Best Causaly Alternatives in 2025
Find the top alternatives to Causaly currently available. Compare ratings, reviews, pricing, and features of Causaly alternatives in 2025. Slashdot lists the best Causaly alternatives on the market that offer competing products that are similar to Causaly. Sort through Causaly alternatives below to make the best choice for your needs
-
1
Genomenon
Genomenon
Pharmaceutical companies require extensive genomic data to effectively implement precision medicine initiatives; however, they frequently rely on merely 10% of the available information for their decisions. Genomenon provides access to the complete dataset. Their Prodigy™ Patient Landscapes offer a streamlined and economical solution for natural history research, aiding the creation of therapies for rare diseases by deepening understanding of both retrospective and prospective health data. Utilizing an advanced AI-driven methodology, Genomenon conducts a thorough evaluation of each patient documented in the medical literature in a significantly reduced timeframe. Ensure you capture all relevant insights by exploring every genomic biomarker featured in published studies. Each scientific claim is substantiated by concrete evidence drawn from the medical literature, allowing researchers to uncover all genetic drivers and identify variants recognized as pathogenic in accordance with ACMG clinical standards, thereby enhancing the development process of targeted therapies. By leveraging this comprehensive approach, pharma companies can enhance their research effectiveness and ultimately improve patient outcomes. -
2
SYNTHIA™ Retrosynthesis software, developed by computer scientists and coded by chemists, allows scientists to quickly and easily navigate novel and innovative pathways for novel and previously published target molecules. You can quickly and efficiently scan hundreds pathways to identify the best options for your needs. Discover the most cost-effective route to your target molecule with the latest visualization and filtering features. You can easily customize the search parameters to eliminate or highlight reactions, reagents, or classes of molecules. Explore innovative and unique syntheses to build your desired molecule. Easy to generate a list for starting materials that are commercially available for your synthesis. ISO/IEC 27001 Information Security Certification will guarantee the confidentiality, integrity and protection of your data.
-
3
BioSymetrics
BioSymetrics
We combine clinical and experimental data through machine learning techniques to explore human disease biology and promote the development of precision medicine. Our innovative Contingent AI™ technology comprehends the intricate relationships present in the data, yielding advanced insights. To combat data bias, we refine our machine learning models based on decisions made during the pre-processing and feature engineering phases. We utilize zebrafish, cellular, and various phenotypic animal models to test and confirm in silico predictions through in vivo experiments, along with genetic modifications conducted both in vitro and in vivo to enhance translation. By employing active learning and computer vision on validated models that focus on cardiac, central nervous system, and rare disorders, we swiftly integrate new data into our machine learning frameworks, allowing for continuous improvement and adaptation in our methodologies. This iterative process not only enhances the accuracy of our predictions but also enables us to stay at the forefront of research in precision medicine. -
4
Recursion
Recursion
We are a biotechnology firm in the clinical stage, dedicated to unraveling biological complexities through the integration of cutting-edge innovations spanning biology, chemistry, automation, machine learning, and engineering, all aimed at revolutionizing drug discovery. Our approach allows for enhanced precision in biological manipulation with advanced techniques like CRISPR genome editing and synthetic biology. We also achieve reliable automation for intricate laboratory processes at an unprecedented scale through the use of sophisticated robotics. By employing neural network architectures, we conduct iterative analyses and draw insights from extensive, intricate datasets generated in-house. Furthermore, we are boosting the adaptability of high-performance computing capabilities through cloud-based solutions. Our initiative harnesses new technologies to foster continuous learning cycles around our datasets, establishing us as a next-generation biopharmaceutical enterprise. This is achieved through a harmonious integration of hardware, software, and data, all dedicated to the industrialization of drug discovery. We are transforming the conventional drug discovery pipeline and boast one of the most extensive, diverse, and in-depth pipelines among technology-driven drug discovery companies. Ultimately, our mission is to enhance the efficiency and effectiveness of drug development, paving the way for breakthrough therapies. -
5
Genedata Biologics
Genedata
Genedata Biologics® enhances the development of biotherapeutics, including bispecifics, ADCs, TCRs, CAR-Ts, and AAVs, providing a comprehensive solution for the industry. Recognized as the leading platform in the field, it seamlessly unifies all discovery workflows, allowing researchers to prioritize genuine innovation. By utilizing a pioneering platform that was purposefully created to digitalize the biotherapeutic discovery process, research can be accelerated significantly. The platform simplifies intricate R&D tasks by facilitating the design, tracking, testing, and evaluation of novel biotherapeutic drugs. It is compatible with various formats, such as antibodies, bi- or multi-specifics, ADCs, innovative scaffolds, and therapeutic proteins, as well as engineered therapeutic cell lines like TCRs and CAR-T cells. Functioning as a comprehensive end-to-end data backbone, Genedata Biologics connects all R&D processes, including library design, immunization, selection and panning, molecular biology, screening, protein engineering, expression, purification, and protein analytics, ultimately leading to thorough assessments of candidate developability and manufacturability. This holistic integration ensures that researchers can make informed decisions and push the boundaries of biotherapeutic innovation effectively. -
6
BIOVIA Discovery Studio
Dassault Systèmes
