Best BigObject Alternatives in 2025

Find the top alternatives to BigObject currently available. Compare ratings, reviews, pricing, and features of BigObject alternatives in 2025. Slashdot lists the best BigObject alternatives on the market that offer competing products that are similar to BigObject. Sort through BigObject alternatives below to make the best choice for your needs

  • 1
    Teradata VantageCloud Reviews
    See Software
    Learn More
    Compare Both
    Teradata VantageCloud: Open, Scalable Cloud Analytics for AI VantageCloud is Teradata’s cloud-native analytics and data platform designed for performance and flexibility. It unifies data from multiple sources, supports complex analytics at scale, and makes it easier to deploy AI and machine learning models in production. With built-in support for multi-cloud and hybrid deployments, VantageCloud lets organizations manage data across AWS, Azure, Google Cloud, and on-prem environments without vendor lock-in. Its open architecture integrates with modern data tools and standard formats, giving developers and data teams freedom to innovate while keeping costs predictable.
  • 2
    Google Cloud BigQuery Reviews
    See Software
    Learn More
    Compare Both
    BigQuery is a serverless, multicloud data warehouse that makes working with all types of data effortless, allowing you to focus on extracting valuable business insights quickly. As a central component of Google’s data cloud, it streamlines data integration, enables cost-effective and secure scaling of analytics, and offers built-in business intelligence for sharing detailed data insights. With a simple SQL interface, it also supports training and deploying machine learning models, helping to foster data-driven decision-making across your organization. Its robust performance ensures that businesses can handle increasing data volumes with minimal effort, scaling to meet the needs of growing enterprises. Gemini within BigQuery brings AI-powered tools that enhance collaboration and productivity, such as code recommendations, visual data preparation, and intelligent suggestions aimed at improving efficiency and lowering costs. The platform offers an all-in-one environment with SQL, a notebook, and a natural language-based canvas interface, catering to data professionals of all skill levels. This cohesive workspace simplifies the entire analytics journey, enabling teams to work faster and more efficiently.
  • 3
    RaimaDB Reviews
    Top Pick See Software
    Learn More
    Compare Both
    RaimaDB, an embedded time series database that can be used for Edge and IoT devices, can run in-memory. It is a lightweight, secure, and extremely powerful RDBMS. It has been field tested by more than 20 000 developers around the world and has been deployed in excess of 25 000 000 times. RaimaDB is a high-performance, cross-platform embedded database optimized for mission-critical applications in industries such as IoT and edge computing. Its lightweight design makes it ideal for resource-constrained environments, supporting both in-memory and persistent storage options. RaimaDB offers flexible data modeling, including traditional relational models and direct relationships through network model sets. With ACID-compliant transactions and advanced indexing methods like B+Tree, Hash Table, R-Tree, and AVL-Tree, it ensures data reliability and efficiency. Built for real-time processing, it incorporates multi-version concurrency control (MVCC) and snapshot isolation, making it a robust solution for applications demanding speed and reliability.
  • 4
    Snowflake Reviews
    Snowflake offers a unified AI Data Cloud platform that transforms how businesses store, analyze, and leverage data by eliminating silos and simplifying architectures. It features interoperable storage that enables seamless access to diverse datasets at massive scale, along with an elastic compute engine that delivers leading performance for a wide range of workloads. Snowflake Cortex AI integrates secure access to cutting-edge large language models and AI services, empowering enterprises to accelerate AI-driven insights. The platform’s cloud services automate and streamline resource management, reducing complexity and cost. Snowflake also offers Snowgrid, which securely connects data and applications across multiple regions and cloud providers for a consistent experience. Their Horizon Catalog provides built-in governance to manage security, privacy, compliance, and access control. Snowflake Marketplace connects users to critical business data and apps to foster collaboration within the AI Data Cloud network. Serving over 11,000 customers worldwide, Snowflake supports industries from healthcare and finance to retail and telecom.
  • 5
    StarTree Reviews
    StarTree Cloud is a fully-managed real-time analytics platform designed for OLAP at massive speed and scale for user-facing applications. Powered by Apache Pinot, StarTree Cloud provides enterprise-grade reliability and advanced capabilities such as tiered storage, scalable upserts, plus additional indexes and connectors. It integrates seamlessly with transactional databases and event streaming platforms, ingesting data at millions of events per second and indexing it for lightning-fast query responses. StarTree Cloud is available on your favorite public cloud or for private SaaS deployment. StarTree Cloud includes StarTree Data Manager, which allows you to ingest data from both real-time sources such as Amazon Kinesis, Apache Kafka, Apache Pulsar, or Redpanda, as well as batch data sources such as data warehouses like Snowflake, Delta Lake or Google BigQuery, or object stores like Amazon S3, Apache Flink, Apache Hadoop, or Apache Spark. StarTree ThirdEye is an add-on anomaly detection system running on top of StarTree Cloud that observes your business-critical metrics, alerting you and allowing you to perform root-cause analysis — all in real-time.
  • 6
    Apache Druid Reviews
