanda is designed to outperform Kafka by up to ten times, offering enterprise-level support and timely hotfixes. It also includes automated backups to S3 or GCS, providing a complete escape from the routine operations associated with Kafka. Additionally, it supports both AWS and GCP environments, making it a versatile choice for various cloud platforms. Built from the ground up for ease of installation, Redpanda allows for rapid deployment of streaming services. Once you witness its incredible capabilities, you can confidently utilize its advanced features in a production setting. We take care of provisioning, monitoring, and upgrades without requiring access to your cloud credentials, ensuring that sensitive data remains within your environment. Your streaming infrastructure will be provisioned, operated, and maintained seamlessly, with customizable instance types available to suit your specific needs. As your requirements evolve, expanding your cluster is straightforward and efficient, allowing for sustainable growth. -
24
Primeur
Primeur
We are a company specializing in Smart Data Integration, driven by an innovative philosophy. For the past 35 years, we have supported numerous prominent Fortune 500 firms through our unique methods, a proactive problem-solving mindset, and advanced software solutions. Our mission is to enhance corporate operations by streamlining processes while safeguarding their current systems and IT investments. Our Hybrid Data Integration Platform is specifically crafted to maintain your existing IT infrastructure, knowledge, and resources, significantly boosting efficiency and productivity while simplifying and hastening data integration tasks. We offer a comprehensive enterprise solution for file transfers that operates across multiple protocols and platforms, ensuring secure and seamless communication between various applications. This solution not only enables complete control but also offers cost savings and operational benefits. Additionally, our end-to-end data flow monitoring and management solution grants visibility and comprehensive control over data flows, overseeing every stage from source to destination, including any necessary transformations. By integrating these advanced technologies, we empower businesses to thrive in a complex data landscape. -
25
Gantry
Gantry
Gain a comprehensive understanding of your model's efficacy by logging both inputs and outputs while enhancing them with relevant metadata and user insights. This approach allows you to truly assess your model's functionality and identify areas that require refinement. Keep an eye out for errors and pinpoint underperforming user segments and scenarios that may need attention. The most effective models leverage user-generated data; therefore, systematically collect atypical or low-performing instances to enhance your model through retraining. Rather than sifting through countless outputs following adjustments to your prompts or models, adopt a programmatic evaluation of your LLM-driven applications. Rapidly identify and address performance issues by monitoring new deployments in real-time and effortlessly updating the version of your application that users engage with. Establish connections between your self-hosted or third-party models and your current data repositories for seamless integration. Handle enterprise-scale data effortlessly with our serverless streaming data flow engine, designed for efficiency and scalability. Moreover, Gantry adheres to SOC-2 standards and incorporates robust enterprise-grade authentication features to ensure data security and integrity. This dedication to compliance and security solidifies trust with users while optimizing performance. -
26
Confluent
Confluent
Achieve limitless data retention for Apache Kafka® with Confluent, empowering you to be infrastructure-enabled rather than constrained by outdated systems. Traditional technologies often force a choice between real-time processing and scalability, but event streaming allows you to harness both advantages simultaneously, paving the way for innovation and success. Have you ever considered how your rideshare application effortlessly analyzes vast datasets from various sources to provide real-time estimated arrival times? Or how your credit card provider monitors millions of transactions worldwide, promptly alerting users to potential fraud? The key to these capabilities lies in event streaming. Transition to microservices and facilitate your hybrid approach with a reliable connection to the cloud. Eliminate silos to ensure compliance and enjoy continuous, real-time event delivery. The possibilities truly are limitless, and the potential for growth is unprecedented. -
27
Apache Flink
Apache Software Foundation