The biopharmaceutical sector today is characterized by its intricacy, driven by increasing demands for enhanced specificity and safety, the emergence of new treatment classes, and the complexity of disease mechanisms. To navigate this intricate landscape, a profound comprehension of therapeutic dynamics is essential. Advanced modeling and simulation techniques offer a distinctive approach to investigate biological and physicochemical phenomena at the atomic scale. This methodology not only informs physical experimentation but also expedites the drug discovery and development phases. BIOVIA Discovery Studio integrates more than three decades of peer-reviewed research with cutting-edge in silico methodologies, including molecular mechanics, free energy assessments, and biotherapeutics developability, all within a unified framework. By equipping researchers with a comprehensive suite of tools, it facilitates a deeper examination of protein chemistry, thereby accelerating the discovery of both small and large molecule therapeutics, from Target Identification all the way through to Lead Optimization. Ultimately, this synergy of research and technology underscores the vital role of innovative tools in transforming biopharmaceutical advancements. -
7
NVIDIA Clara
NVIDIA
Clara provides specialized tools and pre-trained AI models that are driving significant advancements across various sectors, such as healthcare technologies, medical imaging, pharmaceutical development, and genomic research. Delve into the comprehensive process of developing and implementing medical devices through the Holoscan platform. Create containerized AI applications using the Holoscan SDK in conjunction with MONAI, and enhance deployment efficiency in next-gen AI devices utilizing the NVIDIA IGX developer kits. Moreover, the NVIDIA Holoscan SDK is equipped with acceleration libraries tailored for healthcare, alongside pre-trained AI models and sample applications designed for computational medical devices. This combination of resources fosters innovation and efficiency, positioning developers to tackle complex challenges in the medical field. -
8
BioNeMo
NVIDIA
BioNeMo is a cloud service and framework for drug discovery that leverages AI, built on NVIDIA NeMo Megatron, which enables the training and deployment of large-scale biomolecular transformer models. This service features pre-trained large language models (LLMs) and offers comprehensive support for standard file formats related to proteins, DNA, RNA, and chemistry, including data loaders for SMILES molecular structures and FASTA sequences for amino acids and nucleotides. Additionally, users can download the BioNeMo framework for use on their own systems. Among the tools provided are ESM-1 and ProtT5, both transformer-based protein language models that facilitate the generation of learned embeddings for predicting protein structures and properties. Furthermore, the BioNeMo service will include OpenFold, an advanced deep learning model designed for predicting the 3D structures of novel protein sequences, enhancing its utility for researchers in the field. This comprehensive offering positions BioNeMo as a pivotal resource in modern drug discovery efforts. -
9
Cure AI
Cure AI
$15 per monthCure AI represents a cutting-edge medical research platform that harnesses the power of artificial intelligence to grant users access to an extensive library of over 26 million scientific publications sourced from PubMed. With its AI-driven natural language processing capabilities, users can pose research questions in a conversational manner, which the system accurately decodes to return specific and relevant results. It also boasts sophisticated search filters that allow users to narrow down findings by factors such as journal, date of publication, and various other criteria, catering to individual research requirements. Additionally, Cure AI evaluates evidence based on its quality and significance, taking into account metrics like the journal's h5-index, citation tally, and the type of publication, thereby ensuring users obtain the most relevant and credible information available. The platform further enhances user experience by allowing easy transitions between AI-generated insights and original literature, streamlining the process of literature review and analysis. Moreover, it comes equipped with convenient citation tools that enable users to quickly copy or share references with just one click, simplifying the documentation process. Finally, the intuitive design of Cure AI encourages researchers to explore new avenues of inquiry with confidence and ease. -
10
SpliceCore
Envisagenics
Harnessing RNA sequencing (RNA-seq) data alongside Artificial Intelligence presents both a crucial necessity and a significant opportunity for creating therapies aimed at correcting splicing errors. By leveraging machine learning, we can uncover novel splicing errors and swiftly formulate therapeutic compounds to address them. Our AI platform, SpliceCore, is specifically designed for discovering RNA therapeutics. This cutting-edge technology focuses on analyzing RNA sequencing data with unparalleled efficiency. It can swiftly identify, evaluate, and validate potential drug targets, outpacing traditional methodologies. Central to SpliceCore is our unique repository containing over 5 million potential RNA splicing errors, making it the largest of its kind globally and instrumental for testing any RNA sequencing dataset submitted for analysis. The integration of scalable cloud computing allows us to handle vast quantities of RNA sequencing data in a way that is not only efficient but also cost-effective, significantly speeding up the pace of therapeutic advancements. This innovative approach promises to revolutionize the landscape of RNA therapeutics. -
11
Healnet
Healx
Rare diseases often lack comprehensive research, resulting in insufficient knowledge about essential elements for an effective drug discovery initiative. Our innovative AI platform, Healnet, addresses these issues by scrutinizing vast amounts of drug and disease data to uncover new connections that may lead to potential treatments. Utilizing cutting-edge technologies throughout the discovery and development process allows us to operate multiple phases simultaneously and on a large scale. The conventional approach of focusing on a single disease, target, and drug is overly simplistic, yet it remains the standard for most pharmaceutical companies. The future of drug discovery is driven by AI, characterized by parallel processes and an absence of rigid hypotheses, fundamentally integrating the three core paradigms of drug discovery into a cohesive strategy. This new paradigm not only enhances efficiency but also fosters creativity in developing solutions for complex health challenges. -
