Best CodeQwen Alternatives in 2025

Find the top alternatives to CodeQwen currently available. Compare ratings, reviews, pricing, and features of CodeQwen alternatives in 2025. Slashdot lists the best CodeQwen alternatives on the market that offer competing products that are similar to CodeQwen. Sort through CodeQwen alternatives below to make the best choice for your needs

  • 1
    BLACKBOX AI Reviews
    BLACKBOX AI is a powerful AI-driven platform that revolutionizes software development by providing a fully integrated AI Coding Agent with unique features such as voice interaction, direct GPU access, and remote parallel task processing. It simplifies complex coding tasks by converting Figma designs into production-ready code and transforming images into web apps with minimal manual effort. The platform supports seamless screen sharing within popular IDEs like VSCode, enhancing developer collaboration. Users can manage GitHub repositories remotely, running coding tasks entirely in the cloud for scalability and efficiency. BLACKBOX AI also enables app development with embedded PDF context, allowing the AI agent to understand and build around complex document data. Its image generation and editing tools offer creative flexibility alongside development features. The platform supports mobile device access, ensuring developers can work from anywhere. BLACKBOX AI aims to speed up the entire development lifecycle with automation and AI-enhanced workflows.
  • 2
    Gemini Code Assist Reviews
    Enhance the speed and efficiency of software development and delivery by leveraging generative AI support, all while ensuring robust enterprise security and privacy safeguards. Gemini Code Assist streamlines your coding process by completing your code as you type and can generate entire code blocks or functions upon request. This powerful code assistance tool is compatible with a variety of popular integrated development environments (IDEs) like Visual Studio Code and JetBrains IDEs (including IntelliJ, PyCharm, GoLand, and WebStorm), as well as Cloud Workstations and Cloud Shell Editor, supporting over 20 programming languages such as Java, JavaScript, Python, C, C++, Go, PHP, and SQL. Utilizing a natural language chat interface, you can easily interact with Gemini Code Assist to obtain solutions to your coding queries or gain insights into coding best practices, with chat functionality accessible across all supported IDEs. Organizations have the flexibility to tailor Gemini Code Assist by integrating their private codebases and knowledge repositories, enabling the tool to provide more personalized assistance that aligns with specific enterprise needs. Furthermore, Gemini Code Assist has the capability to facilitate extensive modifications across entire codebases, thereby optimizing the development workflow significantly. This adaptability not only boosts productivity but also empowers teams to innovate more rapidly in a secure environment.
  • 3
    Qwen-7B Reviews
    Qwen-7B is the 7-billion parameter iteration of Alibaba Cloud's Qwen language model series, also known as Tongyi Qianwen. This large language model utilizes a Transformer architecture and has been pretrained on an extensive dataset comprising web texts, books, code, and more. Furthermore, we introduced Qwen-7B-Chat, an AI assistant that builds upon the pretrained Qwen-7B model and incorporates advanced alignment techniques. The Qwen-7B series boasts several notable features: It has been trained on a premium dataset, with over 2.2 trillion tokens sourced from a self-assembled collection of high-quality texts and codes across various domains, encompassing both general and specialized knowledge. Additionally, our model demonstrates exceptional performance, surpassing competitors of similar size on numerous benchmark datasets that assess capabilities in natural language understanding, mathematics, and coding tasks. This positions Qwen-7B as a leading choice in the realm of AI language models. Overall, its sophisticated training and robust design contribute to its impressive versatility and effectiveness.
  • 4
    CodeGemma Reviews
    CodeGemma represents an impressive suite of efficient and versatile models capable of tackling numerous coding challenges, including middle code completion, code generation, natural language processing, mathematical reasoning, and following instructions. It features three distinct model types: a 7B pre-trained version designed for code completion and generation based on existing code snippets, a 7B variant fine-tuned for translating natural language queries into code and adhering to instructions, and an advanced 2B pre-trained model that offers code completion speeds up to twice as fast. Whether you're completing lines, developing functions, or crafting entire segments of code, CodeGemma supports your efforts, whether you're working in a local environment or leveraging Google Cloud capabilities. With training on an extensive dataset comprising 500 billion tokens predominantly in English, sourced from web content, mathematics, and programming languages, CodeGemma not only enhances the syntactical accuracy of generated code but also ensures its semantic relevance, thereby minimizing mistakes and streamlining the debugging process. This powerful tool continues to evolve, making coding more accessible and efficient for developers everywhere.
  • 5
    Qwen2.5-Max Reviews
    Qwen2.5-Max is an advanced Mixture-of-Experts (MoE) model created by the Qwen team, which has been pretrained on an extensive dataset of over 20 trillion tokens and subsequently enhanced through methods like Supervised Fine-Tuning (SFT) and Reinforcement Learning from Human Feedback (RLHF). Its performance in evaluations surpasses that of models such as DeepSeek V3 across various benchmarks, including Arena-Hard, LiveBench, LiveCodeBench, and GPQA-Diamond, while also achieving strong results in other tests like MMLU-Pro. This model is available through an API on Alibaba Cloud, allowing users to easily integrate it into their applications, and it can also be interacted with on Qwen Chat for a hands-on experience. With its superior capabilities, Qwen2.5-Max represents a significant advancement in AI model technology.
  • 6
    Qwen2 Reviews
    Qwen2 represents a collection of extensive language models crafted by the Qwen team at Alibaba Cloud. This series encompasses a variety of models, including base and instruction-tuned versions, with parameters varying from 0.5 billion to an impressive 72 billion, showcasing both dense configurations and a Mixture-of-Experts approach. The Qwen2 series aims to outperform many earlier open-weight models, including its predecessor Qwen1.5, while also striving to hold its own against proprietary models across numerous benchmarks in areas such as language comprehension, generation, multilingual functionality, programming, mathematics, and logical reasoning. Furthermore, this innovative series is poised to make a significant impact in the field of artificial intelligence, offering enhanced capabilities for a diverse range of applications.
  • 7
    Qwen3 Reviews
