KrakenD
Engineered for peak performance and efficient resource use, KrakenD can manage a staggering 70k requests per second on just one instance. Its stateless build ensures hassle-free scalability, sidelining complications like database upkeep or node synchronization.
In terms of features, KrakenD is a jack-of-all-trades. It accommodates multiple protocols and API standards, offering granular access control, data shaping, and caching capabilities. A standout feature is its Backend For Frontend pattern, which consolidates various API calls into a single response, simplifying client interactions.
On the security front, KrakenD is OWASP-compliant and data-agnostic, streamlining regulatory adherence. Operational ease comes via its declarative setup and robust third-party tool integration. With its open-source community edition and transparent pricing model, KrakenD is the go-to API Gateway for organizations that refuse to compromise on performance or scalability.
Learn more
Vertex AI
Fully managed ML tools allow you to build, deploy and scale machine-learning (ML) models quickly, for any use case.
Vertex AI Workbench is natively integrated with BigQuery Dataproc and Spark. You can use BigQuery to create and execute machine-learning models in BigQuery by using standard SQL queries and spreadsheets or you can export datasets directly from BigQuery into Vertex AI Workbench to run your models there. Vertex Data Labeling can be used to create highly accurate labels for data collection.
Vertex AI Agent Builder empowers developers to design and deploy advanced generative AI applications for enterprise use. It supports both no-code and code-driven development, enabling users to create AI agents through natural language prompts or by integrating with frameworks like LangChain and LlamaIndex.
Learn more
Pinecone
The AI Knowledge Platform.
The Pinecone Database, Inference, and Assistant make building high-performance vector search apps easy. Fully managed and developer-friendly, the database is easily scalable without any infrastructure problems.
Once you have vector embeddings created, you can search and manage them in Pinecone to power semantic searches, recommenders, or other applications that rely upon relevant information retrieval.
Even with billions of items, ultra-low query latency Provide a great user experience. You can add, edit, and delete data via live index updates. Your data is available immediately. For more relevant and quicker results, combine vector search with metadata filters.
Our API makes it easy to launch, use, scale, and scale your vector searching service without worrying about infrastructure. It will run smoothly and securely.
Learn more
Azure AI Search
Achieve exceptional response quality through a vector database specifically designed for advanced retrieval augmented generation (RAG) and contemporary search functionalities. Emphasize substantial growth with a robust, enterprise-ready vector database that inherently includes security, compliance, and ethical AI methodologies. Create superior applications utilizing advanced retrieval techniques that are underpinned by years of research and proven customer success. Effortlessly launch your generative AI application with integrated platforms and data sources, including seamless connections to AI models and frameworks. Facilitate the automatic data upload from an extensive array of compatible Azure and third-party sources. Enhance vector data processing with comprehensive features for extraction, chunking, enrichment, and vectorization, all streamlined in a single workflow. Offer support for diverse vector types, hybrid models, multilingual capabilities, and metadata filtering. Go beyond simple vector searches by incorporating keyword match scoring, reranking, geospatial search capabilities, and autocomplete features. This holistic approach ensures that your applications can meet a wide range of user needs and adapt to evolving demands.
Learn more