    Apache Druid is a distributed data storage solution that is open source. Its fundamental architecture merges concepts from data warehouses, time series databases, and search technologies to deliver a high-performance analytics database capable of handling a diverse array of applications. By integrating the essential features from these three types of systems, Druid optimizes its ingestion process, storage method, querying capabilities, and overall structure. Each column is stored and compressed separately, allowing the system to access only the relevant columns for a specific query, which enhances speed for scans, rankings, and groupings. Additionally, Druid constructs inverted indexes for string data to facilitate rapid searching and filtering. It also includes pre-built connectors for various platforms such as Apache Kafka, HDFS, and AWS S3, as well as stream processors and others. The system adeptly partitions data over time, making queries based on time significantly quicker than those in conventional databases. Users can easily scale resources by simply adding or removing servers, and Druid will manage the rebalancing automatically. Furthermore, its fault-tolerant design ensures resilience by effectively navigating around any server malfunctions that may occur. This combination of features makes Druid a robust choice for organizations seeking efficient and reliable real-time data analytics solutions.
  • 7
    HEAVY.AI Reviews
    HEAVY.AI is a pioneer in accelerated analysis. The HEAVY.AI platform can be used by government and business to uncover insights in data that is beyond the reach of traditional analytics tools. The platform harnesses the huge parallelism of modern CPU/GPU hardware and is available both in the cloud or on-premise. HEAVY.AI was developed from research at Harvard and MIT Computer Science and Artificial Intelligence Laboratory. You can go beyond traditional BI and GIS and extract high-quality information from large datasets with no lag by leveraging modern GPU and CPU hardware. To get a complete picture of what, when and where, unify and explore large geospatial or time-series data sets. Combining interactive visual analytics, hardware accelerated SQL, advanced analytics & data sciences frameworks, you can find the opportunity and risk in your enterprise when it matters most.
  • 8
    QuestDB Reviews
    QuestDB is an advanced relational database that focuses on column-oriented storage optimized for time series and event-driven data. It incorporates SQL with additional features tailored for time-based analytics to facilitate real-time data processing. This documentation encompasses essential aspects of QuestDB, including initial setup instructions, comprehensive usage manuals, and reference materials for syntax, APIs, and configuration settings. Furthermore, it elaborates on the underlying architecture of QuestDB, outlining its methods for storing and querying data, while also highlighting unique functionalities and advantages offered by the platform. A key feature is the designated timestamp, which empowers time-focused queries and efficient data partitioning. Additionally, the symbol type enhances the efficiency of managing and retrieving frequently used strings. The storage model explains how QuestDB organizes records and partitions within its tables, and the use of indexes can significantly accelerate read access for specific columns. Moreover, partitions provide substantial performance improvements for both calculations and queries. With its SQL extensions, users can achieve high-performance time series analysis using a streamlined syntax that simplifies complex operations. Overall, QuestDB stands out as a powerful tool for handling time-oriented data effectively.
  • 9
    OpenText Analytics Database (Vertica) Reviews
    OpenText Analytics Database is a cutting-edge analytics platform designed to accelerate decision-making and operational efficiency through fast, real-time data processing and advanced machine learning. Organizations benefit from its flexible deployment options, including on-premises, hybrid, and multi-cloud environments, enabling them to tailor analytics infrastructure to their specific needs and lower overall costs. The platform’s massively parallel processing (MPP) architecture delivers lightning-fast query performance across large, complex datasets. It supports columnar storage and data lakehouse compatibility, allowing seamless analysis of data stored in various formats such as Parquet, ORC, and AVRO. Users can interact with data using familiar languages like SQL, R, Python, Java, and C/C++, making it accessible for both technical and business users. In-database machine learning capabilities allow for building and deploying predictive models without moving data, providing real-time insights. Additional analytics functions include time series, geospatial, and event-pattern matching, enabling deep and diverse data exploration. OpenText Analytics Database is ideal for organizations looking to harness AI and analytics to drive smarter business decisions.
  • 10
    Exasol Reviews
    An in-memory, column-oriented database combined with a Massively Parallel Processing (MPP) architecture enables the rapid querying of billions of records within mere seconds. The distribution of queries across all nodes in a cluster ensures linear scalability, accommodating a larger number of users and facilitating sophisticated analytics. The integration of MPP, in-memory capabilities, and columnar storage culminates in a database optimized for exceptional data analytics performance. With various deployment options available, including SaaS, cloud, on-premises, and hybrid solutions, data analysis can be performed in any environment. Automatic tuning of queries minimizes maintenance efforts and reduces operational overhead. Additionally, the seamless integration and efficiency of performance provide enhanced capabilities at a significantly lower cost compared to traditional infrastructure. Innovative in-memory query processing has empowered a social networking company to enhance its performance, handling an impressive volume of 10 billion data sets annually. This consolidated data repository, paired with a high-speed engine, accelerates crucial analytics, leading to better patient outcomes and improved financial results for the organization. As a result, businesses can leverage this technology to make quicker data-driven decisions, ultimately driving further success.
  • 11
    Oxla Reviews