    Qwen3 is a state-of-the-art large language model designed to revolutionize the way we interact with AI. Featuring both thinking and non-thinking modes, Qwen3 allows users to customize its response style, ensuring optimal performance for both complex reasoning tasks and quick inquiries. With the ability to support 119 languages, the model is suitable for international projects. The model's hybrid training approach, which involves over 36 trillion tokens, ensures accuracy across a variety of disciplines, from coding to STEM problems. Its integration with platforms such as Hugging Face, ModelScope, and Kaggle allows for easy adoption in both research and production environments. By enhancing multilingual support and incorporating advanced AI techniques, Qwen3 is designed to push the boundaries of AI-driven applications.
  • 8
    Qwen3-Max Reviews
    Qwen3-Max represents Alibaba's cutting-edge large language model, featuring a staggering trillion parameters aimed at enhancing capabilities in tasks that require agency, coding, reasoning, and managing lengthy contexts. This model is an evolution of the Qwen3 series, leveraging advancements in architecture, training methods, and inference techniques; it integrates both thinker and non-thinker modes, incorporates a unique “thinking budget” system, and allows for dynamic mode adjustments based on task complexity. Capable of handling exceptionally lengthy inputs, processing hundreds of thousands of tokens, it also supports tool invocation and demonstrates impressive results across various benchmarks, including coding, multi-step reasoning, and agent evaluations like Tau2-Bench. While the initial version prioritizes instruction adherence in a non-thinking mode, Alibaba is set to introduce reasoning functionalities that will facilitate autonomous agent operations in the future. In addition to its existing multilingual capabilities and extensive training on trillions of tokens, Qwen3-Max is accessible through API interfaces that align seamlessly with OpenAI-style functionalities, ensuring broad usability across applications. This comprehensive framework positions Qwen3-Max as a formidable player in the realm of advanced artificial intelligence language models.
  • 9
    Qwen2.5-1M Reviews
    Qwen2.5-1M, an open-source language model from the Qwen team, has been meticulously crafted to manage context lengths reaching as high as one million tokens. This version introduces two distinct model variants, namely Qwen2.5-7B-Instruct-1M and Qwen2.5-14B-Instruct-1M, representing a significant advancement as it is the first instance of Qwen models being enhanced to accommodate such large context lengths. In addition to this, the team has released an inference framework that is based on vLLM and incorporates sparse attention mechanisms, which greatly enhance the processing speed for 1M-token inputs, achieving improvements between three to seven times. A detailed technical report accompanies this release, providing in-depth insights into the design choices and the results from various ablation studies. This transparency allows users to fully understand the capabilities and underlying technology of the models.
  • 10
    Qwen Reviews
    Qwen LLM represents a collection of advanced large language models created by Alibaba Cloud's Damo Academy. These models leverage an extensive dataset comprising text and code, enabling them to produce human-like text, facilitate language translation, craft various forms of creative content, and provide informative answers to queries. Key attributes of Qwen LLMs include: A range of sizes: The Qwen series features models with parameters varying from 1.8 billion to 72 billion, catering to diverse performance requirements and applications. Open source availability: Certain versions of Qwen are open-source, allowing users to access and modify the underlying code as needed. Multilingual capabilities: Qwen is equipped to comprehend and translate several languages, including English, Chinese, and French. Versatile functionalities: In addition to language generation and translation, Qwen models excel in tasks such as answering questions, summarizing texts, and generating code, making them highly adaptable tools for various applications. Overall, the Qwen LLM family stands out for its extensive capabilities and flexibility in meeting user needs.
  • 11
    Qwen3-Coder Reviews
    Qwen3-Coder is a versatile coding model that comes in various sizes, prominently featuring the 480B-parameter Mixture-of-Experts version with 35B active parameters, which naturally accommodates 256K-token contexts that can be extended to 1M tokens. This model achieves impressive performance that rivals Claude Sonnet 4, having undergone pre-training on 7.5 trillion tokens, with 70% of that being code, and utilizing synthetic data refined through Qwen2.5-Coder to enhance both coding skills and overall capabilities. Furthermore, the model benefits from post-training techniques that leverage extensive, execution-guided reinforcement learning, which facilitates the generation of diverse test cases across 20,000 parallel environments, thereby excelling in multi-turn software engineering tasks such as SWE-Bench Verified without needing test-time scaling. In addition to the model itself, the open-source Qwen Code CLI, derived from Gemini Code, empowers users to deploy Qwen3-Coder in dynamic workflows with tailored prompts and function calling protocols, while also offering smooth integration with Node.js, OpenAI SDKs, and environment variables. This comprehensive ecosystem supports developers in optimizing their coding projects effectively and efficiently.
  • 12
    QwQ-32B Reviews
    The QwQ-32B model, created by Alibaba Cloud's Qwen team, represents a significant advancement in AI reasoning, aimed at improving problem-solving skills. Boasting 32 billion parameters, it rivals leading models such as DeepSeek's R1, which contains 671 billion parameters. This remarkable efficiency stems from its optimized use of parameters, enabling QwQ-32B to tackle complex tasks like mathematical reasoning, programming, and other problem-solving scenarios while consuming fewer resources. It can handle a context length of up to 32,000 tokens, making it adept at managing large volumes of input data. Notably, QwQ-32B is available through Alibaba's Qwen Chat service and is released under the Apache 2.0 license, which fosters collaboration and innovation among AI developers. With its cutting-edge features, QwQ-32B is poised to make a substantial impact in the field of artificial intelligence.
  • 13
    Qwen Chat Reviews
    Qwen Chat is a dynamic and robust AI platform crafted by Alibaba, providing a wide range of features through an intuitive web interface. This platform incorporates several cutting-edge Qwen AI models, enabling users to participate in text-based dialogues, create images and videos, conduct web searches, and leverage various tools to boost productivity. Among its capabilities are document and image processing, HTML previews for coding endeavors, and the option to generate and test artifacts directly within the chat, making it ideal for developers, researchers, and AI enthusiasts alike. Users can effortlessly transition between models to accommodate various requirements, whether for casual conversation or specific coding and vision tasks. As a forward-looking platform, it also hints at upcoming enhancements, such as voice interaction, ensuring it remains a versatile tool for an array of AI applications. With such a breadth of features, Qwen Chat is poised to adapt to the ever-evolving landscape of artificial intelligence.
