Best Azure Notebooks Alternatives in 2026

Find the top alternatives to Azure Notebooks currently available. Compare ratings, reviews, pricing, and features of Azure Notebooks alternatives in 2026. Slashdot lists the best Azure Notebooks alternatives on the market that offer competing products that are similar to Azure Notebooks. Sort through Azure Notebooks alternatives below to make the best choice for your needs

  • 1
    Teradata VantageCloud Reviews
    See Software
    Learn More
    Compare Both
    Teradata VantageCloud: Open, Scalable Cloud Analytics for AI VantageCloud is Teradata’s cloud-native analytics and data platform designed for performance and flexibility. It unifies data from multiple sources, supports complex analytics at scale, and makes it easier to deploy AI and machine learning models in production. With built-in support for multi-cloud and hybrid deployments, VantageCloud lets organizations manage data across AWS, Azure, Google Cloud, and on-prem environments without vendor lock-in. Its open architecture integrates with modern data tools and standard formats, giving developers and data teams freedom to innovate while keeping costs predictable.
  • 2
    Windsurf Editor Reviews
    Top Pick
    See Software
    Learn More
    Compare Both
    Windsurf is a cutting-edge IDE designed for developers to maintain focus and productivity through AI-driven assistance. At the heart of the platform is Cascade, an intelligent agent that not only fixes bugs and errors but also anticipates potential issues before they arise. With built-in features for real-time code previews, automatic linting, and seamless integrations with popular tools like GitHub and Slack, Windsurf streamlines the development process. Developers can also benefit from memory tracking, which helps Cascade recall past work, and smart suggestions that enhance code optimization. Windsurf’s unique capabilities ensure that developers can work faster and smarter, reducing onboarding time and accelerating project delivery.
  • 3
    Google Colab Reviews
    Google Colab is a complimentary, cloud-based Jupyter Notebook platform that facilitates environments for machine learning, data analysis, and educational initiatives. It provides users with immediate access to powerful computational resources, including GPUs and TPUs, without the need for complex setup, making it particularly suitable for those engaged in data-heavy projects. Users can execute Python code in an interactive notebook format, collaborate seamlessly on various projects, and utilize a wide range of pre-built tools to enhance their experimentation and learning experience. Additionally, Colab has introduced a Data Science Agent that streamlines the analytical process by automating tasks from data comprehension to providing insights within a functional Colab notebook, although it is important to note that the agent may produce errors. This innovative feature further supports users in efficiently navigating the complexities of data science workflows.
  • 4
    CoCalc Reviews
    Teaching scientific software in an online setting has been revolutionized by CoCalc, a digital computer lab that alleviates the challenges associated with this task. Each student operates entirely online within their own designated workspace, allowing instructors to monitor their progress in real-time. Educators can easily access a student's file at any moment, diving into their work precisely where they left off. The TimeTravel feature enables teachers to review every step a student took to arrive at their solution. Integrated chat rooms facilitate direct guidance for students as they work or enable discussions about shared files with teaching assistants. Additionally, the project's Activity Log meticulously tracks when and by whom each file was accessed, ensuring transparency and accountability. Say goodbye to the hassles of complicated software installations, as everyone can begin their work in mere seconds! Moreover, since all users engage with the same software stack, potential discrepancies between the environments of teachers and students are completely eradicated, fostering a uniform learning experience. This streamlined approach not only enhances the teaching process but also empowers students to focus on their learning without technical distractions.
  • 5
    Gradient Reviews
    Discover a fresh library or dataset while working in a notebook environment. Streamline your preprocessing, training, or testing processes through an automated workflow. Transform your application into a functioning product by deploying it effectively. You have the flexibility to utilize notebooks, workflows, and deployments either together or on their own. Gradient is fully compatible with all major frameworks and libraries, ensuring seamless integration. Powered by Paperspace's exceptional GPU instances, Gradient allows you to accelerate your projects significantly. Enhance your development speed with integrated source control, connecting effortlessly to GitHub to oversee all your work and computing resources. Launch a GPU-enabled Jupyter Notebook right from your browser in mere seconds, using any library or framework of your choice. It's simple to invite collaborators or share a public link for your projects. This straightforward cloud workspace operates on free GPUs, allowing you to get started almost instantly with an easy-to-navigate notebook environment that's perfect for machine learning developers. Offering a robust and hassle-free setup with numerous features, it just works. Choose from pre-existing templates or integrate your own unique configurations, and take advantage of a free GPU to kickstart your projects!