    Oxla

    Oxla

    $50 per CPU core / monthly
    Designed specifically for optimizing compute, memory, and storage, Oxla serves as a self-hosted data warehouse that excels in handling large-scale, low-latency analytics while providing strong support for time-series data. While cloud data warehouses may suit many, they are not universally applicable; as operations expand, the ongoing costs of cloud computing can surpass initial savings on infrastructure, particularly in regulated sectors that demand comprehensive data control beyond mere VPC and BYOC setups. Oxla surpasses both traditional and cloud-based warehouses by maximizing efficiency, allowing for the scalability of expanding datasets with predictable expenses, whether on-premises or in various cloud environments. Deployment, execution, and maintenance of Oxla can be easily managed using Docker and YAML, enabling a range of workloads to thrive within a singular, self-hosted data warehouse. In this way, Oxla provides a tailored solution for organizations seeking both efficiency and control in their data management strategies.
  • 12
    TimescaleDB Reviews
    TimescaleDB brings the power of PostgreSQL to time-series and event data at any scale. It extends standard Postgres with features like automatic time-based partitioning (hypertables), incremental materialized views, and native time-series functions, making it the most efficient way to handle analytical workloads. Designed for use cases like IoT, DevOps monitoring, crypto markets, and real-time analytics, it ingests millions of rows per second while maintaining sub-second query speeds. Developers can run complex time-based queries, joins, and aggregations using familiar SQL syntax — no new language or database model required. Built-in compression ensures long-term data retention without high storage costs, and automated data management handles rollups and retention policies effortlessly. Its hybrid storage architecture merges row-based performance for live data with columnar efficiency for historical queries. Open-source and 100% PostgreSQL compatible, TimescaleDB integrates with Kafka, S3, and the entire Postgres ecosystem. Trusted by global enterprises, it delivers the performance of a purpose-built time-series system without sacrificing Postgres reliability or flexibility.
  • 13
    Trino Reviews
    Trino is a remarkably fast query engine designed to operate at exceptional speeds. It serves as a high-performance, distributed SQL query engine tailored for big data analytics, enabling users to delve into their vast data environments. Constructed for optimal efficiency, Trino excels in low-latency analytics and is extensively utilized by some of the largest enterprises globally to perform queries on exabyte-scale data lakes and enormous data warehouses. It accommodates a variety of scenarios, including interactive ad-hoc analytics, extensive batch queries spanning several hours, and high-throughput applications that require rapid sub-second query responses. Trino adheres to ANSI SQL standards, making it compatible with popular business intelligence tools like R, Tableau, Power BI, and Superset. Moreover, it allows direct querying of data from various sources such as Hadoop, S3, Cassandra, and MySQL, eliminating the need for cumbersome, time-consuming, and error-prone data copying processes. This capability empowers users to access and analyze data from multiple systems seamlessly within a single query. Such versatility makes Trino a powerful asset in today's data-driven landscape.
  • 14
    Alibaba Cloud TSDB Reviews
    A Time Series Database (TSDB) is designed for rapid data input and output, allowing for swift reading and writing of information. It achieves impressive compression rates that lead to economical data storage solutions. Moreover, this service facilitates visualization techniques, such as precision reduction, interpolation, and multi-metric aggregation, alongside the processing of query results. By utilizing TSDB, businesses can significantly lower their storage expenses while enhancing the speed of data writing, querying, and analysis. This capability allows for the management of vast quantities of data points and enables more frequent data collection. Its applications span various sectors, including IoT monitoring, enterprise energy management systems (EMSs), production security oversight, and power supply monitoring. Additionally, TSDB is instrumental in optimizing database structures and algorithms, capable of processing millions of data points in mere seconds. By employing an advanced compression method, it can minimize each data point's size to just 2 bytes, leading to over 90% savings in storage costs. Consequently, this efficiency not only benefits businesses financially but also streamlines operational workflows across different industries.
  • 15
    Machbase Reviews
    Machbase is a leading time-series database designed for real-time storage and analysis of vast amounts of sensor data from various facilities. It stands out as the only database management system (DBMS) capable of processing and analyzing large datasets at remarkable speeds, showcasing its impressive capabilities. Experience the extraordinary processing speeds that Machbase offers! This innovative product allows for immediate handling, storage, and analysis of sensor information. It achieves rapid storage and querying of sensor data by integrating the DBMS directly into Edge devices. Additionally, it provides exceptional performance in data storage and extraction when operating on a single server. With the ability to configure multi-node clusters, Machbase offers enhanced availability and scalability. Furthermore, it serves as a comprehensive management solution for Edge computing, addressing device management, connectivity, and data handling needs effectively. In a fast-paced data-driven world, Machbase proves to be an essential tool for industries relying on real-time sensor data analysis.
  • 16
    Apache Doris Reviews

