Best Bodo.ai Alternatives in 2025
Find the top alternatives to Bodo.ai currently available. Compare ratings, reviews, pricing, and features of Bodo.ai alternatives in 2025. Slashdot lists the best Bodo.ai alternatives on the market that offer competing products that are similar to Bodo.ai. Sort through Bodo.ai alternatives below to make the best choice for your needs
-
1
BigQuery is a serverless, multicloud data warehouse that makes working with all types of data effortless, allowing you to focus on extracting valuable business insights quickly. As a central component of Google’s data cloud, it streamlines data integration, enables cost-effective and secure scaling of analytics, and offers built-in business intelligence for sharing detailed data insights. With a simple SQL interface, it also supports training and deploying machine learning models, helping to foster data-driven decision-making across your organization. Its robust performance ensures that businesses can handle increasing data volumes with minimal effort, scaling to meet the needs of growing enterprises. Gemini within BigQuery brings AI-powered tools that enhance collaboration and productivity, such as code recommendations, visual data preparation, and intelligent suggestions aimed at improving efficiency and lowering costs. The platform offers an all-in-one environment with SQL, a notebook, and a natural language-based canvas interface, catering to data professionals of all skill levels. This cohesive workspace simplifies the entire analytics journey, enabling teams to work faster and more efficiently.
-
2
Big Data Quality must always be verified to ensure that data is safe, accurate, and complete. Data is moved through multiple IT platforms or stored in Data Lakes. The Big Data Challenge: Data often loses its trustworthiness because of (i) Undiscovered errors in incoming data (iii). Multiple data sources that get out-of-synchrony over time (iii). Structural changes to data in downstream processes not expected downstream and (iv) multiple IT platforms (Hadoop DW, Cloud). Unexpected errors can occur when data moves between systems, such as from a Data Warehouse to a Hadoop environment, NoSQL database, or the Cloud. Data can change unexpectedly due to poor processes, ad-hoc data policies, poor data storage and control, and lack of control over certain data sources (e.g., external providers). DataBuck is an autonomous, self-learning, Big Data Quality validation tool and Data Matching tool.
-
3
AnalyticsCreator
AnalyticsCreator
46 RatingsAccelerate your data journey with AnalyticsCreator—a metadata-driven data warehouse automation solution purpose-built for the Microsoft data ecosystem. AnalyticsCreator simplifies the design, development, and deployment of modern data architectures, including dimensional models, data marts, data vaults, or blended modeling approaches tailored to your business needs. Seamlessly integrate with Microsoft SQL Server, Azure Synapse Analytics, Microsoft Fabric (including OneLake and SQL Endpoint Lakehouse environments), and Power BI. AnalyticsCreator automates ELT pipeline creation, data modeling, historization, and semantic layer generation—helping reduce tool sprawl and minimizing manual SQL coding. Designed to support CI/CD pipelines, AnalyticsCreator connects easily with Azure DevOps and GitHub for version-controlled deployments across development, test, and production environments. This ensures faster, error-free releases while maintaining governance and control across your entire data engineering workflow. Key features include automated documentation, end-to-end data lineage tracking, and adaptive schema evolution—enabling teams to manage change, reduce risk, and maintain auditability at scale. AnalyticsCreator empowers agile data engineering by enabling rapid prototyping and production-grade deployments for Microsoft-centric data initiatives. By eliminating repetitive manual tasks and deployment risks, AnalyticsCreator allows your team to focus on delivering actionable business insights—accelerating time-to-value for your data products and analytics initiatives. -
4
Fivetran
Fivetran
726 RatingsFivetran is a comprehensive data integration solution designed to centralize and streamline data movement for organizations of all sizes. With more than 700 pre-built connectors, it effortlessly transfers data from SaaS apps, databases, ERPs, and files into data warehouses and lakes, enabling real-time analytics and AI-driven insights. The platform’s scalable pipelines automatically adapt to growing data volumes and business complexity. Leading companies such as Dropbox, JetBlue, Pfizer, and National Australia Bank rely on Fivetran to reduce data ingestion time from weeks to minutes and improve operational efficiency. Fivetran offers strong security compliance with certifications including SOC 1 & 2, GDPR, HIPAA, ISO 27001, PCI DSS, and HITRUST. Users can programmatically create and manage pipelines through its REST API for seamless extensibility. The platform supports governance features like role-based access controls and integrates with transformation tools like dbt Labs. Fivetran helps organizations innovate by providing reliable, secure, and automated data pipelines tailored to their evolving needs. -
5
Looker
Google
20 RatingsLooker reinvents the way business intelligence (BI) works by delivering an entirely new kind of data discovery solution that modernizes BI in three important ways. A simplified web-based stack leverages our 100% in-database architecture, so customers can operate on big data and find the last mile of value in the new era of fast analytic databases. An agile development environment enables today’s data rockstars to model the data and create end-user experiences that make sense for each specific business, transforming data on the way out, rather than on the way in. At the same time, a self-service data-discovery experience works the way the web works, empowering business users to drill into and explore very large datasets without ever leaving the browser. As a result, Looker customers enjoy the power of traditional BI at the speed of the web. -
6
Cognos Analytics with Watson brings BI to a new level with AI capabilities that provide a complete, trustworthy, and complete picture of your company. They can forecast the future, predict outcomes, and explain why they might happen. Built-in AI can be used to speed up and improve the blending of data or find the best tables for your model. AI can help you uncover hidden trends and drivers and provide insights in real-time. You can create powerful visualizations and tell the story of your data. You can also share insights via email or Slack. Combine advanced analytics with data science to unlock new opportunities. Self-service analytics that is governed and secures data from misuse adapts to your needs. You can deploy it wherever you need it - on premises, on the cloud, on IBM Cloud Pak®, for Data or as a hybrid option.
