Best CST Studio Suite Alternatives in 2025
Find the top alternatives to CST Studio Suite currently available. Compare ratings, reviews, pricing, and features of CST Studio Suite alternatives in 2025. Slashdot lists the best CST Studio Suite alternatives on the market that offer competing products that are similar to CST Studio Suite. Sort through CST Studio Suite alternatives below to make the best choice for your needs
-
1
EMWorks
EMWorks
EMWorks offers top-tier electromagnetic simulation software designed for electrical and electronics engineering, incorporating multiphysics features. Their solutions are fully integrated into SOLIDWORKS and Autodesk Inventor®, catering to a wide range of applications such as electromechanical systems, power electronics, antennas, RF and microwave components, as well as ensuring power and signal integrity in high-speed interconnects. One of their flagship products, EMS, serves as a powerful tool for simulating and optimizing electromagnetic and electromechanical devices like transformers, electric motors, actuators, and sensors within the SOLIDWORKS® and Autodesk® Inventor® environments. Additionally, EMWorks2D is a specialized 2D electromagnetic simulation software that focuses on planar and axis-symmetric geometries, also fully embedded in SOLIDWORKS, allowing users to perform quick simulations prior to transitioning to 3D models. This functionality not only enhances the design process but also accelerates overall product development, making it easier for engineers to refine their designs efficiently. By leveraging these advanced tools, users can achieve optimal performance in their electronic designs while saving valuable time in the engineering workflow. -
2
Ansys Motor-CAD
Ansys
Ansys Motor-CAD serves as a specialized tool for the design of electric machines, facilitating rapid multiphysics simulations throughout the entire torque-speed operating range. It allows design engineers to assess various motor configurations and concepts to create designs that maximize performance, efficiency, and compactness. With its four integrated modules—EMag, Therm, Lab, and Mech—Motor-CAD enables quick and iterative multiphysics calculations, significantly reducing the time from initial concept to finalized design. This efficiency in calculations and streamlined data input processes provides users with the opportunity to investigate a broader array of motor topologies and thoroughly evaluate the effects of advanced loss mechanisms in the early phases of electromechanical design. The latest release boasts enhanced capabilities for design optimization, multiphysics analysis, and system modeling tailored specifically for electric motors, ensuring that engineers have the tools they need for cutting-edge development. Ultimately, Motor-CAD's fast multiphysics simulation capabilities across the full torque-speed range empower engineers to innovate and refine electric motor designs with unprecedented efficiency. -
3
Ansys HFSS
Ansys
Ansys HFSS is a versatile 3D electromagnetic (EM) simulation tool used for the design and analysis of high-frequency electronic devices such as antennas, interconnects, connectors, integrated circuits (ICs), and printed circuit boards (PCBs). This powerful software allows engineers to create and evaluate a wide range of high-frequency electronic products, including antenna arrays, RF and microwave components, and filters. Renowned among engineers globally, Ansys HFSS is essential for developing high-speed electronics utilized in various applications like communication systems, advanced driver assistance systems (ADAS), satellites, and Internet of Things (IoT) devices. The software's exceptional performance and precision empower engineers to tackle complex challenges related to RF, microwave, IC, PCB, and electromagnetic interference (EMI) issues. With a robust suite of solvers, Ansys HFSS effectively addresses a myriad of electromagnetic challenges, making it an indispensable resource in the field of electronic design. As technology progresses, the relevance of such simulation tools becomes increasingly critical in ensuring optimal performance in modern electronic systems. -
4
XFdtd
Remcom
$14750.00/one-time/ user XFdtd is a comprehensive 3D electromagnetic simulation software developed by Remcom. This powerful and feature-rich solver for electromagnetic simulations delivers exceptional computing performance and eases the process of analyzing intricate electromagnetic challenges. The software supports various applications, including the design of microwave devices and antennas, as well as radar and scattering analysis. Additionally, XFdtd is utilized in biomedical fields, automotive radar systems, waveguide studies, military and defense projects, RFID technology, and electromagnetic compatibility/electromagnetic interference assessments, among others. Its versatility makes it an essential tool for engineers and researchers alike. -
5
samadii/em
Metariver Technology Co.,Ltd
samadii/em oftware that analyzes and calculates the electromagnetic field in 3d space using the Maxwell equation using vector FEM ad GPU computing. it provides electrostatics, magnetostatics as well and induction electronics, including the low-frequency and high-frequency ranges. samadii/em provides a multi-physics approach and high-performance electromagnetics simulation, with Samadii you can quickly address problems from semiconductors and displays to wireless communications, etc. -
6
Cadence Clarity 3D Solver
Cadence