12
Dotmatics
Dotmatics
Dotmatics is the global leader in R&D scientific software that connects science, data, and decision-making. More than 2 million scientists and 10,000 customers trust Dotmatics to accelerate research and help make the world a healthier, cleaner, and safer place to live. -
13
Iktos
Iktos
Makya stands out as the pioneering user-centric SaaS platform dedicated to AI-enhanced de novo drug design, particularly emphasizing Multi-Parametric Optimization (MPO). This innovative tool empowers users to create novel and easily synthesize compounds based on a multi-objective framework, achieving unprecedented levels of speed, efficiency, and variety. Makya incorporates a range of generative algorithms tailored to various stages of drug development, from hit discovery to lead optimization; it includes a fine-tuning generator for pinpointing ideal solutions within your specified chemical landscape, a novelty generator designed to explore fresh concepts for re-scaffolding and hit discovery, and a forward generator to create a targeted library of compounds that can be readily synthesized from commercially available starting materials. The recently introduced Makya 3D module significantly improves both the user interface and the scientific capabilities of the platform. With a comprehensive array of 3D modeling functionalities available for both ligand-based and structure-based approaches, Makya 3D allows for the calculation of 3D scores, which can be seamlessly utilized to guide compound generation within the platform. This integration not only enhances the design process but also offers researchers deeper insights into their molecular designs. -
14
Schrödinger
Schrödinger
Revolutionize the fields of drug discovery and materials research through cutting-edge molecular modeling techniques. Our computational platform, grounded in physics, combines unique solutions for predictive modeling, data analysis, and collaboration, facilitating swift navigation of chemical space. This innovative platform is employed by leading industries globally, serving both drug discovery initiatives and materials science applications across various sectors including aerospace, energy, semiconductors, and electronic displays. It drives our internal drug discovery projects, overseeing processes from target identification through hit discovery and lead optimization. Additionally, it enhances our collaborative research efforts aimed at creating groundbreaking medicines to address significant public health challenges. With a dedicated team of over 150 Ph.D. scientists, we commit substantial resources to research and development. Our contributions to the scientific community include more than 400 peer-reviewed publications that validate the efficacy of our physics-based methodologies, and we remain at the forefront of advancing computational modeling techniques. We are steadfast in our mission to innovate and expand the possibilities within our field. -
15
AIDDISON
Merck KGaA
AIDDISON™ is an innovative drug discovery software that harnesses the capabilities of artificial intelligence (AI), machine learning (ML), and advanced 3D computer-aided drug design (CADD) techniques, serving as an essential resource for medicinal chemistry applications. This comprehensive platform streamlines both ligand-based and structure-based drug design, effectively merging all components necessary for virtual screening while also facilitating in-silico lead discovery and optimization processes. By leveraging these cutting-edge technologies, AIDDISON™ significantly enhances the efficiency and effectiveness of the drug development pipeline. -
16
Atomwise
Atomwise
Our innovative AI engine is revolutionizing the drug discovery process, enabling the creation of superior medications at an accelerated pace. The breakthroughs we achieve contribute to the development of medicines more efficiently and effectively. Our portfolio of AI-driven discoveries encompasses entirely owned and collaboratively developed pipeline assets, supported by leading investors in the industry. Atomwise has engineered a cutting-edge machine-learning discovery platform that merges the capabilities of convolutional neural networks with extensive chemical libraries to identify new small-molecule treatments. The key to transforming drug discovery through AI lies in our talented team. We are committed to enhancing our AI platform and leveraging it to revolutionize the discovery of small molecule drugs. It is essential that we confront the most daunting and seemingly insurmountable targets, streamlining the entire drug discovery process to provide developers with increased opportunities for success. Enhanced computational efficiency allows us to screen trillions of compounds virtually, significantly boosting the chances of finding viable solutions. Our impressive model accuracy has successfully addressed the persistent issue of false positives, underscoring the reliability of our approach. Ultimately, our dedication to innovation and excellence sets us apart in the quest for breakthrough therapies. -
17
Mass Dynamics
Mass Dynamics
Uncover biological markers, generate insights into the mechanisms of disease, identify novel pharmaceuticals, or detect variations in protein concentrations through a meticulously structured series of experiments. We have simplified the process of harnessing the potential of mass spectrometry and proteomics, enabling you to concentrate on the intricacies of biology and advance toward groundbreaking discoveries. Our automated and consistent workflow facilitates faster initiation and completion of experiments, granting you the authority and adaptability to make timely decisions. By prioritizing biological insights and fostering collaborative efforts, our scalable proteomics data processing system is designed for repeated use. We have delegated intensive and repetitive tasks to the cloud, ensuring a smooth and satisfying experience. Our sophisticated proteomics workflow effectively integrates numerous complex elements, allowing for the efficient analysis and processing of larger-scale experiments, ultimately enhancing the research journey. Thus, with our innovative approach, researchers can now delve deeper into the molecular landscape and achieve more significant breakthroughs than ever before. -