-
7
Qrvey
Qrvey
Qrvey is the only solution for embedded analytics with a built-in data lake. Qrvey saves engineering teams time and money with a turnkey solution connecting your data warehouse to your SaaS application. Qrvey’s full-stack solution includes the necessary components so that your engineering team can build less software in-house. Qrvey is built for SaaS companies that want to offer a better multi-tenant analytics experience. Qrvey's solution offers: - Built-in data lake powered by Elasticsearch - A unified data pipeline to ingest and analyze any type of data - The most embedded components - all JS, no iFrames - Fully personalizable to offer personalized experiences to users With Qrvey, you can build less software and deliver more value. -
8
Domo
Domo
49 RatingsDomo puts data to work for everyone so they can multiply their impact on the business. Underpinned by a secure data foundation, our cloud-native data experience platform makes data visible and actionable with user-friendly dashboards and apps. Domo helps companies optimize critical business processes at scale and in record time to spark bold curiosity that powers exponential business results. -
9
Vaex
Vaex
At Vaex.io, our mission is to make big data accessible to everyone, regardless of the machine or scale they are using. By reducing development time by 80%, we transform prototypes directly into solutions. Our platform allows for the creation of automated pipelines for any model, significantly empowering data scientists in their work. With our technology, any standard laptop can function as a powerful big data tool, eliminating the need for clusters or specialized engineers. We deliver dependable and swift data-driven solutions that stand out in the market. Our cutting-edge technology enables the rapid building and deployment of machine learning models, outpacing competitors. We also facilitate the transformation of your data scientists into proficient big data engineers through extensive employee training, ensuring that you maximize the benefits of our solutions. Our system utilizes memory mapping, an advanced expression framework, and efficient out-of-core algorithms, enabling users to visualize and analyze extensive datasets while constructing machine learning models on a single machine. This holistic approach not only enhances productivity but also fosters innovation within your organization. -
10
It takes only days to wrap any data source with a single reference Data API and simplify access to reporting and analytics data across your teams. Make it easy for application developers and data engineers to access the data from any source in a streamlined manner. - The single schema-less Data API endpoint - Review, configure metrics and dimensions in one place via UI - Data model visualization to make faster decisions - Data Export management scheduling API Our proxy perfectly fits into your current API management ecosystem (versioning, data access, discovery) no matter if you are using Mulesoft, Apigee, Tyk, or your homegrown solution. Leverage the capabilities of Data API and enrich your products with self-service analytics for dashboards, data Exports, or custom report composer for ad-hoc metric querying. Ready-to-use Report Builder and JavaScript components for popular charting libraries (Highcharts, BizCharts, Chart.js, etc.) makes it easy to embed data-rich functionality into your products. Your product or service users will love that because everybody likes to make data-driven decisions! And you will not have to make custom report queries anymore!