    Apache Doris

    The Apache Software Foundation

    Free
    Apache Doris serves as a cutting-edge data warehouse tailored for real-time analytics, enabling exceptionally rapid analysis of data at scale. It features both push-based micro-batch and pull-based streaming data ingestion that occurs within a second, alongside a storage engine capable of real-time upserts, appends, and pre-aggregation. With its columnar storage architecture, MPP design, cost-based query optimization, and vectorized execution engine, it is optimized for handling high-concurrency and high-throughput queries efficiently. Moreover, it allows for federated querying across various data lakes, including Hive, Iceberg, and Hudi, as well as relational databases such as MySQL and PostgreSQL. Doris supports complex data types like Array, Map, and JSON, and includes a Variant data type that facilitates automatic inference for JSON structures, along with advanced text search capabilities through NGram bloomfilters and inverted indexes. Its distributed architecture ensures linear scalability and incorporates workload isolation and tiered storage to enhance resource management. Additionally, it accommodates both shared-nothing clusters and the separation of storage from compute resources, providing flexibility in deployment and management.
  • 17
    SAP HANA Reviews
    SAP HANA is an in-memory database designed to handle both transactional and analytical workloads using a single copy of data, regardless of type. It effectively dissolves the barriers between transactional and analytical processes within organizations, facilitating rapid decision-making whether deployed on-premises or in the cloud. This innovative database management system empowers users to create intelligent, real-time solutions, enabling swift decision-making from a unified data source. By incorporating advanced analytics, it enhances the capabilities of next-generation transaction processing. Organizations can build data solutions that capitalize on cloud-native attributes such as scalability, speed, and performance. With SAP HANA Cloud, businesses can access reliable, actionable information from one cohesive platform while ensuring robust security, privacy, and data anonymization, reflecting proven enterprise standards. In today's fast-paced environment, an intelligent enterprise relies on timely insights derived from data, emphasizing the need for real-time delivery of such valuable information. As the demand for immediate access to insights grows, leveraging an efficient database like SAP HANA becomes increasingly critical for organizations aiming to stay competitive.
  • 18
    eXtremeDB Reviews
    What makes eXtremeDB platform independent? - Hybrid storage of data. Unlike other IMDS databases, eXtremeDB databases are all-in-memory or all-persistent. They can also have a mix between persistent tables and in-memory table. eXtremeDB's Active Replication Fabric™, which is unique to eXtremeDB, offers bidirectional replication and multi-tier replication (e.g. edge-to-gateway-to-gateway-to-cloud), compression to maximize limited bandwidth networks and more. - Row and columnar flexibility for time series data. eXtremeDB supports database designs which combine column-based and row-based layouts in order to maximize the CPU cache speed. - Client/Server and embedded. eXtremeDB provides data management that is fast and flexible wherever you need it. It can be deployed as an embedded system and/or as a clients/server database system. eXtremeDB was designed for use in resource-constrained, mission-critical embedded systems. Found in over 30,000,000 deployments, from routers to satellites and trains to stock market world-wide.
  • 19
    Riak KV Reviews
    Riak is a distributed systems expert and works with Application teams to overcome distributed system challenges. Riak's Riak®, a distributed NoSQL databank, delivers: Unmatched resilience beyond the typical "high availability" offerings - Innovative technology to ensure data accuracy, and never lose a word. - Massive scale for commodity hardware - A common code foundation that supports true multi-model support Riak®, offers all of this while still focusing on ease-of-use. Choose Riak®, KV flexible key value data model for web scale profile management, session management, real time big data, catalog content management, customer 360, digital message and other use cases. Choose Riak®, TS for IoT, time series and other use cases.
  • 20
    IndexedDB Reviews
    IndexedDB serves as a fundamental API designed for the client-side storage of large volumes of structured data, including files and blobs. It utilizes indexing to facilitate efficient searches, making it suitable for extensive datasets. While traditional web storage can handle smaller data quantities well, it falls short when it comes to managing larger structured datasets, a gap that IndexedDB effectively fills. Functioning as a transactional database system akin to SQL-based Relational Database Management Systems (RDBMS), IndexedDB diverges from them by operating as a JavaScript-based object-oriented database. This distinction allows it to store and retrieve objects indexed by keys, with support for any objects that comply with the structured clone algorithm. Users must outline the database schema, establish a connection, and execute retrieval and updating of data through a series of transactions. Additionally, like other web storage solutions, IndexedDB adheres to the same-origin policy, ensuring data security and integrity across different domains. With its versatility and capability, IndexedDB has become an essential tool for developers dealing with complex data needs on the web.
  • 21
    Dewesoft Historian Reviews
    Historian is a software solution designed for the comprehensive and ongoing tracking of various metrics. It utilizes an InfluxDB time-series database to facilitate long-term monitoring applications seamlessly. You can oversee data related to vibration, temperature, inclination, strain, pressure, and more, using either a self-hosted setup or a completely managed cloud service. The system is compatible with the standard OPC UA protocol, ensuring efficient data access and enabling integration with DewesoftX data acquisition software, SCADAs, ERPs, or any other OPC UA-enabled clients. The data is securely housed within a cutting-edge open-source InfluxDB database, which is crafted by InfluxData and written in Go, allowing for rapid and high-availability storage and retrieval of time series data relevant to operational monitoring, application metrics, IoT sensor data, and real-time analytics. Users can choose to install the Historian service either locally on the measurement unit or within their local intranet, or opt for a fully managed cloud service tailored to their needs. This flexibility makes Historian a versatile choice for organizations looking to enhance their data monitoring capabilities.
  • 22
    Greenplum Reviews
    Greenplum Database® stands out as a sophisticated, comprehensive, and open-source data warehouse solution. It excels in providing swift and robust analytics on data volumes that reach petabyte scales. Designed specifically for big data analytics, Greenplum Database is driven by a highly advanced cost-based query optimizer that ensures exceptional performance for analytical queries on extensive data sets. This project operates under the Apache 2 license, and we extend our gratitude to all current contributors while inviting new ones to join our efforts. In the Greenplum Database community, every contribution is valued, regardless of its size, and we actively encourage diverse forms of involvement. This platform serves as an open-source, massively parallel data environment tailored for analytics, machine learning, and artificial intelligence applications. Users can swiftly develop and implement models aimed at tackling complex challenges in fields such as cybersecurity, predictive maintenance, risk management, and fraud detection, among others. Dive into the experience of a fully integrated, feature-rich open-source analytics platform that empowers innovation.