The Cadence Clarity 3D Solver is a sophisticated software tool designed for 3D electromagnetic simulation, specifically aimed at creating essential interconnects for printed circuit boards, integrated circuit packages, and systems integrated on chip designs. This powerful tool assists engineers in overcoming intricate electromagnetic issues encountered in the development of systems for advanced technologies such as 5G, automotive applications, high-performance computing, and machine learning, all while ensuring top-tier accuracy. Leveraging Cadence’s state-of-the-art distributed multiprocessing capabilities, the Clarity 3D Solver provides virtually limitless capacity and enhances processing speed by tenfold, making it possible to tackle extensive and complicated structures with ease. Additionally, it generates precise S-parameter models that cater to high-speed signal integrity, power integrity, high-frequency RF/microwave applications, and electromagnetic compliance assessments, ensuring that simulation outcomes align closely with laboratory measurements, even for data transfer rates exceeding 112Gbps. Consequently, this tool stands as a vital asset for engineers looking to push the boundaries of technology in their designs. -
7
XGtd
Remcom
XGtd is an advanced electromagnetic analysis software that utilizes ray-based methodologies to evaluate how vehicles or vessels influence antenna radiation, forecast antenna coupling, and estimate radar cross-section. This tool is particularly advantageous for high-frequency applications or extensive platforms, as it effectively addresses scenarios where comprehensive physics-based methods may demand more computational power than is available. Beyond conventional ray tracing, XGtd integrates several sophisticated techniques, such as Geometric Optics (GO), the Uniform Theory of Diffraction (UTD), Physical Optics (PO), and the Method of Equivalent Currents (MEC). The software excels in delivering precise and personalized outputs for its specific applications, achieving high-fidelity field predictions even in shadow zones where creeping wave effects occur. Additionally, XGtd is capable of performing detailed multipath calculations that encompass various factors, including reflections, transmissions, wedge diffractions, surface diffractions, and creeping waves, making it an invaluable tool in the field of electromagnetic analysis. Its versatility and precision allow for a comprehensive understanding of complex interactions in challenging environments. -
8
PathWave Advanced Design System (ADS)
Keysight Technologies
PathWave ADS streamlines the design process by providing integrated templates that help users start their projects more efficiently. With a comprehensive selection of component libraries, locating the desired parts becomes a straightforward task. The automatic synchronization with layout offers a clear visualization of the physical arrangement while you create schematic designs. This data-driven approach enables teams to assess if their designs are in line with specifications. PathWave ADS enhances design confidence through its display and analytics features, which generate informative graphs, charts, and diagrams. Users can expedite their design process with the help of wizards, design guides, and templates. The complete design workflow encompasses schematic design, layout, as well as circuit, electro-thermal, and electromagnetic simulations. As frequencies and speeds continue to rise in printed circuit boards (PCBs), ensuring signal and power integrity is critical. Issues arising from transmission line effects can lead to electronic device failures. It is essential to model traces, vias, and interconnects accurately for a realistic simulation of the board, ensuring that potential problems are identified and mitigated early in the design phase. This multifaceted approach not only improves efficiency but also enhances the overall reliability of electronic designs. -
9
AWR Design Environment Platform
Cadence Design Systems
The Cadence AWR Design Environment Platform streamlines the development cycles of RF/microwave products through design automation, which boosts engineering efficiency and shortens turnaround times. This all-in-one platform equips engineers with sophisticated high-frequency circuit and system simulations alongside in-design electromagnetic (EM) and thermal analyses, enabling the creation of manufacturing-ready high-frequency intellectual property with exceptional accuracy and effectiveness. With a focus on enhancing productivity, the interface is both robust and user-friendly, featuring smart and customizable design workflows tailored to meet the demands of modern high-frequency semiconductor and PCB technologies. Moreover, its integrated design capture system supports a seamless front-to-back physical design process. The dynamic linking between electrical and layout design entries ensures that any components added to an electrical schematic automatically result in a corresponding synchronized physical layout, fostering a more cohesive design experience. This innovative approach not only minimizes errors but also significantly accelerates the overall design process. -
10
Ansys Nuhertz FilterSolutions offers a streamlined and efficient process for the automated design, synthesis, and optimization of RF, microwave, and digital filters. The process begins with inputting the desired performance specifications, after which it synthesizes both lumped component designs and physical layouts while automatically configuring analysis and optimization within the Ansys HFSS electromagnetic simulator. This innovative solution significantly accelerates the development of lumped element (surface mount) and planar filters. Additionally, it incorporates synthesis tools for various filter types, including active, switched capacitor, and digital filters. Users can export the netlist of active filters in SPICE format, and the digital filter synthesis module allows for the generation of C-code for the resulting filters. Overall, Ansys Nuhertz FilterSolutions enhances efficiency and versatility in filter design, making it a valuable tool for engineers.