18
BIOiSIM
VERISIMLife
BIOiSIMTM represents a groundbreaking 'virtual drug development engine' that significantly enhances the drug development sector by effectively identifying drug compounds that are most likely to provide meaningful therapeutic benefits for various diseases or conditions. We provide an array of translational solutions that are tailored to meet the specific needs of your pre-clinical and clinical initiatives. Central to our offerings is the highly validated BIOiSIMTM platform, which supports the development of small molecules, large molecules, and viruses. This innovative platform is underpinned by extensive data derived from thousands of compounds across seven different species, resulting in a level of robustness that is uncommon in the field. Emphasizing human health outcomes, the heart of the platform features a translatability engine that seamlessly converts insights gained from different species. Importantly, the BIOiSIMTM platform can be deployed prior to the initiation of preclinical animal trials, facilitating earlier insights and potentially reducing the costs associated with outsourced experimentation. By integrating these advanced capabilities, we aim to streamline the drug development process and accelerate the journey from discovery to market. -
19
AlphaFold
DeepMind
Proteins, which are remarkably complex machines, play a crucial role not only in the biological functions of your body but also in every living organism's processes. They serve as the fundamental units of life. As of now, there are approximately 100 million identified proteins, with discoveries being made regularly. Each protein possesses a distinctive three-dimensional shape that is essential to its functionality and purpose. However, determining a protein's precise structure is often a costly and lengthy endeavor, resulting in an understanding of only a small percentage of the proteins recognized by science. Addressing this growing disparity and developing methods to predict the structures of millions of yet-to-be-discovered proteins could significantly advance our ability to combat diseases, expedite the discovery of new treatments, and potentially unveil the secrets of life's mechanisms. The implications of such advancements could transform both medicine and our understanding of biology. -
20
Scitara DLX
Scitara
Scitara DLX™ provides a swift connectivity framework suitable for any instrument found within life science laboratories, all while operating on a cloud-based platform that is both compliant and auditable. As a versatile digital data infrastructure, Scitara DLX™ facilitates connections between various instruments, resources, applications, and software utilized in the lab. The comprehensive cloud system ensures that all data sources are interconnected, promoting seamless data movement across numerous endpoints. Consequently, researchers can concentrate on their scientific endeavors instead of being bogged down by data-related challenges. Moreover, DLX intelligently curates and corrects data as it is processed, fostering the creation of accurate and well-organized data models that are essential for enhancing AI and ML systems. This robust approach plays a vital role in advancing digital transformation strategies within the pharmaceutical and biopharmaceutical sectors. By unlocking valuable insights from scientific data, the platform accelerates decision-making processes in drug discovery and development, ultimately aiding in the expedited launch of new medications into the market. Additionally, the integration of such a sophisticated infrastructure not only streamlines workflows but also enhances collaboration among researchers, paving the way for innovative solutions in the life sciences field. -
21
3decision
Discngine
3decision® serves as a cloud-based repository for protein structures, focusing on efficient management of structural data and offering sophisticated analytics to support teams involved in the discovery of small molecules and biologics, thereby expediting the process of structure-based drug design. The platform consolidates and standardizes both experimental and computational protein structures sourced from publicly available databases such as RCSB PDB and AlphaFoldDB, in addition to proprietary datasets, and accommodates formats like PDBx/mmCIF and ModelCIF. This comprehensive approach guarantees seamless access to a variety of structural formats including X-Ray, NMR, cryo-EM, and modeled structures, thereby promoting collaboration and bolstering research initiatives. In addition to its storage capabilities, 3decision® enhances each entry with valuable metadata and sequence information, which encompasses details on protein-ligand interactions, antibody annotations, and specifics about binding sites. Equipped with advanced analytical instruments, the platform is capable of pinpointing druggable sites, evaluating off-target risks, and facilitating comparisons of binding sites, which collectively transform extensive structural datasets into practical insights that can drive research forward. Furthermore, its cloud-based architecture fosters enhanced collaboration among research teams, making it easier for scientists to share findings and insights, ultimately leading to more innovative approaches in drug discovery and development. -
22
DNAnexus Apollo
DNAnexus
DNAnexus Apollo™ enhances the efficiency of precision drug discovery by fostering collaboration that extracts valuable insights from omics data. The process of precision drug discovery involves the aggregation and examination of vast amounts of omics and clinical information. These extensive datasets serve as valuable assets; however, many traditional and custom-built informatics tools struggle to manage their intricacies and scale. Additionally, the effectiveness of precision medicine initiatives can be hindered by fragmented data sources, inadequate collaboration tools, and the challenges posed by complex, evolving regulatory and security demands. By enabling scientists and clinicians to jointly investigate and interpret omics and clinical data within a unified framework, DNAnexus Apollo™ bolsters precision drug discovery efforts. This platform, which is powered by a resilient and scalable cloud infrastructure, facilitates the seamless and secure sharing of data, tools, and analyses among peers and collaborators, regardless of whether they are nearby or across the globe. Ultimately, Apollo not only streamlines the data-sharing process but also enhances the overall collaborative experience in the pursuit of innovative drug discoveries. -