-
11
Nexla
Nexla
$1000/month Nexla's automated approach to data engineering has made it possible for data users for the first time to access ready-to-use data without the need for any connectors or code. Nexla is unique in that it combines no-code and low-code with a developer SDK, bringing together users of all skill levels on one platform. Nexla's data-as a-product core combines integration preparation, monitoring, delivery, and monitoring of data into one system, regardless of data velocity or format. Nexla powers mission-critical data for JPMorgan and Doordash, LinkedIn LiveRamp, J&J, as well as other leading companies across industries. -
12
AtScale
AtScale
AtScale streamlines and speeds up business intelligence processes, leading to quicker insights, improved decision-making, and enhanced returns on your cloud analytics investments. It removes the need for tedious data engineering tasks, such as gathering, maintaining, and preparing data for analysis. By centralizing business definitions, AtScale ensures that KPI reporting remains consistent across various BI tools. The platform not only accelerates the time it takes to gain insights from data but also optimizes the management of cloud computing expenses. Additionally, it allows organizations to utilize their existing data security protocols for analytics, regardless of where the data is stored. AtScale’s Insights workbooks and models enable users to conduct Cloud OLAP multidimensional analysis on datasets sourced from numerous providers without the requirement for data preparation or engineering. With user-friendly built-in dimensions and measures, businesses can swiftly extract valuable insights that inform their strategic decisions, enhancing their overall operational efficiency. This capability empowers teams to focus on analysis rather than data handling, leading to sustained growth and innovation. -
13
Querona
YouNeedIT
We make BI and Big Data analytics easier and more efficient. Our goal is to empower business users, make BI specialists and always-busy business more independent when solving data-driven business problems. Querona is a solution for those who have ever been frustrated by a lack in data, slow or tedious report generation, or a long queue to their BI specialist. Querona has a built-in Big Data engine that can handle increasing data volumes. Repeatable queries can be stored and calculated in advance. Querona automatically suggests improvements to queries, making optimization easier. Querona empowers data scientists and business analysts by giving them self-service. They can quickly create and prototype data models, add data sources, optimize queries, and dig into raw data. It is possible to use less IT. Users can now access live data regardless of where it is stored. Querona can cache data if databases are too busy to query live. -
14
Teradata VantageCloud
Teradata
1 RatingVantageCloud by Teradata is a next-gen cloud analytics ecosystem built to unify disparate data sources, deliver real-time AI-powered insights, and drive enterprise innovation with unprecedented efficiency. The platform includes VantageCloud Lake, designed for elastic scalability and GPU-accelerated AI workloads, and VantageCloud Enterprise, which supports robust analytics capabilities across secure hybrid and multi-cloud deployments. It seamlessly integrates with leading cloud providers like AWS, Azure, and Google Cloud, and supports open table formats like Apache Iceberg for greater data flexibility. With built-in support for advanced analytics, workload management, and cross-functional collaboration, VantageCloud provides the agility and power modern enterprises need to accelerate digital transformation and optimize operational outcomes. -
15
Informatica Data Engineering
Informatica
Efficiently ingest, prepare, and manage data pipelines at scale specifically designed for cloud-based AI and analytics. The extensive data engineering suite from Informatica equips users with all the essential tools required to handle large-scale data engineering tasks that drive AI and analytical insights, including advanced data integration, quality assurance, streaming capabilities, data masking, and preparation functionalities. With the help of CLAIRE®-driven automation, users can quickly develop intelligent data pipelines, which feature automatic change data capture (CDC), allowing for the ingestion of thousands of databases and millions of files alongside streaming events. This approach significantly enhances the speed of achieving return on investment by enabling self-service access to reliable, high-quality data. Gain genuine, real-world perspectives on Informatica's data engineering solutions from trusted peers within the industry. Additionally, explore reference architectures designed for sustainable data engineering practices. By leveraging AI-driven data engineering in the cloud, organizations can ensure their analysts and data scientists have access to the dependable, high-quality data essential for transforming their business operations effectively. Ultimately, this comprehensive approach not only streamlines data management but also empowers teams to make data-driven decisions with confidence. -
16
Dremio
Dremio
Dremio provides lightning-fast queries as well as a self-service semantic layer directly to your data lake storage. No data moving to proprietary data warehouses, and no cubes, aggregation tables, or extracts. Data architects have flexibility and control, while data consumers have self-service. Apache Arrow and Dremio technologies such as Data Reflections, Columnar Cloud Cache(C3), and Predictive Pipelining combine to make it easy to query your data lake storage. An abstraction layer allows IT to apply security and business meaning while allowing analysts and data scientists access data to explore it and create new virtual datasets. Dremio's semantic layers is an integrated searchable catalog that indexes all your metadata so business users can make sense of your data. The semantic layer is made up of virtual datasets and spaces, which are all searchable and indexed. -
17
Databricks Data Intelligence Platform
Databricks