-
11
PathWave EM Design
Keysight Technologies
Electromagnetic (EM) simulation provides valuable insights prior to the physical prototyping stage. Tailor your EM simulations to enhance both speed and precision. Seamlessly integrate EM analysis with your circuit simulations to boost overall efficiency. While EM simulations can often require several hours to complete, you can significantly reduce both import and export times by linking your EM simulation software with PathWave Circuit Design software. This integration allows you to maximize your workflow by combining EM analysis with circuit simulations effectively. The 3D EM solid modeling environment enables the creation of custom 3D objects and supports the import of existing models from various CAD platforms. This is essential for preparing a 3D geometry for 3DEM simulation, which involves defining ports, boundary conditions, and material properties. Additionally, the environment includes a Finite Difference Time Domain (FDTD) simulator, which is vital for compliance testing regarding Specific Absorption Rate (SAR) and Hearing Aid Compatibility (HAC), ensuring that your designs meet necessary regulatory standards. By utilizing these advanced features, you can streamline your design process and enhance the effectiveness of your electromagnetic analysis. -
12
PathWave RF Synthesis
Keysight Technologies
Examine RF and microwave circuits and systems using rapid simulation and robust optimization tools that enhance your design process. Delve into performance trade-offs through the integration of automatic circuit synthesis technology. PathWave RF Synthesis (Genesys) offers foundational features that cater to all designers of RF and microwave circuit boards and subsystems. With PathWave Circuit Design, you can uncover RF design mistakes that conventional spreadsheet analyses often overlook. This introductory design platform, which encompasses circuit, system, and electromagnetic simulators, enables you to approach design reviews with greater assurance prior to the realization of hardware. With just a few clicks, you can observe the automatic synthesis and optimization of your matching network. After that, easily transfer your design to PathWave Advanced Design System (ADS) to incorporate it into more intricate designs, ensuring seamless integration and enhanced functionality. By leveraging these tools, you can streamline the design process and enhance the overall efficiency of your RF and microwave projects. -
13
COMSOL Multiphysics
Comsol Group
1 RatingUtilize COMSOL's multiphysics software to replicate real-world designs, devices, and processes effectively. This versatile simulation tool is grounded in sophisticated numerical techniques. It boasts comprehensive capabilities for both fully coupled multiphysics and single-physics modeling. Users can navigate a complete modeling workflow, starting from geometry creation all the way to postprocessing. The software provides intuitive tools for the development and deployment of simulation applications. COMSOL Multiphysics® ensures a consistent user interface and experience across various engineering applications and physical phenomena. Additionally, specialized functionality is available through add-on modules that cater to fields such as electromagnetics, structural mechanics, acoustics, fluid dynamics, thermal transfer, and chemical engineering. Users can select from a range of LiveLink™ products to seamlessly connect with CAD systems and other third-party software. Furthermore, applications can be deployed using COMSOL Compiler™ and COMSOL Server™, enabling the creation of physics-driven models and simulation applications within this robust software ecosystem. With such extensive capabilities, it empowers engineers to innovate and enhance their projects effectively. -
14
SIMULIA
Dassault Systèmes
Utilizing the 3DEXPERIENCE® platform, SIMULIA provides advanced simulation tools that help users better understand and analyze our environment. The applications offered by SIMULIA streamline the assessment of material and product performance, reliability, and safety prior to the development of physical prototypes. These tools deliver robust simulations for various scenarios such as structures, fluids, multibody interactions, and electromagnetics, all while being seamlessly integrated with product data, even for complex assemblies. The comprehensive technology for modeling, simulation, and visualization is fully embedded within the 3DEXPERIENCE platform, which includes capabilities for process capture, publication, and reuse. By allowing simulation data, outcomes, and intellectual property to be linked to the platform, customers can maximize their current investment in simulation capabilities, transforming these assets into valuable resources that foster innovation for all users involved. This integration not only enhances workflow efficiency but also encourages collaborative advancements across different teams and projects. -
15
ZW3D
ZWSOFT
Hole & 2-Axis Tactics can significantly reduce programming times by up to 70% by automatically generating toolpaths that are ready for manufacturing. With over 40 types of machining operations at your disposal, you can efficiently tackle any manufacturing project with confidence. Whether you're working with Nurbs or STL geometries, creating the desired toolpaths—including undercut options—is a straightforward process. The 5-axis milling system offers a comprehensive approach for both indexing and 4 to 5-axis machining, while also being compatible with STL files. A wide range of advanced functions such as Swarf, Drive Curve, Drive Surface, Flow Cut, Side Cut, and Point Control are included to enhance machining versatility in various situations. Additionally, a suite of verification and simulation tools ensures that the machining process is feasible, reliable, and safe. For instance, Solid Verify allows users to simulate the actual machining to assess material excess, ensuring that the machining is not only effective but also efficient, leading to superior production outcomes. Moreover, this combination of tools and functionalities helps optimize the entire manufacturing workflow, making it easier to achieve high-quality results consistently. -
16
Ansys Maxwell
Ansys