23
Discngine Assay
Discngine
Discngine Assay serves as a comprehensive laboratory informatics platform that unifies all stages of plate-based assays into a streamlined, compliant, and effective workflow, proving to be a vital resource for screening research laboratories. This platform empowers researchers to optimize their entire High Throughput Screening process, encompassing everything from managing samples and analyzing assay data to data storage and qualifying liquid handling instruments. With its user-friendly interface and powerful API, Discngine Assay integrates effortlessly with laboratory equipment and the existing IT infrastructure, facilitating effective data collection and processing. Tailored to expedite the discovery of new molecules, it meets the requirements of the pharmaceutical, biotech, and contract research organization sectors, thereby promoting collaboration and fostering innovation within life sciences research. Furthermore, its ability to adapt to various laboratory environments makes it a versatile solution for evolving research demands. -
24
Eidogen-Sertanty Target Informatics Platform (TIP)
Eidogen-Sertanty
Eidogen-Sertanty's Target Informatics Platform (TIP) stands out as the pioneering structural informatics system and knowledgebase that empowers researchers to explore the druggable genome through a structural lens. By harnessing the burgeoning wealth of experimental protein structure data, TIP revolutionizes structure-based drug discovery, shifting it from a limited, low-throughput field to a dynamic and data-rich scientific discipline. It is specifically designed to connect the realms of bioinformatics and cheminformatics, providing drug discovery scientists with a repository of insights that are not only unique but also highly synergistic with the information available from traditional bio- and cheminformatics tools. The platform's innovative combination of structural data management with advanced target-to-lead calculation and analytical capabilities significantly enhances every phase of the drug discovery process. With TIP, researchers are better equipped to navigate the complexities of drug development and make informed decisions. -
25
VeraChem
VeraChem
Founded in 2000, VeraChem LLC aims to enhance the field of computer-aided drug discovery and molecular design by creating advanced computational chemistry techniques that merge innovative basic science with practical applications in research. A key aspect of the company's strategy for product development lies in delivering efficient, high-performance software solutions along with extensive user support. Among the current capabilities of VeraChem's software are predictions for protein-ligand and host-guest binding affinities, rapid and precise calculations of partial atomic charges for drug-like molecules, and the computation of energies and forces utilizing widely-used empirical force fields. Additionally, the software features automatic generation of alternate resonance forms for drug-like compounds, a robust conformational search enabled by the Tork algorithm, and the automatic identification of topological and three-dimensional molecular symmetries. The modular code base of VeraChem’s software packages allows for flexibility and adaptability in meeting diverse research needs, ensuring that users can leverage these tools effectively for their specific applications. -
26
Genedata Imagence
Genedata
Genedata Imagence® provides a platform for training deep neural networks that classify cellular phenotypes in high-content screening (HCS) images, ensuring that the results are both unbiased and of superior quality. By automating the analysis process, it enables assay biologists to harness the capabilities of deep learning algorithms effectively. With Genedata Imagence, biologists can analyze HCS imaging data in real-time using advanced deep learning methods, all without requiring extensive knowledge of the underlying algorithms. This eliminates the complexity often associated with data analysis, as the user-friendly interface of Genedata Imagence facilitates quality control and data exploration throughout the entire workflow. As a result, researchers can focus on deriving insights rather than getting lost in intricate coding. -
27
AQBioSim
SandboxAQ
AQBioSim is an innovative cloud-based platform created by SandboxAQ that utilizes Large Quantitative Models (LQMs) based on principles of physics and chemistry to transform the processes of material discovery and optimization. By combining techniques such as Density Functional Theory (DFT), Iterative Full Configuration Interaction (iFCI), Generative AI, Bayesian Optimization, and Chemical Foundation Models, AQBioSim facilitates highly accurate simulations of molecular and material behaviors in real-world scenarios. Among its numerous features, AQBioSim can predict performance under various stressors, enhance formulation processes through in silico testing, and investigate eco-friendly chemical methods. A standout achievement of AQBioSim lies in its remarkable progress in battery technology, where it has cut the time needed for lithium-ion battery end-of-life predictions by an astonishing 95%, while also attaining 35 times greater accuracy using only 50 times less data. This platform thus not only accelerates material innovation but also significantly contributes to advancements in sustainable energy solutions. -
28
Amazon Neptune
Amazon
Amazon Neptune is an efficient and dependable graph database service that is fully managed, facilitating the development and operation of applications that handle intricate, interconnected datasets. At its heart, Amazon Neptune features a specialized, high-performance database engine tailored for the storage of billions of relationships while enabling rapid querying with latency measured in milliseconds. It accommodates widely-used graph models, including Property Graph and W3C's RDF, along with their associated query languages, Apache TinkerPop Gremlin and SPARQL, which simplifies the process of crafting queries for navigating complex datasets. This service supports various graph-based applications, including recommendation systems, fraud detection mechanisms, knowledge graphs, drug discovery initiatives, and enhanced network security protocols. With a proactive approach, it enables the detection and analysis of IT infrastructure threats through a multi-layered security framework. Furthermore, it allows users to visualize their entire infrastructure to effectively plan, forecast, and address potential risks, while also enabling the creation of graph queries for the near-real-time identification of fraudulent patterns in financial and purchasing activities, thereby enhancing overall security and efficiency. -