Apache Flink serves as a powerful framework and distributed processing engine tailored for executing stateful computations on both unbounded and bounded data streams. It has been engineered to operate seamlessly across various cluster environments, delivering computations with impressive in-memory speed and scalability. Data of all types is generated as a continuous stream of events, encompassing credit card transactions, sensor data, machine logs, and user actions on websites or mobile apps. The capabilities of Apache Flink shine particularly when handling both unbounded and bounded data sets. Its precise management of time and state allows Flink’s runtime to support a wide range of applications operating on unbounded streams. For bounded streams, Flink employs specialized algorithms and data structures optimized for fixed-size data sets, ensuring remarkable performance. Furthermore, Flink is adept at integrating with all previously mentioned resource managers, enhancing its versatility in various computing environments. This makes Flink a valuable tool for developers seeking efficient and reliable stream processing solutions. -
28
Spark Streaming
Apache Software Foundation
Spark Streaming extends the capabilities of Apache Spark by integrating its language-based API for stream processing, allowing you to create streaming applications in the same manner as batch applications. This powerful tool is compatible with Java, Scala, and Python. One of its key features is the automatic recovery of lost work and operator state, such as sliding windows, without requiring additional code from the user. By leveraging the Spark framework, Spark Streaming enables the reuse of the same code for batch processes, facilitates the joining of streams with historical data, and supports ad-hoc queries on the stream's state. This makes it possible to develop robust interactive applications rather than merely focusing on analytics. Spark Streaming is an integral component of Apache Spark, benefiting from regular testing and updates with each new release of Spark. Users can deploy Spark Streaming in various environments, including Spark's standalone cluster mode and other compatible cluster resource managers, and it even offers a local mode for development purposes. For production environments, Spark Streaming ensures high availability by utilizing ZooKeeper and HDFS, providing a reliable framework for real-time data processing. This combination of features makes Spark Streaming an essential tool for developers looking to harness the power of real-time analytics efficiently. -
29
Google Cloud Composer
Google
$0.074 per vCPU hourThe managed features of Cloud Composer, along with its compatibility with Apache Airflow, enable you to concentrate on crafting, scheduling, and overseeing your workflows rather than worrying about resource provisioning. Its seamless integration with various Google Cloud products such as BigQuery, Dataflow, Dataproc, Datastore, Cloud Storage, Pub/Sub, and AI Platform empowers users to orchestrate their data pipelines effectively. You can manage your workflows from a single orchestration tool, regardless of whether your pipeline operates on-premises, in multiple clouds, or entirely within Google Cloud. This solution simplifies your transition to the cloud and supports a hybrid data environment by allowing you to orchestrate workflows that span both on-premises setups and the public cloud. By creating workflows that interconnect data, processing, and services across different cloud platforms, you can establish a cohesive data ecosystem that enhances efficiency and collaboration. Additionally, this unified approach not only streamlines operations but also optimizes resource utilization across various environments. -
30
Azure Event Hubs
Microsoft
$0.03 per hourEvent Hubs provides a fully managed service for real-time data ingestion that is easy to use, reliable, and highly scalable. It enables the streaming of millions of events every second from various sources, facilitating the creation of dynamic data pipelines that allow businesses to quickly address challenges. In times of crisis, you can continue data processing thanks to its geo-disaster recovery and geo-replication capabilities. Additionally, it integrates effortlessly with other Azure services, enabling users to derive valuable insights. Existing Apache Kafka clients can communicate with Event Hubs without requiring code alterations, offering a managed Kafka experience while eliminating the need to maintain individual clusters. Users can enjoy both real-time data ingestion and microbatching on the same stream, allowing them to concentrate on gaining insights rather than managing infrastructure. By leveraging Event Hubs, organizations can rapidly construct real-time big data pipelines and swiftly tackle business issues as they arise, enhancing their operational efficiency. -
31
Axual
Axual
Axual provides a Kafka-as-a-Service tailored for DevOps teams, empowering them to extract insights and make informed decisions through our user-friendly Kafka platform. For enterprises seeking to effortlessly incorporate data streaming into their essential IT frameworks, Axual presents the perfect solution. Our comprehensive Kafka platform is crafted to remove the necessity for deep technical expertise, offering a ready-made service that allows users to enjoy the advantages of event streaming without complications. The Axual Platform serves as an all-encompassing solution, aimed at simplifying and improving the deployment, management, and use of real-time data streaming with Apache Kafka. With a robust suite of features designed to meet the varied demands of contemporary businesses, the Axual Platform empowers organizations to fully leverage the capabilities of data streaming while reducing complexity and minimizing operational burdens. Additionally, our platform ensures that your team can focus on innovation rather than getting bogged down by technical challenges. -