  • 14
    Qwen Code Reviews
    Qwen3-Coder is an advanced code model that comes in various sizes, prominently featuring the 480B-parameter Mixture-of-Experts version (with 35B active) that inherently accommodates 256K-token contexts, which can be extended to 1M, and demonstrates cutting-edge performance in Agentic Coding, Browser-Use, and Tool-Use activities, rivaling Claude Sonnet 4. With a pre-training phase utilizing 7.5 trillion tokens (70% of which are code) and synthetic data refined through Qwen2.5-Coder, it enhances both coding skills and general capabilities, while its post-training phase leverages extensive execution-driven reinforcement learning across 20,000 parallel environments to excel in multi-turn software engineering challenges like SWE-Bench Verified without the need for test-time scaling. Additionally, the open-source Qwen Code CLI, derived from Gemini Code, allows for the deployment of Qwen3-Coder in agentic workflows through tailored prompts and function calling protocols, facilitating smooth integration with platforms such as Node.js and OpenAI SDKs. This combination of robust features and flexible accessibility positions Qwen3-Coder as an essential tool for developers seeking to optimize their coding tasks and workflows.
  • 15
    Alibaba Cloud Model Studio Reviews
    Model Studio serves as Alibaba Cloud's comprehensive generative AI platform, empowering developers to create intelligent applications that are attuned to business needs by utilizing top-tier foundation models such as Qwen-Max, Qwen-Plus, Qwen-Turbo, the Qwen-2/3 series, visual-language models like Qwen-VL/Omni, and the video-centric Wan series. With this platform, users can easily tap into these advanced GenAI models through user-friendly OpenAI-compatible APIs or specialized SDKs, eliminating the need for any infrastructure setup. The platform encompasses a complete development workflow, allowing for experimentation with models in a dedicated playground, conducting both real-time and batch inferences, and fine-tuning using methods like SFT or LoRA. After fine-tuning, users can evaluate and compress their models, speed up deployment, and monitor performance—all within a secure, isolated Virtual Private Cloud (VPC) designed for enterprise-level security. Furthermore, one-click Retrieval-Augmented Generation (RAG) makes it easy to customize models by integrating specific business data into their outputs. The intuitive, template-based interfaces simplify prompt engineering and facilitate the design of applications, making the entire process more accessible for developers of varying skill levels. Overall, Model Studio empowers organizations to harness the full potential of generative AI efficiently and securely.
  • 16
    Qwen2.5-VL Reviews
    Qwen2.5-VL marks the latest iteration in the Qwen vision-language model series, showcasing notable improvements compared to its predecessor, Qwen2-VL. This advanced model demonstrates exceptional capabilities in visual comprehension, adept at identifying a diverse range of objects such as text, charts, and various graphical elements within images. Functioning as an interactive visual agent, it can reason and effectively manipulate tools, making it suitable for applications involving both computer and mobile device interactions. Furthermore, Qwen2.5-VL is proficient in analyzing videos that are longer than one hour, enabling it to identify pertinent segments within those videos. The model also excels at accurately locating objects in images by creating bounding boxes or point annotations and supplies well-structured JSON outputs for coordinates and attributes. It provides structured data outputs for documents like scanned invoices, forms, and tables, which is particularly advantageous for industries such as finance and commerce. Offered in both base and instruct configurations across 3B, 7B, and 72B models, Qwen2.5-VL can be found on platforms like Hugging Face and ModelScope, further enhancing its accessibility for developers and researchers alike. This model not only elevates the capabilities of vision-language processing but also sets a new standard for future developments in the field.
  • 17
    Qwen2.5-Coder Reviews
    Qwen2.5-Coder-32B-Instruct has emerged as the leading open-source code model, effectively rivaling the coding prowess of GPT-4o. It not only exhibits robust and comprehensive programming skills but also demonstrates solid general and mathematical abilities. Currently, Qwen2.5-Coder encompasses six widely used model sizes tailored to the various needs of developers. We investigate the practicality of Qwen2.5-Coder across two different scenarios, such as code assistance and artifact generation, presenting examples that illustrate its potential use cases in practical applications. As the premier model in this open-source initiative, Qwen2.5-Coder-32B-Instruct has outperformed many other open-source models on several prominent code generation benchmarks, showcasing competitive capabilities alongside GPT-4o. Additionally, the skill of code repair is crucial for programmers, and Qwen2.5-Coder-32B-Instruct proves to be an invaluable tool for users aiming to troubleshoot and rectify coding errors, thereby streamlining the programming process and enhancing efficiency. This combination of functionalities positions Qwen2.5-Coder as an indispensable resource in the software development landscape.
  • 18
    Qwen2-VL Reviews
    Qwen2-VL represents the most advanced iteration of vision-language models within the Qwen family, building upon the foundation established by Qwen-VL. This enhanced model showcases remarkable capabilities, including: Achieving cutting-edge performance in interpreting images of diverse resolutions and aspect ratios, with Qwen2-VL excelling in visual comprehension tasks such as MathVista, DocVQA, RealWorldQA, and MTVQA, among others. Processing videos exceeding 20 minutes in length, enabling high-quality video question answering, engaging dialogues, and content creation. Functioning as an intelligent agent capable of managing devices like smartphones and robots, Qwen2-VL utilizes its sophisticated reasoning and decision-making skills to perform automated tasks based on visual cues and textual commands. Providing multilingual support to accommodate a global audience, Qwen2-VL can now interpret text in multiple languages found within images, extending its usability and accessibility to users from various linguistic backgrounds. This wide-ranging capability positions Qwen2-VL as a versatile tool for numerous applications across different fields.
  • 19
    Qwen2.5 Reviews
    Qwen2.5 represents a state-of-the-art multimodal AI system that aims to deliver highly precise and context-sensitive outputs for a diverse array of uses. This model enhances the functionalities of earlier versions by merging advanced natural language comprehension with improved reasoning abilities, creativity, and the capacity to process multiple types of media. Qwen2.5 can effortlessly analyze and produce text, interpret visual content, and engage with intricate datasets, allowing it to provide accurate solutions promptly. Its design prioritizes adaptability, excelling in areas such as personalized support, comprehensive data analysis, innovative content creation, and scholarly research, thereby serving as an invaluable resource for both professionals and casual users. Furthermore, the model is crafted with a focus on user engagement, emphasizing principles of transparency, efficiency, and adherence to ethical AI standards, which contributes to a positive user experience.