  • 6
    MLJAR Studio Reviews
    This desktop application integrates Jupyter Notebook and Python, allowing for a seamless one-click installation. It features engaging code snippets alongside an AI assistant that enhances coding efficiency, making it an ideal tool for data science endeavors. We have meticulously developed over 100 interactive code recipes tailored for your Data Science projects, which can identify available packages within your current environment. With a single click, you can install any required modules, streamlining your workflow significantly. Users can easily create and manipulate all variables present in their Python session, while these interactive recipes expedite the completion of tasks. The AI Assistant, equipped with knowledge of your active Python session, variables, and modules, is designed to address data challenges using the Python programming language. It offers support for various tasks, including plotting, data loading, data wrangling, and machine learning. If you encounter code issues, simply click the Fix button, and the AI assistant will analyze the problem and suggest a viable solution, making your coding experience smoother and more productive. Additionally, this innovative tool not only simplifies coding but also enhances your learning curve in data science.
  • 7
    IBM Watson Studio Reviews
    Create, execute, and oversee AI models while enhancing decision-making at scale across any cloud infrastructure. IBM Watson Studio enables you to implement AI seamlessly anywhere as part of the IBM Cloud Pak® for Data, which is the comprehensive data and AI platform from IBM. Collaborate across teams, streamline the management of the AI lifecycle, and hasten the realization of value with a versatile multicloud framework. You can automate the AI lifecycles using ModelOps pipelines and expedite data science development through AutoAI. Whether preparing or constructing models, you have the option to do so visually or programmatically. Deploying and operating models is made simple with one-click integration. Additionally, promote responsible AI governance by ensuring your models are fair and explainable to strengthen business strategies. Leverage open-source frameworks such as PyTorch, TensorFlow, and scikit-learn to enhance your projects. Consolidate development tools, including leading IDEs, Jupyter notebooks, JupyterLab, and command-line interfaces, along with programming languages like Python, R, and Scala. Through the automation of AI lifecycle management, IBM Watson Studio empowers you to build and scale AI solutions with an emphasis on trust and transparency, ultimately leading to improved organizational performance and innovation.
  • 8
    Oracle Machine Learning Reviews
    Machine learning reveals concealed patterns and valuable insights within enterprise data, ultimately adding significant value to businesses. Oracle Machine Learning streamlines the process of creating and deploying machine learning models for data scientists by minimizing data movement, incorporating AutoML technology, and facilitating easier deployment. Productivity for data scientists and developers is enhanced while the learning curve is shortened through the use of user-friendly Apache Zeppelin notebook technology based on open source. These notebooks accommodate SQL, PL/SQL, Python, and markdown interpreters tailored for Oracle Autonomous Database, enabling users to utilize their preferred programming languages when building models. Additionally, a no-code interface that leverages AutoML on Autonomous Database enhances accessibility for both data scientists and non-expert users, allowing them to harness powerful in-database algorithms for tasks like classification and regression. Furthermore, data scientists benefit from seamless model deployment through the integrated Oracle Machine Learning AutoML User Interface, ensuring a smoother transition from model development to application. This comprehensive approach not only boosts efficiency but also democratizes machine learning capabilities across the organization.
  • 9
    Modelbit Reviews
    Maintain your usual routine while working within Jupyter Notebooks or any Python setting. Just invoke modelbi.deploy to launch your model, allowing Modelbit to manage it — along with all associated dependencies — in a production environment. Machine learning models deployed via Modelbit can be accessed directly from your data warehouse with the same simplicity as invoking a SQL function. Additionally, they can be accessed as a REST endpoint directly from your application. Modelbit is integrated with your git repository, whether it's GitHub, GitLab, or a custom solution. It supports code review processes, CI/CD pipelines, pull requests, and merge requests, enabling you to incorporate your entire git workflow into your Python machine learning models. This platform offers seamless integration with tools like Hex, DeepNote, Noteable, and others, allowing you to transition your model directly from your preferred cloud notebook into a production setting. If you find managing VPC configurations and IAM roles cumbersome, you can effortlessly redeploy your SageMaker models to Modelbit. Experience immediate advantages from Modelbit's platform utilizing the models you have already developed, and streamline your machine learning deployment process like never before.