32
Apache Kafka
The Apache Software Foundation
1 RatingApache Kafka® is a robust, open-source platform designed for distributed streaming. It can scale production environments to accommodate up to a thousand brokers, handling trillions of messages daily and managing petabytes of data with hundreds of thousands of partitions. The system allows for elastic growth and reduction of both storage and processing capabilities. Furthermore, it enables efficient cluster expansion across availability zones or facilitates the interconnection of distinct clusters across various geographic locations. Users can process event streams through features such as joins, aggregations, filters, transformations, and more, all while utilizing event-time and exactly-once processing guarantees. Kafka's built-in Connect interface seamlessly integrates with a wide range of event sources and sinks, including Postgres, JMS, Elasticsearch, AWS S3, among others. Additionally, developers can read, write, and manipulate event streams using a diverse selection of programming languages, enhancing the platform's versatility and accessibility. This extensive support for various integrations and programming environments makes Kafka a powerful tool for modern data architectures. -
33
IBM Event Streams is a comprehensive event streaming service based on Apache Kafka, aimed at assisting businesses in managing and reacting to real-time data flows. It offers features such as machine learning integration, high availability, and secure deployment in the cloud, empowering organizations to develop smart applications that respond to events in real time. The platform is designed to accommodate multi-cloud infrastructures, disaster recovery options, and geo-replication, making it particularly suitable for critical operational tasks. By facilitating the construction and scaling of real-time, event-driven solutions, IBM Event Streams ensures that data is processed with speed and efficiency, ultimately enhancing business agility and responsiveness. As a result, organizations can harness the power of real-time data to drive innovation and improve decision-making processes.
-
34
PubSub+ Platform
Solace
Solace is a specialist in Event-Driven-Architecture (EDA), with two decades of experience providing enterprises with highly reliable, robust and scalable data movement technology based on the publish & subscribe (pub/sub) pattern. Solace technology enables the real-time data flow behind many of the conveniences you take for granted every day such as immediate loyalty rewards from your credit card, the weather data delivered to your mobile phone, real-time airplane movements on the ground and in the air, and timely inventory updates to some of your favourite department stores and grocery chains, not to mention that Solace technology also powers many of the world's leading stock exchanges and betting houses. Aside from rock solid technology, stellar customer support is one of the biggest reasons customers select Solace, and stick with them. -
35
SQLstream
Guavus, a Thales company
In the field of IoT stream processing and analytics, SQLstream ranks #1 according to ABI Research. Used by Verizon, Walmart, Cisco, and Amazon, our technology powers applications on premises, in the cloud, and at the edge. SQLstream enables time-critical alerts, live dashboards, and real-time action with sub-millisecond latency. Smart cities can reroute ambulances and fire trucks or optimize traffic light timing based on real-time conditions. Security systems can detect hackers and fraudsters, shutting them down right away. AI / ML models, trained with streaming sensor data, can predict equipment failures. Thanks to SQLstream's lightning performance -- up to 13 million rows / second / CPU core -- companies have drastically reduced their footprint and cost. Our efficient, in-memory processing allows operations at the edge that would otherwise be impossible. Acquire, prepare, analyze, and act on data in any format from any source. Create pipelines in minutes not months with StreamLab, our interactive, low-code, GUI dev environment. Edit scripts instantly and view instantaneous results without compiling. Deploy with native Kubernetes support. Easy installation includes Docker, AWS, Azure, Linux, VMWare, and more -
36
Macrometa
Macrometa
We provide a globally distributed real-time database, along with stream processing and computing capabilities for event-driven applications, utilizing as many as 175 edge data centers around the world. Developers and API creators appreciate our platform because it addresses the complex challenges of managing shared mutable state across hundreds of locations with both strong consistency and minimal latency. Macrometa empowers you to seamlessly enhance your existing infrastructure, allowing you to reposition portions of your application or the entire setup closer to your end users. This strategic placement significantly boosts performance, enhances user experiences, and ensures adherence to international data governance regulations. Serving as a serverless, streaming NoSQL database, Macrometa encompasses integrated pub/sub features, stream data processing, and a compute engine. You can establish a stateful data infrastructure, create stateful functions and containers suitable for prolonged workloads, and handle data streams in real time. While you focus on coding, we manage all operational tasks and orchestration, freeing you to innovate without constraints. As a result, our platform not only simplifies development but also optimizes resource utilization across global networks. -