  • 20
    QwQ-Max-Preview Reviews
    QwQ-Max-Preview is a cutting-edge AI model based on the Qwen2.5-Max framework, specifically engineered to excel in areas such as complex reasoning, mathematical problem-solving, programming, and agent tasks. This preview showcases its enhanced capabilities across a variety of general-domain applications while demonstrating proficiency in managing intricate workflows. Anticipated to be officially released as open-source software under the Apache 2.0 license, QwQ-Max-Preview promises significant improvements and upgrades in its final iteration. Additionally, it contributes to the development of a more inclusive AI environment, as evidenced by the forthcoming introduction of the Qwen Chat application and streamlined model versions like QwQ-32B, which cater to developers interested in local deployment solutions. This initiative not only broadens accessibility but also encourages innovation within the AI community.
  • 21
    Smaug-72B Reviews
    Smaug-72B is a formidable open-source large language model (LLM) distinguished by several prominent features: Exceptional Performance: It currently ranks first on the Hugging Face Open LLM leaderboard, outperforming models such as GPT-3.5 in multiple evaluations, demonstrating its ability to comprehend, react to, and generate text that closely resembles human writing. Open Source Availability: In contrast to many high-end LLMs, Smaug-72B is accessible to everyone for use and modification, which encourages cooperation and innovation within the AI ecosystem. Emphasis on Reasoning and Mathematics: This model excels particularly in reasoning and mathematical challenges, a capability attributed to specialized fine-tuning methods developed by its creators, Abacus AI. Derived from Qwen-72B: It is essentially a refined version of another robust LLM, Qwen-72B, which was launched by Alibaba, thereby enhancing its overall performance. In summary, Smaug-72B marks a notable advancement in the realm of open-source artificial intelligence, making it a valuable resource for developers and researchers alike. Its unique strengths not only elevate its status but also contribute to the ongoing evolution of AI technology.
  • 22
    Llama 2 Reviews
    Introducing the next iteration of our open-source large language model, this version features model weights along with initial code for the pretrained and fine-tuned Llama language models, which span from 7 billion to 70 billion parameters. The Llama 2 pretrained models have been developed using an impressive 2 trillion tokens and offer double the context length compared to their predecessor, Llama 1. Furthermore, the fine-tuned models have been enhanced through the analysis of over 1 million human annotations. Llama 2 demonstrates superior performance against various other open-source language models across multiple external benchmarks, excelling in areas such as reasoning, coding capabilities, proficiency, and knowledge assessments. For its training, Llama 2 utilized publicly accessible online data sources, while the fine-tuned variant, Llama-2-chat, incorporates publicly available instruction datasets along with the aforementioned extensive human annotations. Our initiative enjoys strong support from a diverse array of global stakeholders who are enthusiastic about our open approach to AI, including companies that have provided valuable early feedback and are eager to collaborate using Llama 2. The excitement surrounding Llama 2 signifies a pivotal shift in how AI can be developed and utilized collectively.
  • 23
    Tülu 3 Reviews
    Tülu 3 is a cutting-edge language model created by the Allen Institute for AI (Ai2) that aims to improve proficiency in fields like knowledge, reasoning, mathematics, coding, and safety. It is based on the Llama 3 Base and undergoes a detailed four-stage post-training regimen: careful prompt curation and synthesis, supervised fine-tuning on a wide array of prompts and completions, preference tuning utilizing both off- and on-policy data, and a unique reinforcement learning strategy that enhances targeted skills through measurable rewards. Notably, this open-source model sets itself apart by ensuring complete transparency, offering access to its training data, code, and evaluation tools, thus bridging the performance divide between open and proprietary fine-tuning techniques. Performance assessments reveal that Tülu 3 surpasses other models with comparable sizes, like Llama 3.1-Instruct and Qwen2.5-Instruct, across an array of benchmarks, highlighting its effectiveness. The continuous development of Tülu 3 signifies the commitment to advancing AI capabilities while promoting an open and accessible approach to technology.
  • 24
    StarCoder Reviews
    StarCoder and StarCoderBase represent advanced Large Language Models specifically designed for code, developed using openly licensed data from GitHub, which encompasses over 80 programming languages, Git commits, GitHub issues, and Jupyter notebooks. In a manner akin to LLaMA, we constructed a model with approximately 15 billion parameters trained on a staggering 1 trillion tokens. Furthermore, we tailored the StarCoderBase model with 35 billion Python tokens, leading to the creation of what we now refer to as StarCoder. Our evaluations indicated that StarCoderBase surpasses other existing open Code LLMs when tested against popular programming benchmarks and performs on par with or even exceeds proprietary models like code-cushman-001 from OpenAI, the original Codex model that fueled early iterations of GitHub Copilot. With an impressive context length exceeding 8,000 tokens, the StarCoder models possess the capability to handle more information than any other open LLM, thus paving the way for a variety of innovative applications. This versatility is highlighted by our ability to prompt the StarCoder models through a sequence of dialogues, effectively transforming them into dynamic technical assistants that can provide support in diverse programming tasks.
  • 25
    Code Llama Reviews
    Code Llama is an advanced language model designed to generate code through text prompts, distinguishing itself as a leading tool among publicly accessible models for coding tasks. This innovative model not only streamlines workflows for existing developers but also aids beginners in overcoming challenges associated with learning to code. Its versatility positions Code Llama as both a valuable productivity enhancer and an educational resource, assisting programmers in creating more robust and well-documented software solutions. Additionally, users can generate both code and natural language explanations by providing either type of prompt, making it an adaptable tool for various programming needs. Available for free for both research and commercial applications, Code Llama is built upon Llama 2 architecture and comes in three distinct versions: the foundational Code Llama model, Code Llama - Python which is tailored specifically for Python programming, and Code Llama - Instruct, optimized for comprehending and executing natural language directives effectively.