Ansys Maxwell serves as a powerful electromagnetic field solver tailored for electric machines, transformers, wireless charging systems, permanent magnet latches, actuators, and various electromechanical devices. It adeptly addresses the challenges of static, frequency-domain, and time-varying electric and magnetic fields. Additionally, Maxwell comes equipped with specialized design interfaces specifically for electric machines and power converters. With the capabilities of Maxwell, users can accurately analyze the nonlinear and transient behaviors of electromechanical components, as well as their impact on drive circuits and control system designs. By utilizing Maxwell’s state-of-the-art electromagnetic field solvers in conjunction with integrated circuit and systems simulation technologies, engineers can gain insights into the performance of electromechanical systems well before any physical prototypes are created. Moreover, Maxwell is recognized for delivering reliable simulations of low-frequency electromagnetic fields pertinent to industrial components, making it a valuable tool in the design and analysis process. This comprehensive approach not only enhances design efficiency but also aids in minimizing potential issues during the development stage. -
17
Altair PSIM
Altair
For more than 25 years, PSIM has established itself as a premier software for simulating and designing power electronics and motor drives. Boasting an easy-to-navigate interface alongside a powerful simulation engine, PSIM serves as a comprehensive solution tailored to fulfill the simulation and design requirements of its users. It efficiently performs rapid calculations for power converter losses and motor drive efficiencies, while also conducting EMI analysis and managing both analog and digital control systems. Furthermore, PSIM streamlines the process of rapid control prototyping through its automatic embedded code generation feature. With its diverse range of Design Suites, users can swiftly and conveniently develop power supplies, EMI filters, and motor drive systems, making PSIM a versatile tool for engineers in the field. The software's ability to adapt to various design needs further solidifies its reputation as an essential asset in the power electronics industry. -
18
Simcenter MAGNET
Siemens
Simcenter MAGNET serves as an advanced simulation tool for analyzing electromagnetic fields, enabling users to predict the performance of various components such as motors, generators, sensors, transformers, actuators, and solenoids that involve permanent magnets or coils. By facilitating low-frequency electromagnetic field simulations, Simcenter MAGNET offers comprehensive modeling capabilities that accurately represent the underlying physics of electromagnetic devices. Among its features are the modeling of manufacturing processes, temperature-sensitive material properties, and the intricate behavior of magnetization and de-magnetization, along with vector hysteresis models. The software’s built-in motion solver incorporates a six-degree-of-freedom functionality, which allows for the precise modeling and analysis of complex scenarios such as magnetic levitation and intricate motion dynamics. This advanced capability is bolstered by innovative smart re-meshing technology, ensuring that even the most challenging electromagnetic problems can be effectively addressed. Consequently, Simcenter MAGNET stands out as an essential tool for engineers and designers looking to optimize electromagnetic systems in a range of applications. -
19
Utilizing the Ansys Electronics solution suite significantly reduces testing expenses, guarantees adherence to regulations, enhances product reliability, and substantially shortens development timelines. This approach enables you to create advanced and superior products that stand out in the market. By harnessing Ansys' simulation capabilities, you can address the most vital elements of your designs effectively. Our solutions empower you to tackle critical issues in product design through comprehensive simulation. Whether you're involved in antenna, RF, microwave, PCB, package, IC design, or even electromechanical devices, we offer industry-leading simulators that serve as the gold standard. These tools assist you in overcoming various challenges related to electromagnetic forces, temperature variations, signal integrity, power integrity, parasitic effects, cabling, and vibrations in your designs. Furthermore, we enhance this process with thorough product simulation, which facilitates achieving first-pass success in designing complex systems such as airplanes, automobiles, smartphones, laptops, wireless chargers, and more. By integrating our solutions, you position yourself to excel in innovation and engineering excellence.
-
20
Tidy3D
Flexcompute
Tidy3D, developed by Flexcompute, is an incredibly swift electromagnetic (EM) solver that utilizes the finite-difference time-domain (FDTD) technique. Its remarkable speed stems from the efficient co-design of both its software and hardware, allowing it to perform simulations significantly quicker than competing EM solvers. This unparalleled speed enables users to tackle problems that span hundreds of wavelengths, a task that traditional methods often struggle to handle effectively. Consequently, Tidy3D opens up new possibilities for researchers and engineers dealing with complex electromagnetic challenges. -
21
Ansys Lumerical Multiphysics serves as advanced software for simulating photonic components, allowing for the integrated design of these elements by effectively capturing the interplay of various multiphysics phenomena such as optical, thermal, electrical, and quantum well interactions, all within a cohesive design platform. Designed specifically for engineering workflows, this user-friendly product design software enhances the user experience, enabling quick design iterations and delivering in-depth insights into actual product performance. By merging real-time physics with precise high-fidelity simulations in an accessible interface, it promotes a shorter time-to-market for innovative designs. Among its key offerings are a finite element design environment, integrated multiphysics workflows, extensive material models, and robust automation and optimization capabilities. The suite of solvers and streamlined processes in Lumerical Multiphysics effectively reflects the complex interactions of physical effects, facilitating accurate modeling of both passive and active photonic components. This comprehensive approach not only enhances design efficiency but also leads to improved product reliability and performance evaluations.