29
Genospace
Genospace
At Genospace, we recognize that the evolution of precision medicine is being propelled by advancements in genomics, yet the challenge of effectively scaling its implementation remains unresolved. Our mission is to bridge this gap. Our innovative platform aims to transform biomedical data into valuable insights that are easily accessible for all, particularly for those actively involved in delivering care. Equip your clinicians and researchers with essential information that empowers them to make well-informed choices while participating in our goal of utilizing intricate molecular data to enhance patient outcomes and speed up the processes of drug development and research. In this context, the significance of large-scale population data for drug discovery and research cannot be overstated. Utilize cohort-driven analyses through the Genospace platform to support your research initiatives. We have a strong focus on clinical trial research, enabling the Genospace platform to seamlessly align fragmented patient information with intricate trial requirements, thus facilitating quicker patient recruitment. Furthermore, our platform is designed to integrate genomic medicine into standard clinical care practices, making it easier than ever to harness the power of genomics in everyday healthcare. Together, we can push the boundaries of what’s possible in patient care and research. -
30
Elucid
Elucid
Enhance patient care by using the only objective, quantitative arterial analysis software validated through histology and based on CTA technology. This innovative tool employs ground-truth histological data to reveal the origins of myocardial ischemia, helping to assess risks for heart attacks and strokes. These critical events are often driven by unstable, non-obstructive plaques within the arteries that remain undetected and unaddressed. Traditional non-invasive diagnostic methods fall short, as they cannot penetrate deep into the arterial walls where heart disease begins to manifest. Elucid is leveraging advanced scientific imaging alongside artificial intelligence to facilitate rapid, reliable, and non-invasive diagnoses, ultimately leading to tailored treatment strategies for cardiovascular conditions and improved patient outcomes. With this histology-validated software, you can evaluate plaque composition and determine the risks of heart attacks and strokes with unmatched precision. This comprehensive, objective visualization of arterial health empowers healthcare providers to devise customized treatment approaches well before a patient arrives for hospital care, significantly enhancing the quality of healthcare delivery. -
31
Curi
Curi Bio
Mantarray revolutionizes the early phases of preclinical drug testing by integrating functional data with advanced technologies. By enabling simultaneous analysis of 3D engineered muscle tissues that exhibit adult-like functional characteristics, Mantarray facilitates the identification, safety assessment, and effectiveness evaluation of new therapeutics. With an impressive tissue formation success rate exceeding 95%, the Mantarray Plate Kit ensures consistent and reproducible engineered tissues across 24 wells. This innovative platform offers a user-friendly, scalable, and adaptable solution that empowers researchers to analyze 3D tissues in vitro right within their labs. Early adopters can take advantage of this groundbreaking instrument. The Mantarray system employs a unique magnetic sensing method that accurately detects the contractions of engineered muscle tissues (EMTs), allowing users to assess the contractility of 24 tissues simultaneously and in real time, greatly enhancing throughput. Moreover, the accompanying software simplifies the process by eliminating the need for manual contractility calculations, thus streamlining the research workflow. Overall, Mantarray not only improves the efficiency of drug discovery but also enhances the reliability of data obtained during preclinical studies. -
32
Owkin
Owkin
Individuals globally are plagued by intricate illnesses and a wide array of symptoms. Yet, they all have one crucial requirement in common: the urgent demand for the quicker creation of safer and more efficient treatments. Owkin’s goal is to enable researchers in hospitals, universities, and pharmaceutical firms to comprehend the reasons behind variations in drug effectiveness among patients, streamline the drug development process, and pinpoint the optimal medication for each individual to enhance therapeutic results. Central to Owkin's research ecosystem is Owkin Loop, which links medical researchers with high-quality datasets sourced from top academic research institutions worldwide. This innovative platform is driven by two primary elements of Owkin's Software Stack: Owkin Studio, a machine learning platform, and Owkin Connect, which serves as a federated learning framework. Additionally, Owkin is actively engaged in medical research collaborations across various fields, including Oncology, Immunology, and Cardiovascular diseases, showcasing the breadth of its commitment to improving patient care. Their collaborative efforts reflect a dedication to transforming healthcare through advanced technology and data-driven insights. -
33
Nautilus LIMS
Thermo Fisher Scientific
To expedite innovative breakthroughs and swiftly bring products to market, research and development alongside manufacturing facilities must adapt and modify their processes in real time. Data management should never become a hindrance in this dynamic landscape. The Thermo Scientific™ Nautilus LIMS™ for Dynamic Discovery and R&D Environments, co-developed with clients operating in rapid R&D contexts, offers a highly adaptable and user-friendly system that enhances workflow efficiency, increases throughput, and ensures data accuracy while streamlining administrative tasks, sample tracking, and adherence to regulatory standards. Its automated management of intricate boards and specialized graphics tools simplifies data oversight, allowing even less experienced users to easily identify and monitor processes. Clients are empowered to design workflows, track the life cycles of samples, and automate interactions across various platforms while seamlessly incorporating regulated protocols that conform to good laboratory practices and the 21 CFR Part 11 regulations. This innovative approach not only fosters a more efficient research environment but also encourages collaboration and creativity among teams. -