  • 26
    Qwen2.5-VL-32B Reviews
    Qwen2.5-VL-32B represents an advanced AI model specifically crafted for multimodal endeavors, showcasing exceptional skills in reasoning related to both text and images. This iteration enhances the previous Qwen2.5-VL series, resulting in responses that are not only of higher quality but also more aligned with human-like formatting. The model demonstrates remarkable proficiency in mathematical reasoning, nuanced image comprehension, and intricate multi-step reasoning challenges, such as those encountered in benchmarks like MathVista and MMMU. Its performance has been validated through comparisons with competing models, often surpassing even the larger Qwen2-VL-72B in specific tasks. Furthermore, with its refined capabilities in image analysis and visual logic deduction, Qwen2.5-VL-32B offers thorough and precise evaluations of visual content, enabling it to generate insightful responses from complex visual stimuli. This model has been meticulously optimized for both textual and visual tasks, making it exceptionally well-suited for scenarios that demand advanced reasoning and understanding across various forms of media, thus expanding its potential applications even further.
  • 27
    Codestral Reviews
    We are excited to unveil Codestral, our inaugural code generation model. This open-weight generative AI system is specifically crafted for tasks related to code generation, enabling developers to seamlessly write and engage with code via a unified instruction and completion API endpoint. As it becomes proficient in both programming languages and English, Codestral is poised to facilitate the creation of sophisticated AI applications tailored for software developers. With a training foundation that encompasses a wide array of over 80 programming languages—ranging from widely-used options like Python, Java, C, C++, JavaScript, and Bash to more niche languages such as Swift and Fortran—Codestral ensures a versatile support system for developers tackling various coding challenges and projects. Its extensive language capabilities empower developers to confidently navigate different coding environments, making Codestral an invaluable asset in the programming landscape.
  • 28
    MonoQwen-Vision Reviews
    MonoQwen2-VL-v0.1 represents the inaugural visual document reranker aimed at improving the quality of visual documents retrieved within Retrieval-Augmented Generation (RAG) systems. Conventional RAG methodologies typically involve transforming documents into text through Optical Character Recognition (OCR), a process that can be labor-intensive and often leads to the omission of critical information, particularly for non-text elements such as graphs and tables. To combat these challenges, MonoQwen2-VL-v0.1 utilizes Visual Language Models (VLMs) that can directly interpret images, thus bypassing the need for OCR and maintaining the fidelity of visual information. The reranking process unfolds in two stages: it first employs distinct encoding to create a selection of potential documents, and subsequently applies a cross-encoding model to reorder these options based on their relevance to the given query. By implementing Low-Rank Adaptation (LoRA) atop the Qwen2-VL-2B-Instruct model, MonoQwen2-VL-v0.1 not only achieves impressive results but does so while keeping memory usage to a minimum. This innovative approach signifies a substantial advancement in the handling of visual data within RAG frameworks, paving the way for more effective information retrieval strategies.
  • 29
    Sky-T1 Reviews
    Sky-T1-32B-Preview is an innovative open-source reasoning model crafted by the NovaSky team at UC Berkeley's Sky Computing Lab. It delivers performance comparable to proprietary models such as o1-preview on various reasoning and coding assessments, while being developed at a cost of less than $450, highlighting the potential for budget-friendly, advanced reasoning abilities. Fine-tuned from Qwen2.5-32B-Instruct, the model utilized a meticulously curated dataset comprising 17,000 examples spanning multiple fields, such as mathematics and programming. The entire training process was completed in just 19 hours using eight H100 GPUs with DeepSpeed Zero-3 offloading technology. Every component of this initiative—including the data, code, and model weights—is entirely open-source, allowing both academic and open-source communities to not only replicate but also improve upon the model's capabilities. This accessibility fosters collaboration and innovation in the realm of artificial intelligence research and development.
  • 30
    CodeGeeX Reviews
    Introducing CodeGeeX, a powerful multilingual code generation model boasting 13 billion parameters, which has been pre-trained on an extensive code corpus covering over 20 programming languages. Leveraging the capabilities of CodeGeeX, we have created a VS Code extension (search 'CodeGeeX' in the Extension Marketplace) designed to support programming in various languages. In addition to its proficiency in multilingual code generation and translation, CodeGeeX can serve as a personalized programming assistant through its few-shot learning capability. This means that by providing a handful of examples as prompts, CodeGeeX can mimic the showcased patterns and produce code that aligns with those examples. This functionality enables the implementation of exciting features such as code explanation, summarization, and generation tailored to specific coding styles. For instance, users can input code snippets reflecting their unique style, and CodeGeeX will generate similar code accordingly. Moreover, experimenting with different prompt formats can further inspire CodeGeeX to develop new coding skills and enhance its versatility. Thus, CodeGeeX stands out as a versatile tool for developers looking to streamline their coding processes.
  • 31
    Void Editor Reviews
    Void is a fork of VS Code that serves as an open-source AI code editor and an alternative to Cursor, designed to give developers enhanced AI support while ensuring complete data control. It facilitates smooth integration with various large language models, including DeepSeek, Llama, Qwen, Gemini, Claude, and Grok, allowing direct connections without relying on a private backend. Among its core functionalities are tab-triggered autocomplete, an inline quick edit feature, and a dynamic AI chat interface that supports standard chat, a restricted gather mode for read/search-only tasks, and an agent mode that automates operations involving files, folders, terminal commands, and MCP tools. Furthermore, Void provides exceptional performance capabilities, including rapid file application for documents containing thousands of lines, comprehensive checkpoint management for model updates, native tool execution, and the detection of lint errors. Developers can effortlessly migrate their themes, keybindings, and settings from VS Code with a single click and choose to host models either locally or in the cloud. This unique combination of features makes Void an attractive option for developers seeking powerful coding tools while maintaining data sovereignty.
  • 32
    Code Snippets AI Reviews