-
22
Ansys Exalto
Ansys
Ansys Exalto serves as an advanced post-LVS RLCk extraction software that empowers integrated circuit (IC) designers to effectively address unknown crosstalk between various components within the design hierarchy by extracting lumped-element parasitics and creating precise models for electrical, magnetic, and substrate coupling. This tool seamlessly integrates with a wide range of LVS software and can enhance the performance of any RC extraction tool you prefer. With Ansys Exalto's post-LVS RLCk extraction capabilities, IC designers are equipped to make accurate predictions regarding electromagnetic and substrate coupling effects, allowing for signoff on circuits that may have previously been deemed "too complex to analyze." The models that are extracted can be back-annotated to the schematic or netlist, ensuring compatibility with all circuit simulators. As the prevalence of RF and high-speed circuits continues to rise in contemporary silicon systems, electromagnetic coupling has become a primary factor that necessitates precise modeling to ensure the successful fabrication of silicon. Overall, Ansys Exalto represents a crucial advancement in circuit design, helping engineers navigate the complexities associated with modern electronic systems. -
23
Samadii Multiphysics
Metariver Technology Co.,Ltd
2 RatingsMetariver Technology Co., Ltd. develops innovative and creative computer-aided engineering (CAE) analysis S/W based upon the most recent HPC technology and S/W technologies including CUDA technology. We are changing the paradigm in CAE technology by using particle-based CAE technology, high-speed computation technology with GPUs, and CAE analysis software. Here is an introduction to our products. 1. Samadii-DEM: works with discrete element method and solid particles. 2. Samadii-SCIV (Statistical Contact In Vacuum): working with high vacuum system gas-flow simulation. 3. Samadii-EM (Electromagnetics) : For full-field interpretation 4. Samadii-Plasma: For Analysis of ion and electron behavior in an electromagnetic field. 5. Vampire (Virtual Additive Manufacturing System): Specializes in transient heat transfer analysis. -
24
Sigrity X PowerSI
Cadence Design Systems
Cadence®, Sigrity X PowerSI® technology helps you to tackle increasingly difficult issues related switching noise, signal coupling and target voltage levels. It provides fast, accurate and detailed electrical analyses of full IC packages and PCBs. It can be used to develop power and signal integrity guidelines before layout, or after layout to verify performance and improve the design without a prototype. Sigrity X's electromagnetic (EM) solver technology allows you to perform a wide range of studies, including identifying trace and via coupling problems, power/ground fluctuation caused by simultaneously switching out put, and designing regions that are below or above voltage targets. PowerSI technology allows you to extract frequency-dependent parameter models for network networks and visualize complex spatial relationships. -
25
HyperLynx
Siemens
HyperLynx offers integrated capabilities for signal integrity, power integrity, 3D electromagnetic modeling, and electrical rule checking tailored for high-speed digital designs. By merging user-friendly features with automated processes, HyperLynx makes high-speed design analysis accessible for mainstream system designers, enabling early identification and resolution of potential issues within the design cycle. It seamlessly integrates with various PCB tools, making it a valuable addition to any PCB design workflow. The HyperLynx suite ensures a comprehensive analysis pipeline, fusing best-practice design rule checking with in-depth simulations for both signal and power integrity. Equipped with advanced 3D electromagnetic solvers, it produces precise interconnect models that enhance the design process. Users can assess design trade-offs during the pre-layout phase and confirm their designs before fabrication with thorough post-layout analyses. This tool supports a range of applications, including SerDes channels, DDRx memory interfaces, and general signal integrity assessments. Additionally, it simplifies the design and validation of a board's power-delivery network (PDN), facilitating compliance with impedance goals in a user-friendly setting. With its robust features, HyperLynx empowers engineers to create high-performance designs with confidence. -
26
Abaqus
Dassault Systèmes
Currently, engineering teams frequently rely on specialized simulation tools from various vendors to assess different design characteristics, which can lead to inefficiencies and higher costs due to the use of multiple software solutions. To address these challenges, SIMULIA offers a comprehensive suite of cohesive analysis products that enable users with varying levels of simulation knowledge and expertise to collaborate effectively while sharing simulation data and approved methodologies without compromising information integrity. The Abaqus Unified FEA product suite provides robust and comprehensive solutions for both standard and advanced engineering challenges, catering to a wide range of industrial applications. In the automotive sector, engineering teams can analyze complete vehicle loads, dynamic vibrations, multibody systems, impact and crash scenarios, nonlinear static situations, thermal interactions, and acoustic-structural relationships, all while utilizing a unified model data structure and integrated solver technology. This seamless integration enhances collaboration and improves the overall efficiency of the engineering process, allowing teams to innovate more rapidly. -
27
RFPro Circuit
Keysight
Advance your RF simulation capabilities to effectively design, analyze, and verify radio frequency integrated circuits (RFICs) beyond conventional methods. Gain assurance through the use of steady-state and nonlinear solvers tailored for both design and verification processes. Accelerate the validation of intricate RFICs with wireless standard libraries designed for efficiency. Ensure precise modeling of components on silicon chips to achieve optimal accuracy. Enhance your designs using load-pull analysis and parameter sweeps for better performance outcomes. Conduct RF simulations within the Cadence Virtuoso and Synopsys Custom Compiler environments to streamline your workflow. Employ Monte Carlo simulations and yield analysis to further boost performance metrics. Early in the design phase, evaluate error vector magnitude (EVM) in alignment with the latest communication standards to ensure compliance. Leverage cutting-edge foundry technology right from the start of your project. It is essential to monitor specifications like EVM through RF simulation during the early stages of RFIC design. The simulations account for the effects of layout parasitics, intricate modulated signals, and digital control circuitry. Utilizing Keysight RFPro Circuit allows for comprehensive simulation in both frequency and time domains, enhancing the overall design process and accuracy. This multifaceted approach ensures that your RFICs not only meet but exceed industry standards. -