The Databricks Data Intelligence Platform empowers every member of your organization to leverage data and artificial intelligence effectively. Constructed on a lakehouse architecture, it establishes a cohesive and transparent foundation for all aspects of data management and governance, enhanced by a Data Intelligence Engine that recognizes the distinct characteristics of your data. Companies that excel across various sectors will be those that harness the power of data and AI. Covering everything from ETL processes to data warehousing and generative AI, Databricks facilitates the streamlining and acceleration of your data and AI objectives. By merging generative AI with the integrative advantages of a lakehouse, Databricks fuels a Data Intelligence Engine that comprehends the specific semantics of your data. This functionality enables the platform to optimize performance automatically and manage infrastructure in a manner tailored to your organization's needs. Additionally, the Data Intelligence Engine is designed to grasp the unique language of your enterprise, making the search and exploration of new data as straightforward as posing a question to a colleague, thus fostering collaboration and efficiency. Ultimately, this innovative approach transforms the way organizations interact with their data, driving better decision-making and insights. -
18
Mozart Data
Mozart Data
Mozart Data is the all-in-one modern data platform for consolidating, organizing, and analyzing your data. Set up a modern data stack in an hour, without any engineering. Start getting more out of your data and making data-driven decisions today. -
19
Ascend
Ascend
$0.98 per DFCAscend provides data teams with a streamlined and automated platform that allows them to ingest, transform, and orchestrate their entire data engineering and analytics workloads at an unprecedented speed, achieving results ten times faster than before. This tool empowers teams that are often hindered by bottlenecks to effectively build, manage, and enhance the ever-growing volume of data workloads they face. With the support of DataAware intelligence, Ascend operates continuously in the background to ensure data integrity and optimize data workloads, significantly cutting down maintenance time by as much as 90%. Users can effortlessly create, refine, and execute data transformations through Ascend’s versatile flex-code interface, which supports the use of multiple programming languages such as SQL, Python, Java, and Scala interchangeably. Additionally, users can quickly access critical metrics including data lineage, data profiles, job and user logs, and system health indicators all in one view. Ascend also offers native connections to a continually expanding array of common data sources through its Flex-Code data connectors, ensuring seamless integration. This comprehensive approach not only enhances efficiency but also fosters stronger collaboration among data teams. -
20
Delta Lake
Delta Lake
Delta Lake serves as an open-source storage layer that integrates ACID transactions into Apache Spark™ and big data operations. In typical data lakes, multiple pipelines operate simultaneously to read and write data, which often forces data engineers to engage in a complex and time-consuming effort to maintain data integrity because transactional capabilities are absent. By incorporating ACID transactions, Delta Lake enhances data lakes and ensures a high level of consistency with its serializability feature, the most robust isolation level available. For further insights, refer to Diving into Delta Lake: Unpacking the Transaction Log. In the realm of big data, even metadata can reach substantial sizes, and Delta Lake manages metadata with the same significance as the actual data, utilizing Spark's distributed processing strengths for efficient handling. Consequently, Delta Lake is capable of managing massive tables that can scale to petabytes, containing billions of partitions and files without difficulty. Additionally, Delta Lake offers data snapshots, which allow developers to retrieve and revert to previous data versions, facilitating audits, rollbacks, or the replication of experiments while ensuring data reliability and consistency across the board. -
21
Archon Data Store
Platform 3 Solutions
1 RatingThe Archon Data Store™ is a robust and secure platform built on open-source principles, tailored for archiving and managing extensive data lakes. Its compliance capabilities and small footprint facilitate large-scale data search, processing, and analysis across structured, unstructured, and semi-structured data within an organization. By merging the essential characteristics of both data warehouses and data lakes, Archon Data Store creates a seamless and efficient platform. This integration effectively breaks down data silos, enhancing data engineering, analytics, data science, and machine learning workflows. With its focus on centralized metadata, optimized storage solutions, and distributed computing, the Archon Data Store ensures the preservation of data integrity. Additionally, its cohesive strategies for data management, security, and governance empower organizations to operate more effectively and foster innovation at a quicker pace. By offering a singular platform for both archiving and analyzing all organizational data, Archon Data Store not only delivers significant operational efficiencies but also positions your organization for future growth and agility. -
22
Advana
Advana
$97,000 per yearAdvana represents a revolutionary no-code platform for data engineering and data science, aimed at simplifying and accelerating the process of data analytics, thereby allowing you to concentrate on addressing your core business challenges. It offers an extensive array of analytics features that facilitate the effective transformation, management, and analysis of data. By modernizing outdated data analytics systems, you can achieve quicker and more cost-effective business outcomes using the no-code approach. This platform helps retain skilled professionals with industry knowledge while navigating the evolving landscape of computing technologies. With a unified user interface, Advana fosters seamless collaboration between business units and IT. It also empowers users to develop solutions in emerging technologies without the need for new programming skills. Furthermore, migrating your solutions to new technologies becomes a hassle-free process whenever innovations arise. Ultimately, Advana not only streamlines data practices but also enhances team synergy and adaptability in a rapidly changing technological environment. -