37
Amazon Managed Service for Apache Flink
Amazon
$0.11 per hourA vast number of users leverage Amazon Managed Service for Apache Flink to execute their stream processing applications. This service allows you to analyze and transform streaming data in real-time through Apache Flink while seamlessly integrating with other AWS offerings. There is no need to manage servers or clusters, nor is there a requirement to establish computing and storage infrastructure. You are billed solely for the resources you consume. You can create and operate Apache Flink applications without the hassle of infrastructure setup and resource management. Experience the capability to process vast amounts of data at incredible speeds with subsecond latencies, enabling immediate responses to events. With Multi-AZ deployments and APIs for application lifecycle management, you can deploy applications that are both highly available and durable. Furthermore, you can develop solutions that efficiently transform and route data to services like Amazon Simple Storage Service (Amazon S3) and Amazon OpenSearch Service, among others, enhancing your application's functionality and reach. This service simplifies the complexities of stream processing, allowing developers to focus on building innovative solutions. -
38
eXplain
PKS Software
eXplain is a robust tool developed by PKS Software GmbH for code analysis and the assessment of legacy systems, specifically aimed at performing in-depth evaluations of legacy applications on mainframe platforms like IBM i (AS/400) and IBM Z. This software allows organizations to gain insights into their software's contents, structural integrity, and identifies components that may be retained, improved, or phased out. By importing existing source code into a standalone "eXplain server," the tool eliminates the necessity for installations on the host system, utilizing sophisticated parsers to scrutinize programming languages such as COBOL, PL/I, Assembler, Natural, RPG, and JCL, along with information pertaining to databases like Db2, Adabas, and IMS, as well as job schedulers and transaction monitors. eXplain creates a centralized repository that functions as a knowledge hub, from which it can produce cross-language dependency graphs, data-flow diagrams, interface evaluations, groupings of related modules, and comprehensive reports on object and resource usage. This enables users to visualize relationships within the code, enhancing their understanding of the software landscape. Ultimately, eXplain empowers organizations to make informed decisions regarding the future of their legacy systems. -
39
Hitachi Streaming Data Platform
Hitachi
The Hitachi Streaming Data Platform (SDP) is engineered for real-time processing of extensive time-series data as it is produced. Utilizing in-memory and incremental computation techniques, SDP allows for rapid analysis that circumvents the typical delays experienced with conventional stored data processing methods. Users have the capability to outline summary analysis scenarios through Continuous Query Language (CQL), which resembles SQL, thus enabling adaptable and programmable data examination without requiring bespoke applications. The platform's architecture includes various components such as development servers, data-transfer servers, data-analysis servers, and dashboard servers, which together create a scalable and efficient data processing ecosystem. Additionally, SDP’s modular framework accommodates multiple data input and output formats, including text files and HTTP packets, and seamlessly integrates with visualization tools like RTView for real-time performance monitoring. This comprehensive design ensures that users can effectively manage and analyze data streams as they occur. -
40
Nussknacker
Nussknacker
0Nussknacker allows domain experts to use a visual tool that is low-code to help them create and execute real-time decisioning algorithm instead of writing code. It is used to perform real-time actions on data: real-time marketing and fraud detection, Internet of Things customer 360, Machine Learning inferring, and Internet of Things customer 360. A visual design tool for decision algorithm is an essential part of Nussknacker. It allows non-technical users, such as analysts or business people, to define decision logic in a clear, concise, and easy-to-follow manner. With a click, scenarios can be deployed for execution once they have been created. They can be modified and redeployed whenever there is a need. Nussknacker supports streaming and request-response processing modes. It uses Kafka as its primary interface in streaming mode. It supports both stateful processing and stateless processing. -
41
Astra Streaming
DataStax