28
Virtual REX
FishEye
Electromagnetic sensors are composed of two main components: a "front-end" that both generates and detects electromagnetic waves via a subsystem known as the Receiver/Exciter (REX), and a "back-end" responsible for signal and data processing, which is generally carried out through software. Each of these subsystems must be developed independently before they can be seamlessly integrated. The process of creating the complete sensor becomes increasingly complex and time-consuming due to unforeseen challenges that arise during integration testing. This complexity largely stems from the interdependencies between the subsystems that are not easily testable during their individual development phases. As a result, any necessary software updates, configuration adjustments, waveform modifications, and technology upgrades can incur significantly higher costs since they often require on-site verification with the actual front-end hardware. To mitigate these issues, the Virtual Receiver/Exciter (VREX) utilizes a simulated front-end, thus streamlining the testing and integration process. By employing a virtual model, developers can identify and address potential integration issues much earlier in the development cycle. -
29
PathWave RFIC Design
Keysight Technologies
Advance your approach to RF simulation by focusing on the comprehensive design, analysis, and verification of radio frequency integrated circuits (RFICs). Gain assurance through the use of steady-state and nonlinear solvers for both design and verification processes. The availability of wireless standard libraries expedites the validation of intricate RFICs. Prior to finalizing an RFIC, it is essential to confirm IC specifications through RF simulation. These simulations take into account various factors such as layout parasitics, intricate modulated signals, and digital control circuitry. With PathWave RFIC Design, you can perform simulations in both frequency and time domains, facilitating seamless transitions between your designs and Cadence Virtuoso. Achieve accurate modeling of components on silicon chips, and enhance your designs using optimization techniques like sweeps and load-pull analysis. Integration of RF designs into the Cadence Virtuoso environment is streamlined, while the implementation of Monte Carlo and yield analysis can significantly boost performance. Additionally, debugging is made easier with safe operating area alerts, allowing for immediate utilization of cutting-edge foundry technology to stay at the forefront of innovation. This holistic approach to RFIC design not only improves efficiency but also elevates the overall quality and reliability of the final products. -
30
FEATool Multiphysics
Precise Simulation
1 RatingFEATool Multiphysics – "Physics Simulator Made Easy" – a fully integrated physics simulation, FEA and CFD toolbox. FEATool Multiphysics provides a fully integrated simulation platform that includes a unified user interface for several multi-physics solvers such as OpenFOAM and Computational fluid dynamics (CFD), including SU2 Code and FEniCS. This allows users to model coupled physics phenomena, such as those found in fluid flow and heat transfer, structural, electromagnetics acoustics and chemical engineering applications. FEATool multiphysics is a trusted tool for engineers and researchers in the energy, automotive and semi-conductor industries. -
31
Ansys Zemax OpticStudio
Ansys
Ansys Zemax OpticStudio is a sophisticated optical design software that is widely employed by educational institutions and businesses around the world for the creation and evaluation of optical systems, including those used for imaging, illumination, and lasers. The software features an intuitive interface that combines analysis, optimization, and tolerancing capabilities, making it easier to develop intricate optical systems applicable across various fields. It supports both sequential and non-sequential ray tracing, which allows for accurate representation of light behavior as it travels through different optical elements. Additionally, its advanced capabilities include structural and thermal analysis, empowering users to evaluate how environmental conditions might affect optical system performance. With a rich library of materials and optical components, OpticStudio significantly enhances the precision of its simulations. Furthermore, Ansys provides a complimentary version of OpticStudio for students, offering them the opportunity to gain practical experience in optical design and analysis, which is essential for their future endeavors in the optics industry. This initiative not only fosters a deeper understanding of optics but also encourages innovation and creativity among budding engineers. -
32
Ansys Icepak
Ansys
Ansys Icepak serves as a computational fluid dynamics (CFD) solver specifically designed for managing thermal issues in electronic devices. It offers insights into airflow, temperature distributions, and heat transfer phenomena within integrated circuit packages, printed circuit boards (PCBs), electronic assemblies, and power electronics. By leveraging the top-tier Ansys Fluent CFD solver, Ansys Icepak delivers robust cooling solutions tailored for electronic components, allowing for thorough thermal and fluid flow evaluations. The software operates through the Ansys Electronics Desktop (AEDT) graphical user interface (GUI), facilitating comprehensive analyses of heat transfer involving conduction, convection, and radiation. Moreover, it boasts sophisticated features for modeling both laminar and turbulent flow conditions, as well as conducting species analysis that incorporates radiation and convection effects. Ansys’ extensive PCB design platform empowers users to perform simulations on PCBs, ICs, and packages, enabling a precise assessment of complete electronic systems, thereby enhancing design efficiency and performance optimization. Thus, Ansys Icepak stands out as an essential tool for engineers aiming to improve thermal management in their electronic designs. -
33
Ansys Motion
Ansys
Ansys Motion, now incorporated within the Mechanical interface, represents a cutting-edge engineering solution built upon a sophisticated multibody dynamics solver. This innovative tool facilitates rapid and precise assessments of both rigid and flexible entities, allowing for a comprehensive evaluation of physical phenomena through a holistic approach to mechanical systems. Ansys Motion employs four closely linked solving methodologies: rigid body, flexible body, modal, and meshfree EasyFlex, providing unmatched capabilities for analyzing various systems and mechanisms in any desired combination. It can effectively handle large assemblies with millions of degrees of freedom while accounting for both flexibility and contact effects. Standardized connections and joints enable seamless integration and loading of these systems. Moreover, the ability to conduct simulations within Ansys Motion using the same interface as traditional structural analysis promotes the reusability of a single model for multiple applications, resulting in significant reductions in time and effort required for complex projects. This streamlined workflow enhances productivity and fosters innovation in engineering design. -