34
Bruker Drug Discovery
Bruker
The process of introducing a new medication to the market, starting from initial development to the final launch, is both time-intensive and heavily regulated, often spanning over a decade or more. Achieving success in this endeavor hinges on the timely availability of precise analytical data, which is essential for making informed decisions during the early stages of development and reducing the likelihood of setbacks later on. Modern drug development primarily follows a systematic approach, with the crucial first step usually being the identification of a biological target to concentrate efforts on. This target identification demands a comprehensive understanding of the characteristics of the candidates, enabling swift and reliable identification of the most promising options. After establishing a biological target, the next significant hurdle is identifying the most advantageous lead molecules, which entails discovering potential drug candidates—these may include small organic compounds or biological constructs with therapeutic capabilities. Thus, the entire journey from concept to market is a complex interplay of scientific insight and strategic decision-making. -
35
CDD Vault
Collaborative Drug Discovery
CDD Vault allows you to intuitively organize chemical structures, biological study data, as well as collaborate with external or internal partners via a simple web interface. Start a free trial to see how easy it can be to manage drug discovery data. Tailored for You Affordable Scales with your project team Activity & Registration * Electronic Lab Notebook * Visualization * Inventory * APIs -
36
ChemDraw
PerkinElmer
Since its inception in 1985, ChemDraw® solutions have delivered exceptional features and integrations that allow users to swiftly convert their concepts and sketches into impressive publications. ChemOffice+ Cloud serves as a comprehensive suite for chemistry communication, transforming chemical illustrations into valuable knowledge by streamlining the management, reporting, and presentation of chemistry research. This powerful suite is specifically designed to enhance and expedite communication within the field of chemistry. Building upon the foundation of ChemDraw Professional, ChemOffice+ Cloud offers a wide range of advanced tools that support scientific inquiry and collaboration. The once tedious process of drafting reports for chemical research is now significantly more efficient thanks to ChemOffice+ Cloud. With its robust capabilities for searching, reusing, selecting, and organizing chemical structures and data, chemists can effortlessly create polished PowerPoint presentations and manuscripts, making their work more accessible and impactful. This transformation not only saves time but also elevates the overall quality of research dissemination in the scientific community. -
37
Kaleido
Kaleido
The microbiome plays a significant role in various diseases and health issues. Discover how Kaleido is pioneering a unique method to transform the potential of the microbiome into effective patient solutions. Comprising over 30 trillion microbes, the human microbiome includes a diverse array of organisms such as bacteria, viruses, archaea, and fungi that inhabit both the exterior and interior of the human body. In recent years, there has been a remarkable surge in research focusing on the microbiome's influence on human health, linking it to conditions such as cardiovascular disease, cancer, diabetes, Parkinson’s disease, and allergies. This intricate microbial community has been likened to a "newly discovered organ," highlighting its significance. Just as many human organs command substantial investments for therapies that modify physiology, the microbiome represents a largely unexplored territory in the realm of healthcare. Addressing this frontier could unlock new therapeutic avenues and enhance overall health outcomes. -
38
Metabolon
Metabolon
At Metabolon, we proudly provide the most extensive Level 1 library in the metabolomics field. Our unique library has been meticulously developed and refined over two decades, boasting more than 5,400 entries. The majority of these entries are classified as Level 1, comprising roughly 85% (around 4,600 entries); however, about 15% of the library consists of Level 2 entries (approximately 800 entries), which are categorized as such due to the unavailability of commercial standards necessary for Level 1 classification. Thanks to our unparalleled library size and exceptional annotation confidence, Metabolon offers precise and highly actionable insights tailored to our clients’ scientific or clinical needs. The applications of metabolomics span a broad spectrum of research areas, including soil health, nutritional studies, preclinical investigations, and clinical trials. Whether you're identifying trends within a population or fine-tuning an individual's treatment plan, metabolomics serves as a powerful tool to uncover crucial answers to pressing questions in various fields. With such extensive resources at your disposal, the potential for discovery is truly limitless. -
39
LiveDesign
Schrödinger
LiveDesign serves as an integrated informatics solution that empowers teams to accelerate their drug discovery initiatives through collaborative design, experimentation, analysis, tracking, and reporting on a unified platform. It allows for the collection of innovative ideas alongside experimental and modeling data seamlessly. Users can develop and archive new virtual compounds within a centralized repository, assess them with sophisticated models, and prioritize the most promising designs. By merging biological data and model outputs from various corporate databases, the platform leverages advanced cheminformatics to provide a comprehensive analysis of all information simultaneously, facilitating quicker compound development. The platform employs cutting-edge physics-based methodologies along with machine learning to enhance prediction accuracy significantly. Teams can collaborate in real-time, regardless of location, enabling them to share concepts, conduct tests, make revisions, and progress chemical series while maintaining a clear record of their work. This not only fosters innovation but also ensures that projects remain organized and efficient throughout the drug discovery process. -