23
Sentrana
Sentrana
Whether your data exists in isolated environments or is being produced at the edge, Sentrana offers you the versatility to establish AI and data engineering pipelines wherever your information resides. Furthermore, you can easily share your AI, data, and pipelines with anyone, regardless of their location. With Sentrana, you gain unparalleled agility to transition seamlessly between various computing environments, all while ensuring that your data and projects automatically replicate to your desired destinations. The platform features an extensive collection of components that allow you to craft personalized AI and data engineering pipelines. You can quickly assemble and evaluate numerous pipeline configurations to develop the AI solutions you require. Transforming your data into AI becomes a straightforward task, incurring minimal effort and expense. As Sentrana operates as an open platform, you have immediate access to innovative AI components that are continually being developed. Moreover, Sentrana converts the pipelines and AI models you build into reusable blocks, enabling any member of your team to integrate them into their own projects with ease. This collaborative capability not only enhances productivity but also fosters creativity across your organization. -
24
Numbers Station
Numbers Station
Speeding up the process of gaining insights and removing obstacles for data analysts is crucial. With the help of intelligent automation in the data stack, you can extract insights from your data much faster—up to ten times quicker—thanks to AI innovations. Originally developed at Stanford's AI lab, this cutting-edge intelligence for today’s data stack is now accessible for your organization. You can leverage natural language to derive value from your disorganized, intricate, and isolated data within just minutes. Simply instruct your data on what you want to achieve, and it will promptly produce the necessary code for execution. This automation is highly customizable, tailored to the unique complexities of your organization rather than relying on generic templates. It empowers individuals to securely automate data-heavy workflows on the modern data stack, alleviating the burden on data engineers from a never-ending queue of requests. Experience the ability to reach insights in mere minutes instead of waiting months, with solutions that are specifically crafted and optimized for your organization’s requirements. Moreover, it integrates seamlessly with various upstream and downstream tools such as Snowflake, Databricks, Redshift, and BigQuery, all while being built on dbt, ensuring a comprehensive approach to data management. This innovative solution not only enhances efficiency but also promotes a culture of data-driven decision-making across all levels of your enterprise. -
25
SplineCloud
SplineCloud
SplineCloud serves as a collaborative knowledge management platform aimed at enhancing the identification, formalization, and sharing of structured and reusable knowledge within the realms of science and engineering. This innovative platform allows users to systematically arrange their data into organized repositories, ensuring that it is easily discoverable and accessible. Among its features are tools like an online plot digitizer, which helps in extracting data from graphical representations, and an interactive curve fitting tool, enabling users to establish functional relationships within datasets through the application of smooth spline functions. Additionally, users have the capability to incorporate datasets and relationships into their models and calculations by directly accessing them via the SplineCloud API or employing open source client libraries compatible with Python and MATLAB. By supporting the creation of reusable engineering and analytical applications, the platform aims to minimize design process redundancies, safeguard expert knowledge, and enhance decision-making efficiency. Ultimately, SplineCloud stands as a vital resource for researchers and engineers seeking to optimize their workflows and improve knowledge sharing in their fields. -
26
Lumenore Business Intelligence with no-code analytics. Get actionable intelligence that’s connected to your data - wherever it’s coming from. Next-generation business intelligence and analytics platform. We embrace change every day and strive to push the boundaries of technology and innovation to do more, do things differently, and, most importantly, to provide people and companies with the right insight in the most efficient way. In just a few clicks, transform huge amounts of raw data into actionable information. This program was designed with the user in mind.
-
27
IBM Databand
IBM
Keep a close eye on your data health and the performance of your pipelines. Achieve comprehensive oversight for pipelines utilizing cloud-native technologies such as Apache Airflow, Apache Spark, Snowflake, BigQuery, and Kubernetes. This observability platform is specifically designed for Data Engineers. As the challenges in data engineering continue to escalate due to increasing demands from business stakeholders, Databand offers a solution to help you keep pace. With the rise in the number of pipelines comes greater complexity. Data engineers are now handling more intricate infrastructures than they ever have before while also aiming for quicker release cycles. This environment makes it increasingly difficult to pinpoint the reasons behind process failures, delays, and the impact of modifications on data output quality. Consequently, data consumers often find themselves frustrated by inconsistent results, subpar model performance, and slow data delivery. A lack of clarity regarding the data being provided or the origins of failures fosters ongoing distrust. Furthermore, pipeline logs, errors, and data quality metrics are often gathered and stored in separate, isolated systems, complicating the troubleshooting process. To address these issues effectively, a unified observability approach is essential for enhancing trust and performance in data operations. -