34
Romax Nexus
Romax Technology
We have transformed our award-winning electro-mechanical simulation software into a cutting-edge cloud-based ecosystem of applications. This new suite facilitates everything from swift modelling and idea exploration to in-depth simulations and virtual product approvals, seamlessly integrating with your drivetrain and transmission development process. By being intelligently woven into the broader CAE landscape, Romax Nexus enhances your teams' capabilities and fosters designs that are Right First Time. For those organizations requiring additional support, we provide a variety of consultancy services designed to enhance our simulation platform. Last year marked the proud launch of our re-envisioned application ecosystem, which includes Romax Concept, Enduro, Spectrum, Energy, Spin, and Evolve, all connected through the Romax Nexus platform. Now, as we reflect on a year of progress, we are excited to unveil the next phase of our journey with the introduction of Romax Nexus R20, promising even greater improvements and features. This evolution represents our ongoing commitment to innovation and excellence in the industry. -
35
Sigrity X OptimizePI
Cadence Design Systems
Cadence®, Sigrity X OptimizationPI™ technology performs a complete AC frequency analyzer of boards and IC package to ensure high performance and save between 15% and 50 % in decoupling capacitor costs. It supports both pre-and post-layout studies and quickly pinpoints the most cost-effective decap selections. Sigrity X OptimizePI is based on proven Cadence hybrid magnetic circuit analysis technology combined with the unique Sigrity Optimization engine to help you quickly identify the best possible placement and decap locations. -
36
Synthelyzer™ ECAD Plugin
BQR Reliability Engineering
Easily perform electrical stress analysis, MTBF calculation, component derating, and FMECA analysis within your ECAD during board design. Key Features: • Uses cutting-edge AI technologies for robust and efficient design. *Seamless Integration with leading ECAD Software for streamlined workflows and real-time analyses. *Includes automated circuit strain calculators to speed up design processes. • Performs detailed analysis on electrical stress derivation for components. *Utilizes the results of thermal simulation to improve derating accuracy. *Provides thermal resistance and stress metrics for 3D Thermal Simulations. *Identifies EOS violations using Pareto analysis, and detailed reports on overstress and overdesign. *Recommends design changes to effectively resolve overstress problems. *Utilizes derating guidelines for optimal component performance. *Automates FMECA Analysis -
37
Datamine stands at the forefront of technology solutions for efficiently planning and overseeing mining operations worldwide. Our extensive array of products supports you from the initial assessment of land for potential acquisition all the way to drilling and fundamental resource modeling of your mineral assets. Boost your operational efficiency with our cutting-edge tools, which are continuously refined to adapt to the dynamic needs of the exploration sector. Our software is crafted to analyze and visually represent geophysical data through profiles, maps, and three-dimensional displays. It can process a variety of information, including single and multi-channel data sourced from both airborne and terrestrial surveys, such as electromagnetic (AEM) and potential field data (gravity or magnetic). Furthermore, our all-encompassing geological data management system provides a flexible framework that can effectively handle local, regional, and global data management needs while ensuring a thorough and trustworthy audit trail. This commitment to reliability and adaptability is what sets us apart in the ever-evolving landscape of the mining industry.
-
38
Ansys RaptorH
Ansys
Ansys RaptorH is a sophisticated electromagnetic modeling tool that excels in simulating power grids, entirely custom blocks, spiral inductors, and clock tree structures. It employs high-speed distributed processing to generate precise, silicon-validated S-parameter and RLCk models. One of its standout features is the ability to analyze partial or incomplete layouts during the design process, offering users the flexibility to utilize either the versatile HFSS engine or the specialized RaptorX engine optimized for silicon applications. Additionally, Ansys RaptorH extracts electromagnetic models even at the pre-LVS stage for various routing and layout designs, including solid or perforated planes, circular shapes, spiral inductors, and MiM/MoM capacitors, all while automatically configuring boundary conditions. Its user-friendly graphical interface facilitates point-and-click net selection and enables what-if scenarios for better design insights. Moreover, RaptorH is fully compatible with all leading silicon foundries and supports encrypted technology files, ensuring seamless setup for analyses using either the HFSS or Raptor engines. This comprehensive integration not only streamlines the design workflow but also enhances the accuracy of electromagnetic simulations significantly. -
39
Ansys Mechanical
Ansys
1 RatingAnsys Mechanical stands out as an exceptional finite element solver, featuring capabilities in structural, thermal, acoustics, transient, and nonlinear analyses to enhance your modeling processes. This powerful tool allows you to tackle intricate structural engineering challenges, facilitating quicker and more informed design choices. The suite's finite element analysis (FEA) solvers permit the customization and automation of solutions for structural mechanics issues, enabling the examination of various design scenarios through parameterization. With its extensive array of analysis tools, Ansys Mechanical provides a versatile environment, guiding users from geometry preparation to integrating additional physics for enhanced accuracy. Its user-friendly and adaptable interface ensures that engineers at any experience level can swiftly obtain reliable results. Overall, Ansys Mechanical fosters an integrated platform that leverages finite element analysis (FEA) for comprehensive structural evaluations, proving invaluable for modern engineering projects. -
40
Altair Inspire
Altair