  • 23
    IBM Db2 Big SQL Reviews
    IBM Db2 Big SQL is a sophisticated hybrid SQL-on-Hadoop engine that facilitates secure and advanced data querying across a range of enterprise big data sources, such as Hadoop, object storage, and data warehouses. This enterprise-grade engine adheres to ANSI standards and provides massively parallel processing (MPP) capabilities, enhancing the efficiency of data queries. With Db2 Big SQL, users can execute a single database connection or query that spans diverse sources, including Hadoop HDFS, WebHDFS, relational databases, NoSQL databases, and object storage solutions. It offers numerous advantages, including low latency, high performance, robust data security, compatibility with SQL standards, and powerful federation features, enabling both ad hoc and complex queries. Currently, Db2 Big SQL is offered in two distinct variations: one that integrates seamlessly with Cloudera Data Platform and another as a cloud-native service on the IBM Cloud Pak® for Data platform. This versatility allows organizations to access and analyze data effectively, performing queries on both batch and real-time data across various sources, thus streamlining their data operations and decision-making processes. In essence, Db2 Big SQL provides a comprehensive solution for managing and querying extensive datasets in an increasingly complex data landscape.
  • 24
    kdb Insights Reviews
    kdb Insights is an advanced analytics platform built for the cloud, enabling high-speed real-time analysis of both live and past data streams. It empowers users to make informed decisions efficiently, regardless of the scale or speed of the data, and boasts exceptional price-performance ratios, achieving analytics performance that is up to 100 times quicker while costing only 10% compared to alternative solutions. The platform provides interactive data visualization through dynamic dashboards, allowing for immediate insights that drive timely decision-making. Additionally, it incorporates machine learning models to enhance predictive capabilities, identify clusters, detect patterns, and evaluate structured data, thereby improving AI functionalities on time-series datasets. With remarkable scalability, kdb Insights can manage vast amounts of real-time and historical data, demonstrating effectiveness with loads of up to 110 terabytes daily. Its rapid deployment and straightforward data ingestion process significantly reduce the time needed to realize value, while it natively supports q, SQL, and Python, along with compatibility for other programming languages through RESTful APIs. This versatility ensures that users can seamlessly integrate kdb Insights into their existing workflows and leverage its full potential for a wide range of analytical tasks.
  • 25
    Infobright DB Reviews
    Infobright DB is an enterprise-grade database that utilizes a columnar storage architecture, enabling business analysts to efficiently analyze data and rapidly generate reports. This versatile database can be implemented both on-premise and in cloud environments. It is designed to store and analyze substantial amounts of big data, facilitating interactive business intelligence and handling complex queries with ease. By enhancing query performance and lowering storage costs, it significantly boosts overall efficiency in analytics and reporting processes. With capabilities to manage hundreds of terabytes of data, Infobright DB overcomes the limitations often faced by traditional databases. This solution supports big data applications while removing the need for indexing and partitioning, resulting in no administrative burden. In an era where machine data is growing exponentially, IgniteTech’s Infobright DB is purpose-built to deliver exceptional performance for large quantities of machine-generated information. Furthermore, it allows users to manage intricate ad hoc analytical environments without the heavy database administration demands seen in other solutions. This makes it an invaluable tool for organizations seeking to optimize their data handling and analysis.
  • 26
    Warp 10 Reviews
    Warp 10 is a modular open source platform that collects, stores, and allows you to analyze time series and sensor data. Shaped for the IoT with a flexible data model, Warp 10 provides a unique and powerful framework to simplify your processes from data collection to analysis and visualization, with the support of geolocated data in its core model (called Geo Time Series). Warp 10 offers both a time series database and a powerful analysis environment, which can be used together or independently. It will allow you to make: statistics, extraction of characteristics for training models, filtering and cleaning of data, detection of patterns and anomalies, synchronization or even forecasts. The Platform is GDPR compliant and secure by design using cryptographic tokens to manage authentication and authorization. The Analytics Engine can be implemented within a large number of existing tools and ecosystems such as Spark, Kafka Streams, Hadoop, Jupyter, Zeppelin and many more. From small devices to distributed clusters, Warp 10 fits your needs at any scale, and can be used in many verticals: industry, transportation, health, monitoring, finance, energy, etc.
  • 27
    IBM Storage Scale Reviews
    IBM Storage Scale is an innovative software-defined solution for file and object storage, allowing organizations to create a comprehensive global data platform tailored for artificial intelligence (AI), high-performance computing (HPC), advanced analytics, and other resource-intensive tasks. In contrast to traditional applications that typically manage structured data, current high-performance AI and analytics operations are focused on unstructured data types, which can include a variety of formats such as documents, audio files, images, videos, and more. The software delivers global data abstraction services that efficiently unify various data sources across different geographic locations, even integrating non-IBM storage systems. It features a robust massively parallel file system and is compatible with a wide range of hardware platforms, comprising x86, IBM Power, IBM zSystem mainframes, ARM-based POSIX clients, virtual machines, and Kubernetes environments. This versatility enables organizations to adapt their storage solutions to meet diverse and evolving data management needs. Furthermore, IBM Storage Scale's ability to handle vast amounts of unstructured data positions it as a critical asset for enterprises aiming to leverage data for competitive advantage in today's digital landscape.
  • 28
    Hazelcast Reviews
    In-Memory Computing Platform. Digital world is different. Microseconds are important. The world's most important organizations rely on us for powering their most sensitive applications at scale. If they meet the current requirement for immediate access, new data-enabled apps can transform your business. Hazelcast solutions can be used to complement any database and deliver results that are much faster than traditional systems of record. Hazelcast's distributed architecture ensures redundancy and continuous cluster up-time, as well as always available data to support the most demanding applications. The capacity grows with demand without compromising performance and availability. The cloud delivers the fastest in-memory data grid and third-generation high speed event processing.
  • 29
    Databricks Data Intelligence Platform Reviews