    Code Snippets AI

    Code Snippets AI

    $2 per month
    Transform your inquiries into code effortlessly while having the capability to store and retrieve your snippets with ease. Collaborate seamlessly with your team, leveraging the power of ChatGPT alongside our optimized GPT-3 model. Enhance your comprehension of coding concepts to expand your skillset. Improve the quality of your programming through our advanced refactoring and debugging tools. Share your code snippets securely with your team while preserving their formatting. Our integration of ChatGPT and the refined GPT-3 model ensures quicker and more precise answers to your queries compared to traditional Codex applications. Generate documentation, refactor, debug, and create code with just a single click. With our specialized VSCode extension, you can effortlessly save code directly from your IDE to your personal library. Organize your snippets by language, name, or folder, and customize your folder structure to match your preferences. Overall, our platform utilizes ChatGPT and our fine-tuned GPT-3 model to deliver unmatched speed and accuracy in response to your coding questions. Additionally, our user-friendly interface simplifies your coding experience, allowing for a more productive workflow.
  • 33
    ChatGPT Reviews
    ChatGPT by OpenAI is a versatile AI conversational platform that provides assistance in writing, learning, brainstorming, code generation, and problem-solving across a wide range of topics. Available for free with optional Plus and Pro subscription plans, it supports real-time text and voice interactions on web browsers and mobile apps. Users can leverage ChatGPT to create content, summarize meetings, debug code, analyze data, and even generate images using integrated tools like DALL·E 3. The platform is accessible via desktop and mobile devices and offers personalized workflows through custom GPTs and projects. Advanced plans unlock deeper research capabilities, extended limits, and access to cutting-edge AI models like GPT-4o and OpenAI o1 pro mode. ChatGPT integrates search capabilities for real-time information and enables collaboration through features like Canvas for project editing. It caters to students, professionals, hobbyists, and developers seeking efficient, AI-driven support. OpenAI continually updates ChatGPT with new tools and enhanced usability.
  • 34
    JetBrains AI Assistant Reviews
    The JetBrains AI Assistant integrates your integrated development environment (IDE) with both third-party and proprietary large language models (LLMs) that are tailored for specific functionalities. This integration allows the AI Assistant to deliver accurate and context-sensitive support, assisting with tasks such as generating code snippets, completing intricate code structures, and developing automated tests efficiently. We prioritize the security of your data and code! JetBrains AI Assistant guarantees that your code snippets remain confidential and are neither stored nor shared, irrespective of whether they come from public repositories, private repositories, or local files. Adhering to the JetBrains AI Terms of Service is fundamental to our practices, ensuring that neither we nor our affiliated service providers utilize your data or code for the purpose of training any generative AI models. Additionally, this commitment to privacy and data integrity fosters a trustworthy environment for developers.
  • 35
    OPT Reviews
    Large language models, often requiring extensive computational resources for training over long periods, have demonstrated impressive proficiency in zero- and few-shot learning tasks. Due to the high investment needed for their development, replicating these models poses a significant challenge for many researchers. Furthermore, access to the few models available via API is limited, as users cannot obtain the complete model weights, complicating academic exploration. In response to this, we introduce Open Pre-trained Transformers (OPT), a collection of decoder-only pre-trained transformers ranging from 125 million to 175 billion parameters, which we intend to share comprehensively and responsibly with interested scholars. Our findings indicate that OPT-175B exhibits performance on par with GPT-3, yet it is developed with only one-seventh of the carbon emissions required for GPT-3's training. Additionally, we will provide a detailed logbook that outlines the infrastructure hurdles we encountered throughout the project, as well as code to facilitate experimentation with all released models, ensuring that researchers have the tools they need to explore this technology further.
  • 36
    Featherless Reviews