40
InSilicoTrials
InSilicoTrials
InSilicoTrials.com is an online platform that offers a user-friendly environment for computational modeling and simulation, featuring a range of integrated, easy-to-navigate in silico tools. It primarily serves professionals in the medical device and pharmaceutical industries. The in silico tools designed for medical devices facilitate computational testing across various biomedical fields, including radiology, orthopedics, and cardiovascular health, during the stages of product design, development, and validation. For the pharmaceutical industry, the platform grants access to in silico tools that support all phases of drug discovery and development across diverse therapeutic areas. We have developed a unique cloud-based platform grounded in crowdscience principles, allowing users to efficiently utilize validated models and reduce their R&D expenses. Additionally, users can explore a continuously expanding catalog of models available for use on a pay-per-use basis, ensuring flexibility and accessibility for their research needs. -
41
StarDrop
Optibrium
StarDrop™, a comprehensive suite of integrated software, delivers the best in silico technology within a highly visual interface. StarDrop™, which allows seamless flow between the latest data, predictive modeling, and decision-making regarding the next round or synthesis, improves the speed, efficiency and productivity of the discovery process. A balance of different properties is essential for successful compounds. StarDrop™, which guides you through the multi-parameter optimization challenge, helps you target compounds with the highest chance of success. It also saves you time and resources by allowing you to synthesize fewer compounds and test them less often. -
42
Simulations Plus
Simulations Plus
We have established ourselves as frontrunners in the fields of ADMET property prediction, physiologically-based pharmacokinetics (PBPK) modeling, pharmacometrics, and quantitative systems pharmacology/toxicology, a status achieved through the achievements our clients have experienced while partnering with us. Leveraging over two decades of expertise, our skilled team excels at transforming complex scientific concepts into accessible software solutions, while also offering specialized consulting services that bolster drug discovery, clinical development research, and regulatory submission processes. Our dedication to client success drives our continuous improvement and innovation in these critical areas. -
43
NoviSight 3D
Olympus
NoviSight 3D cell analysis software enhances your research by delivering statistical insights for spheroids and various 3D structures in microplate experiments. This software allows for the quantification of cellular activity in three dimensions, facilitating the capture of infrequent cellular occurrences, providing precise cell counts, and boosting detection sensitivity. Featuring an intuitive user interface, NoviSight equips you with essential tools for recognition, analysis, and statistical evaluation. Its True 3D technology simplifies the assessment of sample morphology, allowing for the measurement of various parameters such as volume and sphericity of spheroids or cell nuclei. Additionally, it enables the examination of physiologically relevant 3D cell models, thereby accelerating your research processes. The software is capable of analyzing objects of interest to yield morphology and spatiotemporal parameters within a 3D context. Furthermore, it can detect a range of entities, from entire structures to subcellular components, and assess changes occurring in spheroids, ultimately contributing to a deeper understanding of cellular dynamics. This comprehensive analysis ultimately supports researchers in their quest to uncover critical biological insights. -
44
BC Platforms
BC Platforms
BC platforms harnesses cutting-edge scientific advancements, innovative technological capabilities, and strategic alliances to transform drug discovery and tailor healthcare solutions. Our platform is modular and highly adaptable, designed for integrating healthcare data effectively. With an open analytics framework, we seamlessly merge the most recent innovative methods and technology advancements into a single, cohesive platform. We prioritize security, holding ISO 27001 certification alongside compliance with GDPR and HIPAA regulations. Our comprehensive product suite empowers a contemporary healthcare system to fully adopt personalized medicine approaches. Our scalable deployment options support everything from initial setups to expansive healthcare operations. By offering a unique end-to-end toolbox, we facilitate the expedited application of research findings in clinical settings. Moreover, we strive to minimize your risks, enhance the value of your pipeline, and advance your enterprise data strategy by overcoming data access challenges and enabling swift insights. In doing so, we aim to foster a health ecosystem that is both responsive and forward-thinking. -
45
Gritstone
Gritstone bio
The foundational aspect of our immunotherapy approach lies in our comprehension of antigens and neoantigens, particularly in identifying which variations will be transcribed, translated, processed, and subsequently displayed on the surface of cells via Human leukocyte antigen (HLA) molecules, thus making them recognizable to T cells. We achieve this by employing Gritstone EDGETM, a unique platform powered by machine learning. Creating cancer immunotherapies that incorporate tumor-specific neoantigens proves challenging, mainly because tumors consist of numerous mutations, yet only a fraction of these lead to genuine tumor-specific neoantigens. To tackle this complexity, we have developed EDGE's cutting-edge integrated neural network model, trained with millions of data points gathered from a diverse range of tumor and normal tissue samples across various patient ancestries. This extensive training allows us to enhance the accuracy of neoantigen identification and improve the effectiveness of our immunotherapy strategies.