    The Databricks Data Intelligence Platform empowers every member of your organization to leverage data and artificial intelligence effectively. Constructed on a lakehouse architecture, it establishes a cohesive and transparent foundation for all aspects of data management and governance, enhanced by a Data Intelligence Engine that recognizes the distinct characteristics of your data. Companies that excel across various sectors will be those that harness the power of data and AI. Covering everything from ETL processes to data warehousing and generative AI, Databricks facilitates the streamlining and acceleration of your data and AI objectives. By merging generative AI with the integrative advantages of a lakehouse, Databricks fuels a Data Intelligence Engine that comprehends the specific semantics of your data. This functionality enables the platform to optimize performance automatically and manage infrastructure in a manner tailored to your organization's needs. Additionally, the Data Intelligence Engine is designed to grasp the unique language of your enterprise, making the search and exploration of new data as straightforward as posing a question to a colleague, thus fostering collaboration and efficiency. Ultimately, this innovative approach transforms the way organizations interact with their data, driving better decision-making and insights.
  • 30
    ScyllaDB Reviews
    ScyllaDB serves as an ideal database solution for applications that demand high performance and minimal latency, catering specifically to data-intensive needs. It empowers teams to fully utilize the growing computing capabilities of modern infrastructures, effectively removing obstacles to scaling as data volumes expand. Distinct from other database systems, ScyllaDB stands out as a distributed NoSQL database that is completely compatible with both Apache Cassandra and Amazon DynamoDB, while incorporating significant architectural innovations that deliver outstanding user experiences at significantly reduced costs. Over 400 transformative companies, including Disney+ Hotstar, Expedia, FireEye, Discord, Zillow, Starbucks, Comcast, and Samsung, rely on ScyllaDB to tackle their most challenging database requirements. Furthermore, ScyllaDB is offered in various formats, including a free open-source version, a fully-supported enterprise solution, and a fully managed database-as-a-service (DBaaS) available across multiple cloud platforms, ensuring flexibility for diverse user needs. This versatility makes it an attractive choice for organizations looking to optimize their database performance.
  • 31
    Google Cloud Inference API Reviews
    Analyzing time-series data is crucial for the daily functions of numerous businesses. Common applications involve assessing consumer foot traffic and conversion rates for retailers, identifying anomalies in data, discovering real-time correlations within sensor information, and producing accurate recommendations. With the Cloud Inference API Alpha, businesses can derive real-time insights from their time-series datasets that they input. This tool provides comprehensive details about API query results, including the various groups of events analyzed, the total number of event groups, and the baseline probability associated with each event returned. It enables real-time streaming of data, facilitating the computation of correlations as events occur. Leveraging Google Cloud’s robust infrastructure and a comprehensive security strategy that has been fine-tuned over 15 years through various consumer applications ensures reliability. The Cloud Inference API is seamlessly integrated with Google Cloud Storage services, enhancing its functionality and user experience. This integration allows for more efficient data handling and analysis, positioning businesses to make informed decisions faster.
  • 32
    Quantum DXi Reviews
    High-performance and scalable backup appliances are essential for ensuring data protection, cyber resilience, and disaster recovery. As the landscape of data protection evolves, the challenges associated with safeguarding information across enterprises become increasingly intricate. Our clients are confronting an exponential rise in data volume, spanning databases, virtual settings, and unstructured datasets. They are tasked with fulfilling or surpassing service level agreements (SLAs) concerning both recovery time objectives (RTO) and recovery point objectives (RPO), all while operating within budgets that are not keeping pace with their storage needs. Furthermore, the demand for robust data protection has intensified, requiring solutions that address operational issues, secure data across multiple locations, and defend against threats such as ransomware and other cyber attacks. The DXi® series backup appliances stand out as a remarkably effective answer to fulfill your backup requirements, uphold SLA commitments, and bolster your efforts in cyber recovery, ensuring your organization remains resilient in the face of evolving challenges.
  • 33
    Katana Graph Reviews
    Streamlined distributed computing significantly enhances graph-analytics performance without requiring extensive infrastructure changes. By incorporating a broader variety of data for standardization and visualization on the graph, insights can be significantly strengthened. The combination of advancements in both graph and deep learning results in efficiencies that facilitate prompt insights on the largest graphs in existence. Katana Graph equips Financial Services firms with the tools to tap into the vast possibilities offered by graph analytics and AI at scale, enabling everything from real-time fraud detection to comprehensive customer insights. Leveraging breakthroughs in high-performance parallel computing (HPC), Katana Graph’s intelligent platform evaluates risks and uncovers customer insights from massive data sets using rapid analytics and AI capabilities that surpass those of alternative graph technologies. This transformative approach allows organizations to stay ahead of trends and make data-driven decisions with confidence.
  • 34
    Dell PowerEdge C Series Reviews
    The Dell PowerEdge C-Series servers represent a collection of high-density, scalable servers tailored for hyper-scale and high-performance computing (HPC) scenarios. Engineered to efficiently manage workloads requiring substantial processing power, expansive storage, and effective cooling systems, these servers boast a modular and adaptable architecture. This design enables customization to cater to the unique demands of diverse applications, including big data analytics, artificial intelligence (AI), machine learning (ML), and cloud computing. Prominent features of the PowerEdge C-Series encompass compatibility with the latest Intel or AMD processors, substantial memory capabilities, a range of storage alternatives, including NVMe drives, and advanced thermal management solutions. By merging performance, scalability, and flexibility, Dell PowerEdge C-Series servers equip organizations with the essential resources to adeptly navigate data-intensive and compute-heavy tasks in the ever-evolving IT landscape. As technology continues to advance, these servers will remain pivotal in meeting the growing demands of modern computing environments.
  • 35
    Google Cloud Timeseries Insights API Reviews
    Detecting anomalies in time series data is critical for the daily functions of numerous organizations. The Timeseries Insights API Preview enables you to extract real-time insights from your time-series datasets effectively. It provides comprehensive information necessary for interpreting your API query results, including details on anomaly occurrences, projected value ranges, and segments of analyzed events. This capability allows for the real-time streaming of data, facilitating the identification of anomalies as they occur. With over 15 years of innovation in security through widely-used consumer applications like Gmail and Search, Google Cloud offers a robust end-to-end infrastructure and a layered security approach. The Timeseries Insights API is seamlessly integrated with other Google Cloud Storage services, ensuring a uniform access method across various storage solutions. You can analyze trends and anomalies across multiple event dimensions and manage datasets that encompass tens of billions of events. Additionally, the system is capable of executing thousands of queries every second, making it a powerful tool for real-time data analysis and decision-making. Such capabilities are invaluable for businesses aiming to enhance their operational efficiency and responsiveness.
  • 36
    SensorCloud Reviews