    Featherless

    Featherless

    $10 per month
    Featherless is a provider of AI models, granting subscribers access to an ever-growing collection of Hugging Face models. With the influx of hundreds of new models each day, specialized tools are essential to navigate this expanding landscape. Regardless of your specific application, Featherless enables you to discover and utilize top-notch AI models. Currently, we offer support for LLaMA-3-based models, such as LLaMA-3 and QWEN-2, though it's important to note that QWEN-2 models are limited to a context length of 16,000. We are also planning to broaden our list of supported architectures in the near future. Our commitment to progress ensures that we continually integrate new models as they are released on Hugging Face, and we aspire to automate this onboarding process to cover all publicly accessible models with suitable architecture. To promote equitable usage of individual accounts, concurrent requests are restricted based on the selected plan. Users can expect output delivery rates ranging from 10 to 40 tokens per second, influenced by the specific model and the size of the prompt, ensuring a tailored experience for every subscriber. As we expand, we remain dedicated to enhancing our platform's capabilities and offerings.
  • 37
    Baichuan-13B Reviews

    Baichuan-13B

    Baichuan Intelligent Technology

    Free
    Baichuan-13B is an advanced large-scale language model developed by Baichuan Intelligent, featuring 13 billion parameters and available for open-source and commercial use, building upon its predecessor Baichuan-7B. This model has set new records for performance among similarly sized models on esteemed Chinese and English evaluation metrics. The release includes two distinct pre-training variations: Baichuan-13B-Base and Baichuan-13B-Chat. By significantly increasing the parameter count to 13 billion, Baichuan-13B enhances its capabilities, training on 1.4 trillion tokens from a high-quality dataset, which surpasses LLaMA-13B's training data by 40%. It currently holds the distinction of being the model with the most extensive training data in the 13B category, providing robust support for both Chinese and English languages, utilizing ALiBi positional encoding, and accommodating a context window of 4096 tokens for improved comprehension and generation. This makes it a powerful tool for a variety of applications in natural language processing.
  • 38
    Continue Reviews

    Continue

    Continue

    $0/developer/month
    The leading open-source AI assistant. You can create custom autocomplete experiences and chats by connecting any models to any context. Remove the barriers that hinder productivity when developing software to remain in flow. Accelerate your development with a plug and play system that is easy to use and integrates into your entire stack. Set up your code assistant so that it can evolve with new capabilities. Continue autocompletes entire sections of code or single lines in any programming languages as you type. Ask questions about files, functions, the entire codebase and more by attaching code or context. Highlight code sections, then press the keyboard shortcut to convert code into natural language.
  • 39
    Kimi K2 Reviews
    Kimi K2 represents a cutting-edge series of open-source large language models utilizing a mixture-of-experts (MoE) architecture, with a staggering 1 trillion parameters in total and 32 billion activated parameters tailored for optimized task execution. Utilizing the Muon optimizer, it has been trained on a substantial dataset of over 15.5 trillion tokens, with its performance enhanced by MuonClip’s attention-logit clamping mechanism, resulting in remarkable capabilities in areas such as advanced knowledge comprehension, logical reasoning, mathematics, programming, and various agentic operations. Moonshot AI offers two distinct versions: Kimi-K2-Base, designed for research-level fine-tuning, and Kimi-K2-Instruct, which is pre-trained for immediate applications in chat and tool interactions, facilitating both customized development and seamless integration of agentic features. Comparative benchmarks indicate that Kimi K2 surpasses other leading open-source models and competes effectively with top proprietary systems, particularly excelling in coding and intricate task analysis. Furthermore, it boasts a generous context length of 128 K tokens, compatibility with tool-calling APIs, and support for industry-standard inference engines, making it a versatile option for various applications. The innovative design and features of Kimi K2 position it as a significant advancement in the field of artificial intelligence language processing.
  • 40
    Granite Code Reviews
    We present the Granite series of decoder-only code models specifically designed for tasks involving code generation, such as debugging, code explanation, and documentation, utilizing programming languages across a spectrum of 116 different types. An extensive assessment of the Granite Code model family across various tasks reveals that these models consistently achieve leading performance compared to other open-source code language models available today. Among the notable strengths of Granite Code models are: Versatile Code LLM: The Granite Code models deliver competitive or top-tier results across a wide array of code-related tasks, which include code generation, explanation, debugging, editing, translation, and beyond, showcasing their capacity to handle various coding challenges effectively. Additionally, their adaptability makes them suitable for both simple and complex coding scenarios. Reliable Enterprise-Grade LLM: All models in this series are developed using data that complies with licensing requirements and is gathered in alignment with IBM's AI Ethics guidelines, ensuring trustworthy usage for enterprise applications.
  • 41
    kluster.ai Reviews