28
Chalk
Chalk
FreeExperience robust data engineering processes free from the challenges of infrastructure management. By utilizing straightforward, modular Python, you can define intricate streaming, scheduling, and data backfill pipelines with ease. Transition from traditional ETL methods and access your data instantly, regardless of its complexity. Seamlessly blend deep learning and large language models with structured business datasets to enhance decision-making. Improve forecasting accuracy using up-to-date information, eliminate the costs associated with vendor data pre-fetching, and conduct timely queries for online predictions. Test your ideas in Jupyter notebooks before moving them to a live environment. Avoid discrepancies between training and serving data while developing new workflows in mere milliseconds. Monitor all of your data operations in real-time to effortlessly track usage and maintain data integrity. Have full visibility into everything you've processed and the ability to replay data as needed. Easily integrate with existing tools and deploy on your infrastructure, while setting and enforcing withdrawal limits with tailored hold periods. With such capabilities, you can not only enhance productivity but also ensure streamlined operations across your data ecosystem. -
29
Datameer
Datameer
Datameer is your go-to data tool for exploring, preparing, visualizing, and cataloging Snowflake insights. From exploring raw datasets to driving business decisions – an all-in-one tool. -
30
Foghub
Foghub
Foghub streamlines the integration of IT and OT, enhancing data engineering and real-time intelligence at the edge. Its user-friendly, cross-platform design employs an open architecture to efficiently manage industrial time-series data. By facilitating the critical link between operational components like sensors, devices, and systems, and business elements such as personnel, processes, and applications, Foghub enables seamless automated data collection and engineering processes, including transformations, advanced analytics, and machine learning. The platform adeptly manages a diverse range of industrial data types, accommodating significant variety, volume, and velocity, while supporting a wide array of industrial network protocols, OT systems, and databases. Users can effortlessly automate data gathering related to production runs, batches, parts, cycle times, process parameters, asset health, utilities, consumables, and operator performance. Built with scalability in mind, Foghub provides an extensive suite of features to efficiently process and analyze large amounts of data, ensuring that businesses can maintain optimal performance and decision-making capabilities. As industries evolve and data demands increase, Foghub remains a pivotal solution for achieving effective IT/OT convergence. -
31
Apache Spark
Apache Software Foundation
Apache Spark™ serves as a comprehensive analytics platform designed for large-scale data processing. It delivers exceptional performance for both batch and streaming data by employing an advanced Directed Acyclic Graph (DAG) scheduler, a sophisticated query optimizer, and a robust execution engine. With over 80 high-level operators available, Spark simplifies the development of parallel applications. Additionally, it supports interactive use through various shells including Scala, Python, R, and SQL. Spark supports a rich ecosystem of libraries such as SQL and DataFrames, MLlib for machine learning, GraphX, and Spark Streaming, allowing for seamless integration within a single application. It is compatible with various environments, including Hadoop, Apache Mesos, Kubernetes, and standalone setups, as well as cloud deployments. Furthermore, Spark can connect to a multitude of data sources, enabling access to data stored in systems like HDFS, Alluxio, Apache Cassandra, Apache HBase, and Apache Hive, among many others. This versatility makes Spark an invaluable tool for organizations looking to harness the power of large-scale data analytics. -
32
Decodable
Decodable
$0.20 per task per hourSay goodbye to the complexities of low-level coding and integrating intricate systems. With SQL, you can effortlessly construct and deploy data pipelines in mere minutes. This data engineering service empowers both developers and data engineers to easily create and implement real-time data pipelines tailored for data-centric applications. The platform provides ready-made connectors for various messaging systems, storage solutions, and database engines, simplifying the process of connecting to and discovering available data. Each established connection generates a stream that facilitates data movement to or from the respective system. Utilizing Decodable, you can design your pipelines using SQL, where streams play a crucial role in transmitting data to and from your connections. Additionally, streams can be utilized to link pipelines, enabling the management of even the most intricate processing tasks. You can monitor your pipelines to ensure a steady flow of data and create curated streams for collaborative use by other teams. Implement retention policies on streams to prevent data loss during external system disruptions, and benefit from real-time health and performance metrics that keep you informed about the operation's status, ensuring everything is running smoothly. Ultimately, Decodable streamlines the entire data pipeline process, allowing for greater efficiency and quicker results in data handling and analysis. -
33
Roseman Labs
Roseman Labs