    SensorCloud

    LORD Corporation

    $35 per month
    SensorCloud stands out as an innovative platform for storing, visualizing, and remotely managing sensor data, utilizing robust cloud computing technologies to ensure exceptional scalability, quick data visualization, and customizable analytical capabilities. Among its key features are FastGraph, MathEngine®, LiveConnect, and the OpenData API, all designed to enhance user experience. The platform enables users to effortlessly construct dashboards for data visualization, ranging from straightforward Timeseries Graph widgets to more complex configurations featuring Radial Gauges, Text Charts, Linear Gauges, FFTs, and Statistics. Given that SensorCloud accommodates unlimited data uploads and LORD's sensors operate at very high sampling rates, the ability to swiftly visualize extensive datasets is crucial. Our search for an existing application that could manage substantial data volumes was unfruitful; thus, we developed a proprietary algorithm tailored to meet our unique needs and challenges in handling large-scale sensor data. Ultimately, this dedication to innovation ensures that SensorCloud remains a leader in the realm of sensor data management.
  • 37
    SelectDB Reviews

    SelectDB

    SelectDB

    $0.22 per hour
    SelectDB is an innovative data warehouse built on Apache Doris, designed for swift query analysis on extensive real-time datasets. Transitioning from Clickhouse to Apache Doris facilitates the separation of the data lake and promotes an upgrade to a more efficient lake warehouse structure. This high-speed OLAP system handles nearly a billion query requests daily, catering to various data service needs across multiple scenarios. To address issues such as storage redundancy, resource contention, and the complexities of data governance and querying, the original lake warehouse architecture was restructured with Apache Doris. By leveraging Doris's capabilities for materialized view rewriting and automated services, it achieves both high-performance data querying and adaptable data governance strategies. The system allows for real-time data writing within seconds and enables the synchronization of streaming data from databases. With a storage engine that supports immediate updates and enhancements, it also facilitates real-time pre-polymerization of data for improved processing efficiency. This integration marks a significant advancement in the management and utilization of large-scale real-time data.
  • 38
    Azure Data Lake Storage Reviews
    Break down data silos through a unified storage solution that effectively optimizes expenses by employing tiered storage and comprehensive policy management. Enhance data authentication with Azure Active Directory (Azure AD) alongside role-based access control (RBAC), while bolstering data protection with features such as encryption at rest and advanced threat protection. This approach ensures a highly secure environment with adaptable mechanisms for safeguarding access, encryption, and network-level governance. Utilizing a singular storage platform, you can seamlessly ingest, process, and visualize data while supporting prevalent analytics frameworks. Cost efficiency is further achieved through the independent scaling of storage and compute resources, lifecycle policy management, and object-level tiering. With Azure's extensive global infrastructure, you can effortlessly meet diverse capacity demands and manage data efficiently. Additionally, conduct large-scale analytical queries with consistently high performance, ensuring that your data management meets both current and future needs.
  • 39
    AVEVA Historian Reviews
    AVEVA Historian streamlines the complex demands of data reporting and analysis. This powerful tool can be utilized to oversee either a single process or an entire facility, effectively storing data on-site while also consolidating information at a corporate level. By preventing the existence of various versions of plant operational data, it enhances productivity, minimizes errors, and cuts down on operating expenses. In contrast to traditional relational databases that struggle in production settings, Historian is specifically designed to manage time-series data alongside alarm and event data seamlessly. Its innovative “history block” technology records plant data significantly quicker than standard database systems while consuming only a small fraction of the typical storage space. Furthermore, Historian upholds the data integrity necessary to meet the highest standards of requirement. It adeptly handles low bandwidth data communications, accommodates delayed information, and processes data from systems that may have inconsistent clock settings. This ensures that high-resolution data is captured accurately every single time, contributing to reliable operational insights and decision-making.
  • 40
    Databend Reviews
    Databend is an innovative, cloud-native data warehouse crafted to provide high-performance and cost-effective analytics for extensive data processing needs. Its architecture is elastic, allowing it to scale dynamically in response to varying workload demands, thus promoting efficient resource use and reducing operational expenses. Developed in Rust, Databend delivers outstanding performance through features such as vectorized query execution and columnar storage, which significantly enhance data retrieval and processing efficiency. The cloud-first architecture facilitates smooth integration with various cloud platforms while prioritizing reliability, data consistency, and fault tolerance. As an open-source solution, Databend presents a versatile and accessible option for data teams aiming to manage big data analytics effectively in cloud environments. Additionally, its continuous updates and community support ensure that users can take advantage of the latest advancements in data processing technology.