Engaging applications captivate users while motivating developers to innovate. To meet the growing demands of the digital landscape, consider utilizing the DataStax Astra Streaming service platform. This cloud-native platform for messaging and event streaming is built on the robust foundation of Apache Pulsar. With Astra Streaming, developers can create streaming applications that leverage a multi-cloud, elastically scalable architecture. Powered by the advanced capabilities of Apache Pulsar, this platform offers a comprehensive solution that encompasses streaming, queuing, pub/sub, and stream processing. Astra Streaming serves as an ideal partner for Astra DB, enabling current users to construct real-time data pipelines seamlessly connected to their Astra DB instances. Additionally, the platform's flexibility allows for deployment across major public cloud providers, including AWS, GCP, and Azure, thereby preventing vendor lock-in. Ultimately, Astra Streaming empowers developers to harness the full potential of their data in real-time environments. -
42
Google Cloud Confidential VMs
Google
$0.005479 per hourGoogle Cloud's Confidential Computing offers hardware-based Trusted Execution Environments (TEEs) that encrypt data while it is actively being used, thus completing the encryption process for data both at rest and in transit. This suite includes Confidential VMs, which utilize AMD SEV, SEV-SNP, Intel TDX, and NVIDIA confidential GPUs, alongside Confidential Space facilitating secure multi-party data sharing, Google Cloud Attestation, and split-trust encryption tools. Confidential VMs are designed to support workloads within Compute Engine and are applicable across various services such as Dataproc, Dataflow, GKE, and Vertex AI Workbench. The underlying architecture guarantees that memory is encrypted during runtime, isolates workloads from the host operating system and hypervisor, and includes attestation features that provide customers with proof of operation within a secure enclave. Use cases are diverse, spanning confidential analytics, federated learning in sectors like healthcare and finance, generative AI model deployment, and collaborative data sharing in supply chains. Ultimately, this innovative approach minimizes the trust boundary to only the guest application rather than the entire computing environment, enhancing overall security and privacy for sensitive workloads. -
43
SAS Event Stream Processing
SAS Institute
The significance of streaming data derived from operations, transactions, sensors, and IoT devices becomes apparent when it is thoroughly comprehended. SAS's event stream processing offers a comprehensive solution that encompasses streaming data quality, analytics, and an extensive selection of SAS and open source machine learning techniques alongside high-frequency analytics. This integrated approach facilitates the connection, interpretation, cleansing, and comprehension of streaming data seamlessly. Regardless of the velocity at which your data flows, the volume of data you manage, or the diversity of data sources you utilize, you can oversee everything effortlessly through a single, user-friendly interface. Moreover, by defining patterns and addressing various scenarios across your entire organization, you can remain adaptable and proactively resolve challenges as they emerge while enhancing your overall operational efficiency. -
44
Materialize
Materialize
$0.98 per hourMaterialize is an innovative reactive database designed to provide updates to views incrementally. It empowers developers to seamlessly work with streaming data through the use of standard SQL. One of the key advantages of Materialize is its ability to connect directly to a variety of external data sources without the need for pre-processing. Users can link to real-time streaming sources such as Kafka, Postgres databases, and change data capture (CDC), as well as access historical data from files or S3. The platform enables users to execute queries, perform joins, and transform various data sources using standard SQL, presenting the outcomes as incrementally-updated Materialized views. As new data is ingested, queries remain active and are continuously refreshed, allowing developers to create data visualizations or real-time applications with ease. Moreover, constructing applications that utilize streaming data becomes a straightforward task, often requiring just a few lines of SQL code, which significantly enhances productivity. With Materialize, developers can focus on building innovative solutions rather than getting bogged down in complex data management tasks. -
45
IBM StreamSets
IBM
$1000 per monthIBM® StreamSets allows users to create and maintain smart streaming data pipelines using an intuitive graphical user interface. This facilitates seamless data integration in hybrid and multicloud environments. IBM StreamSets is used by leading global companies to support millions data pipelines, for modern analytics and intelligent applications. Reduce data staleness, and enable real-time information at scale. Handle millions of records across thousands of pipelines in seconds. Drag-and-drop processors that automatically detect and adapt to data drift will protect your data pipelines against unexpected changes and shifts. Create streaming pipelines for ingesting structured, semistructured, or unstructured data to deliver it to multiple destinations.