Roseman Labs allows you to encrypt and link multiple data sets, while protecting the privacy and commercial sensitivity. This allows you combine data sets from multiple parties, analyze them and get the insights that you need to optimize processes. Unlock the potential of your data. Roseman Labs puts the power of encryption at your fingertips with Python's simplicity. Encrypting sensitive information allows you to analyze the data while protecting privacy, commercial sensitivity and adhering GDPR regulations. With enhanced GDPR compliance, you can generate insights from sensitive commercial or personal information. Secure data privacy using the latest encryption. Roseman Labs lets you link data sets from different parties. By analyzing the combined information, you can discover which records are present in multiple data sets. This allows for new patterns to emerge. -
34
The Autonomous Data Engine
Infoworks
Today, there is a considerable amount of discussion surrounding how top-tier companies are leveraging big data to achieve a competitive edge. Your organization aims to join the ranks of these industry leaders. Nevertheless, the truth is that more than 80% of big data initiatives fail to reach production due to the intricate and resource-heavy nature of implementation, often extending over months or even years. The technology involved is multifaceted, and finding individuals with the requisite skills can be prohibitively expensive or nearly impossible. Moreover, automating the entire data workflow from its source to its end use is essential for success. This includes automating the transition of data and workloads from outdated Data Warehouse systems to modern big data platforms, as well as managing and orchestrating intricate data pipelines in a live environment. In contrast, alternative methods like piecing together various point solutions or engaging in custom development tend to be costly, lack flexibility, consume excessive time, and necessitate specialized expertise to build and sustain. Ultimately, adopting a more streamlined approach to big data management can not only reduce costs but also enhance operational efficiency. -
35
Iterative
Iterative
AI teams encounter obstacles that necessitate the development of innovative technologies, which we specialize in creating. Traditional data warehouses and lakes struggle to accommodate unstructured data types such as text, images, and videos. Our approach integrates AI with software development, specifically designed for data scientists, machine learning engineers, and data engineers alike. Instead of reinventing existing solutions, we provide a swift and cost-effective route to bring your projects into production. Your data remains securely stored under your control, and model training occurs on your own infrastructure. By addressing the limitations of current data handling methods, we ensure that AI teams can effectively meet their challenges. Our Studio functions as an extension of platforms like GitHub, GitLab, or BitBucket, allowing seamless integration. You can choose to sign up for our online SaaS version or reach out for an on-premise installation tailored to your needs. This flexibility allows organizations of all sizes to adopt our solutions effectively. -
36
DQOps
DQOps
$499 per monthDQOps is a data quality monitoring platform for data teams that helps detect and address quality issues before they impact your business. Track data quality KPIs on data quality dashboards and reach a 100% data quality score. DQOps helps monitor data warehouses and data lakes on the most popular data platforms. DQOps offers a built-in list of predefined data quality checks verifying key data quality dimensions. The extensibility of the platform allows you to modify existing checks or add custom, business-specific checks as needed. The DQOps platform easily integrates with DevOps environments and allows data quality definitions to be stored in a source repository along with the data pipeline code. -
37
Presto
Presto Foundation
Presto serves as an open-source distributed SQL query engine designed for executing interactive analytic queries across data sources that can range in size from gigabytes to petabytes. It addresses the challenges faced by data engineers who often navigate multiple query languages and interfaces tied to isolated databases and storage systems. Presto stands out as a quick and dependable solution by offering a unified ANSI SQL interface for comprehensive data analytics and your open lakehouse. Relying on different engines for various workloads often leads to the necessity of re-platforming in the future. However, with Presto, you benefit from a singular, familiar ANSI SQL language and one engine for all your analytic needs, negating the need to transition to another lakehouse engine. Additionally, it efficiently accommodates both interactive and batch workloads, handling small to large datasets and scaling from just a few users to thousands. By providing a straightforward ANSI SQL interface for all your data residing in varied siloed systems, Presto effectively integrates your entire data ecosystem, fostering seamless collaboration and accessibility across platforms. Ultimately, this integration empowers organizations to make more informed decisions based on a comprehensive view of their data landscape. -
38
Discover how CloudWorx for Intergraph Smart 3D seamlessly integrates with point clouds, allowing users to blend existing plant structures with newly designed components. The Intergraph Smart® Laser Data Engineer enhances the experience for CloudWorx users by offering advanced point cloud rendering through the powerful JetStream engine. This technology ensures that point clouds load instantly and maintain full rendering quality during user interactions, irrespective of dataset size, providing exceptional accuracy for users. Additionally, JetStream boasts a centralized data storage system and streamlined administrative framework that not only delivers high-performance point cloud access but also simplifies project management, including data sharing, user permissions, backups, and other IT operations, ultimately leading to significant savings in both time and resources. As a result, users can focus on their projects with confidence, knowing that they have access to reliable and efficient tools to support their work.