  • 41
    OpenTSDB Reviews
    OpenTSDB comprises a Time Series Daemon (TSD) along with a suite of command line tools. Users primarily engage with OpenTSDB by operating one or more independent TSDs, as there is no centralized master or shared state, allowing for the scalability to run multiple TSDs as necessary to meet varying loads. Each TSD utilizes HBase, an open-source database, or the hosted Google Bigtable service for the storage and retrieval of time-series data. The schema designed for the data is highly efficient, enabling rapid aggregations of similar time series while minimizing storage requirements. Users interact with the TSD without needing direct access to the underlying storage system. Communication with the TSD can be accomplished through a straightforward telnet-style protocol, an HTTP API, or a user-friendly built-in graphical interface. To begin utilizing OpenTSDB, the initial task is to send time series data to the TSDs, and there are various tools available to facilitate the import of data from different sources into OpenTSDB. Overall, OpenTSDB's design emphasizes flexibility and efficiency for time series data management.
  • 42
    Azure Synapse Analytics Reviews
    Azure Synapse represents the advanced evolution of Azure SQL Data Warehouse. It is a comprehensive analytics service that integrates enterprise data warehousing with Big Data analytics capabilities. Users can query data flexibly, choosing between serverless or provisioned resources, and can do so at scale. By merging these two domains, Azure Synapse offers a cohesive experience for ingesting, preparing, managing, and delivering data, catering to the immediate requirements of business intelligence and machine learning applications. This integration enhances the efficiency and effectiveness of data-driven decision-making processes.
  • 43
    KX Delta Platform Reviews
    The KX Delta Platform, a high-performance data management system for enterprises, is designed to capture, analyze, and store real-time data and historical data. Built on kdb+ - the world's most popular time-series data base - it offers flexible configuration options to support key deployment requirements such as redundancy and load balancing. It also ensures high availability. Robust security measures, such as LDAP authorization and data encryption, ensure strict compliance to data sensitivity and security requirements. The platform allows users to visualize data using a dashboard builder and interactive data playback. It also generates reports automatically. This platform is a powerful tool for program management. It allows for the management, manipulation and exploration of large real-time and historic datasets. Processing is done at high speeds to support mission critical applications.
  • 44
    Tiger Data Reviews

    Tiger Data

    Tiger Data

    $30 per month
    Tiger Data reimagines PostgreSQL for the modern era — powering everything from IoT and fintech to AI and Web3. As the creator of TimescaleDB, it brings native time-series, event, and analytical capabilities to the world’s most trusted database engine. Through Tiger Cloud, developers gain access to a fully managed, elastic infrastructure with auto-scaling, high availability, and point-in-time recovery. The platform introduces core innovations like Forks (copy-on-write storage branches for CI/CD and testing), Memory (durable agent context and recall), and Search (hybrid BM25 and vector retrieval). Combined with hypertables, continuous aggregates, and materialized views, Tiger delivers the speed of specialized analytical systems without sacrificing SQL simplicity. Teams use Tiger Data to unify real-time and historical analytics, build AI-driven workflows, and streamline data management at scale. It integrates seamlessly with the entire PostgreSQL ecosystem, supporting APIs, CLIs, and modern development frameworks. With over 20,000 GitHub stars and a thriving developer community, Tiger Data stands as the evolution of PostgreSQL for the intelligent data age.
  • 45
    Tencent Cloud Elastic MapReduce Reviews
    EMR allows you to adjust the size of your managed Hadoop clusters either manually or automatically, adapting to your business needs and monitoring indicators. Its architecture separates storage from computation, which gives you the flexibility to shut down a cluster to optimize resource utilization effectively. Additionally, EMR features hot failover capabilities for CBS-based nodes, utilizing a primary/secondary disaster recovery system that enables the secondary node to activate within seconds following a primary node failure, thereby ensuring continuous availability of big data services. The metadata management for components like Hive is also designed to support remote disaster recovery options. With computation-storage separation, EMR guarantees high data persistence for COS data storage, which is crucial for maintaining data integrity. Furthermore, EMR includes a robust monitoring system that quickly alerts you to cluster anomalies, promoting stable operations. Virtual Private Clouds (VPCs) offer an effective means of network isolation, enhancing your ability to plan network policies for managed Hadoop clusters. This comprehensive approach not only facilitates efficient resource management but also establishes a reliable framework for disaster recovery and data security.