When utilized early in the product development process, Inspire enhances the creation, optimization, and examination of innovative and structurally efficient components and assemblies through collaborative efforts. Its award-winning interface for geometry creation and modification can be mastered within just a few hours, all while providing the robust power of Altair solvers. The structural analysis capabilities, validated by NAFEMS, allow for swift and accurate evaluations using Altair® SimSolid®, making it possible to analyze extensive assemblies and intricate parts. Additionally, it offers dynamic motion simulation and load extraction through the trusted multi-body systems analysis of Altair® MotionSolve®. Furthermore, Altair® OptiStruct® sets the industry benchmark for structural efficiency with its topology optimization, facilitating generative design that yields practical and manufacturable geometries. Inspire empowers both simulation analysts and designers to conduct what-if analyses more quickly and easily, fostering an environment of collaboration and innovation. This approach not only enhances productivity but also encourages teams to explore a wider range of design possibilities earlier in the development cycle. -
41
OPTIMICA Compiler Toolkit
MODELON
Modelon’s OPTIMICA Compiler Toolkit stands out as the market's leading Modelica-based mathematical engine, providing users with a robust solution for automating, simulating, and optimizing system behaviors across the model-based design cycle. As the trusted compiler for Modelon Impact, OPTIMICA allows users to construct multi-domain physical systems by selecting from a vast library of model components. The toolkit’s cutting-edge solvers facilitate the evaluation of intricate physical systems, accommodating both transient simulations and steady-state calculations, as well as dynamic optimization. With its advanced mathematical capabilities, OPTIMICA can effectively manipulate and streamline models to enhance performance and reliability, catering to diverse industries and applications that range from automotive and active safety to energy and power generation optimization. Given the growing demand for effective power regulation in the contemporary energy landscape, optimizing the startup processes of thermal power plants has become a critical industrial requirement. Furthermore, the flexibility and efficiency of OPTIMICA make it an invaluable asset for engineers tackling complex system challenges. -
42
Simcenter Nastran
Siemens
Simcenter Nastran stands out as a leading finite element method (FEM) solver known for its exceptional computational performance, precision, dependability, and scalability. This comprehensive tool provides robust solutions for various applications, including linear and nonlinear structural analysis, structural dynamics, acoustics, rotor dynamics, aeroelasticity, thermal analysis, and optimization. One of the key benefits of having such a diverse array of solutions within a single solver is that it standardizes input/output file formats across all types of analyses, significantly streamlining the modeling process. Whether utilized as an independent enterprise solver or integrated within Simcenter 3D, Simcenter Nastran is instrumental for manufacturers and engineering firms across several sectors, including aerospace, automotive, electronics, heavy machinery, and medical devices. By catering to their vital engineering computing requirements, it enables these industries to deliver safe, reliable, and optimized designs while adhering to increasingly tighter design timelines. This versatility and efficiency make Simcenter Nastran an invaluable asset in the modern engineering landscape. -
43
Analytic Solver
Frontline Systems
Analytic Solver Optimization is fully compatible with the Excel Solver, designed to tackle any conventional optimization issue, regardless of its size or type, without accommodating uncertainty. What sets it apart from other optimization tools is its ability to conduct an algebraic analysis of your model's structure while efficiently utilizing multiple cores on your computer for enhanced performance. This software can manage nonlinear models that are ten times larger and linear models that are forty times larger than those solvable by the Excel Solver, providing solutions at a significantly faster pace, along with the capability to integrate Solver Engines that can accommodate millions of variables. Additionally, Analytic Solver Simulation offers an intuitive interface for rigorous Monte Carlo simulations, risk analysis, decision trees, and simulation optimization, all powered by Frontline's sophisticated Evolutionary Solver. It features an impressive array of 60 probability distributions, including complex compound distributions, automatic fitting for these distributions, along with rank-order and copula-based correlations, plus 80 different statistics and risk measures, and tools for Six Sigma analysis, as well as multiple parameterized simulations that enhance decision-making processes. The comprehensive functionality of this software makes it an essential tool for professionals seeking to leverage advanced optimization and simulation techniques in their work. -
44
6SigmaET
6SigmaET
6SigmaET is a sophisticated tool for thermal modeling in electronics that employs cutting-edge computational fluid dynamics (CFD) to produce precise simulations of electronic devices. Tailored for the electronics sector, our thermal simulation software brings unmatched intelligence, automation, and precision to assist you in fulfilling your requirements and addressing thermal design obstacles. Since its launch in 2009, 6SigmaET has rapidly emerged as the leading thermal simulation software within the electronics cooling industry. Its flexibility enables users to assess the thermal characteristics of a wide array of electronic components, from the tiniest integrated circuits to the largest, most robust servers. You can discover more about the benefits 6SigmaET offers your field by watching our informative videos or reviewing our comprehensive case studies. Additionally, 6SigmaET allows for the seamless import of complete CAD geometry and PCB designs, significantly cutting down the time needed for model creation and enhancing overall efficiency in thermal analysis. This capability streamlines the process, enabling engineers to focus more on optimization rather than on initial setup. -
45
Ansys Autodyn
Ansys
Ansys Autodyn enables the simulation of material responses to various events, including short-duration severe mechanical loadings, high pressures, and explosions. This software combines advanced solution techniques with user-friendly features, making it accessible for quick comprehension and simulation of significant material deformation or failure. It offers a diverse range of models to accurately capture complex physical phenomena, such as the interactions between liquids, solids, and gases, as well as phase transitions in materials and shock wave propagation. With seamless integration into Ansys Workbench and its intuitive user interface, Ansys Autodyn stands out in the industry by facilitating the generation of precise results efficiently. The inclusion of the smooth particle hydrodynamics (SPH) solver enhances its capabilities for explicit analysis, ensuring comprehensive support for various simulation needs. Furthermore, Ansys Autodyn allows users to choose from multiple solver technologies, ensuring that the most suitable solver is applied for different components of the model, thus optimizing performance and accuracy.