    kluster.ai

    kluster.ai

    $0.15per input
    Kluster.ai is an AI cloud platform tailored for developers, enabling quick deployment, scaling, and fine-tuning of large language models (LLMs) with remarkable efficiency. Crafted by developers with a focus on developer needs, it features Adaptive Inference, a versatile service that dynamically adjusts to varying workload demands, guaranteeing optimal processing performance and reliable turnaround times. This Adaptive Inference service includes three unique processing modes: real-time inference for tasks requiring minimal latency, asynchronous inference for budget-friendly management of tasks with flexible timing, and batch inference for the streamlined processing of large volumes of data. It accommodates an array of innovative multimodal models for various applications such as chat, vision, and coding, featuring models like Meta's Llama 4 Maverick and Scout, Qwen3-235B-A22B, DeepSeek-R1, and Gemma 3. Additionally, Kluster.ai provides an OpenAI-compatible API, simplifying the integration of these advanced models into developers' applications, and thereby enhancing their overall capabilities. This platform ultimately empowers developers to harness the full potential of AI technologies in their projects.
  • 42
    Mercury Coder Reviews
    Mercury, the groundbreaking creation from Inception Labs, represents the first large language model at a commercial scale that utilizes diffusion technology, achieving a remarkable tenfold increase in processing speed while also lowering costs in comparison to standard autoregressive models. Designed for exceptional performance in reasoning, coding, and the generation of structured text, Mercury can handle over 1000 tokens per second when operating on NVIDIA H100 GPUs, positioning it as one of the most rapid LLMs on the market. In contrast to traditional models that produce text sequentially, Mercury enhances its responses through a coarse-to-fine diffusion strategy, which boosts precision and minimizes instances of hallucination. Additionally, with the inclusion of Mercury Coder, a tailored coding module, developers are empowered to take advantage of advanced AI-assisted code generation that boasts remarkable speed and effectiveness. This innovative approach not only transforms coding practices but also sets a new benchmark for the capabilities of AI in various applications.
  • 43
    DeepSeek-V2 Reviews
    DeepSeek-V2 is a cutting-edge Mixture-of-Experts (MoE) language model developed by DeepSeek-AI, noted for its cost-effective training and high-efficiency inference features. It boasts an impressive total of 236 billion parameters, with only 21 billion active for each token, and is capable of handling a context length of up to 128K tokens. The model utilizes advanced architectures such as Multi-head Latent Attention (MLA) to optimize inference by minimizing the Key-Value (KV) cache and DeepSeekMoE to enable economical training through sparse computations. Compared to its predecessor, DeepSeek 67B, this model shows remarkable improvements, achieving a 42.5% reduction in training expenses, a 93.3% decrease in KV cache size, and a 5.76-fold increase in generation throughput. Trained on an extensive corpus of 8.1 trillion tokens, DeepSeek-V2 demonstrates exceptional capabilities in language comprehension, programming, and reasoning tasks, positioning it as one of the leading open-source models available today. Its innovative approach not only elevates its performance but also sets new benchmarks within the field of artificial intelligence.
  • 44
    Supernovas AI LLM Reviews
    Supernovas AI serves as a comprehensive, team-oriented AI workspace that grants users uninterrupted access to all major LLMs, such as GPT-4.1/4.5 Turbo, Claude Haiku/Sonnet/Opus, Gemini 2.5 Pro/Pro, Azure OpenAI, AWS Bedrock, Mistral, Meta LLaMA, Deepseek, Qwen, and many others, all via a single, secure interface. This platform includes vital chat functionalities like model access, prompt templates, bookmarks, static artifacts, and integrated web search, complemented by sophisticated features such as the Model Context Protocol (MCP), a talk-to-your-data knowledge base, built-in image creation and editing tools, memory-enabled agents, and the ability to execute code. By streamlining AI tool management, Supernovas AI removes the need for numerous subscriptions and API keys, facilitating quick onboarding and ensuring enterprise-level privacy and collaboration, all from a unified, efficient platform. As a result, teams can focus more on their projects without the hassle of managing disparate tools and resources.
  • 45
    Athene-V2 Reviews
    Nexusflow has unveiled Athene-V2, its newest model suite boasting 72 billion parameters, which has been meticulously fine-tuned from Qwen 2.5 72B to rival the capabilities of GPT-4o. Within this suite, Athene-V2-Chat-72B stands out as a cutting-edge chat model that performs comparably to GPT-4o across various benchmarks; it excels particularly in chat helpfulness (Arena-Hard), ranks second in the code completion category on bigcode-bench-hard, and demonstrates strong abilities in mathematics (MATH) and accurate long log extraction. Furthermore, Athene-V2-Agent-72B seamlessly integrates chat and agent features, delivering clear and directive responses while surpassing GPT-4o in Nexus-V2 function calling benchmarks, specifically tailored for intricate enterprise-level scenarios. These innovations highlight a significant industry transition from merely increasing model sizes to focusing on specialized customization, showcasing how targeted post-training techniques can effectively enhance models for specific skills and applications. As technology continues to evolve, it becomes essential for developers to leverage these advancements to create increasingly sophisticated AI solutions.