-
39
Switchboard
Switchboard
Effortlessly consolidate diverse data on a large scale with precision and dependability using Switchboard, a data engineering automation platform tailored for business teams. Gain access to timely insights and reliable forecasts without the hassle of outdated manual reports or unreliable pivot tables that fail to grow with your needs. In a no-code environment, you can directly extract and reshape data sources into the necessary formats, significantly decreasing your reliance on engineering resources. With automatic monitoring and backfilling, issues like API outages, faulty schemas, and absent data become relics of the past. This platform isn't just a basic API; it's a comprehensive ecosystem filled with adaptable pre-built connectors that actively convert raw data into a valuable strategic asset. Our expert team, comprised of individuals with experience in data teams at prestigious companies like Google and Facebook, has streamlined these best practices to enhance your data capabilities. With a data engineering automation platform designed to support authoring and workflow processes that can efficiently manage terabytes of data, you can elevate your organization's data handling to new heights. By embracing this innovative solution, your business can truly harness the power of data to drive informed decisions and foster growth. -
40
dbt
dbt Labs
$50 per user per monthVersion control, quality assurance, documentation, and modularity enable data teams to work together similarly to software engineering teams. It is crucial to address analytics errors with the same urgency as one would for bugs in a live product. A significant portion of the analytic workflow is still performed manually. Therefore, we advocate for workflows to be designed for execution with a single command. Data teams leverage dbt to encapsulate business logic, making it readily available across the organization for various purposes including reporting, machine learning modeling, and operational tasks. The integration of continuous integration and continuous deployment (CI/CD) ensures that modifications to data models progress smoothly through the development, staging, and production phases. Additionally, dbt Cloud guarantees uptime and offers tailored service level agreements (SLAs) to meet organizational needs. This comprehensive approach fosters a culture of reliability and efficiency within data operations. -
41
Kestra
Kestra
Kestra is a free, open-source orchestrator based on events that simplifies data operations while improving collaboration between engineers and users. Kestra brings Infrastructure as Code to data pipelines. This allows you to build reliable workflows with confidence. The declarative YAML interface allows anyone who wants to benefit from analytics to participate in the creation of the data pipeline. The UI automatically updates the YAML definition whenever you make changes to a work flow via the UI or an API call. The orchestration logic can be defined in code declaratively, even if certain workflow components are modified. -
42
Molecula
Molecula
Molecula serves as an enterprise feature store that streamlines, enhances, and manages big data access to facilitate large-scale analytics and artificial intelligence. By consistently extracting features, minimizing data dimensionality at the source, and channeling real-time feature updates into a centralized repository, it allows for millisecond-level queries, computations, and feature re-utilization across various formats and locations without the need to duplicate or transfer raw data. This feature store grants data engineers, scientists, and application developers a unified access point, enabling them to transition from merely reporting and interpreting human-scale data to actively forecasting and recommending immediate business outcomes using comprehensive data sets. Organizations often incur substantial costs when preparing, consolidating, and creating multiple copies of their data for different projects, which delays their decision-making processes. Molecula introduces a groundbreaking approach for continuous, real-time data analysis that can be leveraged for all mission-critical applications, dramatically improving efficiency and effectiveness in data utilization. This transformation empowers businesses to make informed decisions swiftly and accurately, ensuring they remain competitive in an ever-evolving landscape. -
43
SiaSearch
SiaSearch
We aim to relieve ML engineers from the burdens of data engineering so they can concentrate on their passion for developing superior models more efficiently. Our innovative product serves as a robust framework that simplifies and accelerates the process for developers to discover, comprehend, and disseminate visual data on a large scale, making it ten times easier. Users can automatically generate custom interval attributes using pre-trained extractors or any model of their choice, enhancing the flexibility of data manipulation. The platform allows for effective data visualization and the analysis of model performance by leveraging custom attributes alongside standard KPIs. This functionality enables users to query data, identify rare edge cases, and curate new training datasets across their entire data lake with ease. Additionally, it facilitates the seamless saving, editing, versioning, commenting, and sharing of frames, sequences, or objects with both colleagues and external partners. SiaSearch stands out as a data management solution that automatically extracts frame-level contextual metadata, streamlining fast data exploration, selection, and evaluation. By automating these processes with intelligent metadata, engineering productivity can more than double, effectively alleviating bottlenecks in the development of industrial AI. Ultimately, this allows teams to innovate more rapidly and efficiently in their machine learning endeavors. -
44
datuum.ai
Datuum
Datuum is an AI-powered data integration tool that offers a unique solution for organizations looking to streamline their data integration process. With our pre-trained AI engine, Datuum simplifies customer data onboarding by allowing for automated integration from various sources without coding. This reduces data preparation time and helps establish resilient connectors, ultimately freeing up time for organizations to focus on generating insights and improving the customer experience. At Datuum, we have over 40 years of experience in data management and operations, and we've incorporated our expertise into the core of our product. Our platform is designed to address the critical challenges faced by data engineers and managers while being accessible and user-friendly for non-technical specialists. By reducing up to 80% of the time typically spent on data-related tasks, Datuum can help organizations optimize their data management processes and achieve more efficient outcomes. -
45
Microsoft Fabric
Microsoft
$156.334/month/ 2CU Connecting every data source with analytics services on a single AI-powered platform will transform how people access, manage, and act on data and insights. All your data. All your teams. All your teams in one place. Create an open, lake-centric hub to help data engineers connect data from various sources and curate it. This will eliminate sprawl and create custom views for all. Accelerate analysis through the development of AI models without moving data. This reduces the time needed by data scientists to deliver value. Microsoft Teams, Microsoft Excel, and Microsoft Teams are all great tools to help your team innovate faster. Connect people and data responsibly with an open, scalable solution. This solution gives data stewards more control, thanks to its built-in security, compliance, and governance.