  • 10
    Deepnote Reviews
    Deepnote is building the best data science notebook for teams. Connect your data, explore and analyze it within the notebook with real-time collaboration and versioning. Share links to your projects with other analysts and data scientists on your team, or present your polished, published notebooks to end users and stakeholders. All of this is done through a powerful, browser-based UI that runs in the cloud.
  • 11
    JupyterLab Reviews
    Project Jupyter is dedicated to the creation of open-source tools, standards, and services that facilitate interactive computing in numerous programming languages. At the heart of this initiative is JupyterLab, a web-based interactive development environment designed for Jupyter notebooks, coding, and data manipulation. JupyterLab offers remarkable flexibility, allowing users to customize and organize the interface to cater to various workflows in fields such as data science, scientific research, and machine learning. Its extensibility and modular nature enable developers to create plugins that introduce new features and seamlessly integrate with existing components. The Jupyter Notebook serves as an open-source web application enabling users to produce and share documents that incorporate live code, mathematical equations, visualizations, and descriptive text. Common applications of Jupyter include data cleaning and transformation, numerical simulations, statistical analysis, data visualization, and machine learning, among others. Supporting over 40 programming languages—including popular ones like Python, R, Julia, and Scala—Jupyter continues to be a valuable resource for researchers and developers alike, fostering collaborative and innovative approaches to computing challenges.
  • 12
    JetBrains DataSpell Reviews
    Easily switch between command and editor modes using just one keystroke while navigating through cells with arrow keys. Take advantage of all standard Jupyter shortcuts for a smoother experience. Experience fully interactive outputs positioned directly beneath the cell for enhanced visibility. When working within code cells, benefit from intelligent code suggestions, real-time error detection, quick-fix options, streamlined navigation, and many additional features. You can operate with local Jupyter notebooks or effortlessly connect to remote Jupyter, JupyterHub, or JupyterLab servers directly within the IDE. Execute Python scripts or any expressions interactively in a Python Console, observing outputs and variable states as they happen. Split your Python scripts into code cells using the #%% separator, allowing you to execute them one at a time like in a Jupyter notebook. Additionally, explore DataFrames and visual representations in situ through interactive controls, all while enjoying support for a wide range of popular Python scientific libraries, including Plotly, Bokeh, Altair, ipywidgets, and many others, for a comprehensive data analysis experience. This integration allows for a more efficient workflow and enhances productivity while coding.
  • 13
    Azure Cloud Shell Reviews
    Access Azure through a cloud-hosted, browser-based shell that is authenticated and available from nearly any location. Each unique user account is assigned its own Azure Cloud Shell, which is automatically authenticated during every session. This service provides the option to select a shell interface that aligns with your preferred working style, offering both Bash and PowerShell environments. Regularly maintained and updated by Microsoft, Cloud Shell is preloaded with a variety of essential command-line tools, including Linux shell interpreters, PowerShell modules, Azure utilities, text editors, source control systems, build tools, container management tools, and database management tools. Additionally, it supports several widely-used programming languages like Node.js, .NET, and Python, allowing users to leverage familiar tools in an environment that is consistently refreshed and managed by Microsoft. This flexibility enables developers and system administrators to seamlessly integrate their workflows within a single, powerful shell experience.
  • 14
    Kaggle Reviews
    Kaggle provides a user-friendly, customizable environment for Jupyter Notebooks without any setup requirements. You can take advantage of free GPU resources along with an extensive collection of data and code shared by the community. Within the Kaggle platform, you will discover everything necessary to perform your data science tasks effectively. With access to more than 19,000 publicly available datasets and 200,000 notebooks created by users, you can efficiently tackle any analytical challenge you encounter. This wealth of resources empowers users to enhance their learning and productivity in the field of data science.
  • 15
    Azure Storage Reviews
    Microsoft's Azure Storage platform serves as a comprehensive cloud storage solution tailored for contemporary data management needs. It guarantees high availability, impressive scalability, durability, and security for an extensive range of data objects hosted in the cloud. Users can access these data objects globally through HTTP or HTTPS using a REST API, facilitating seamless data retrieval. Additionally, Azure Storage provides client libraries to assist developers in creating applications or services in various programming languages, including .NET, Java, Python, JavaScript, C++, and Go. For scripting data management or configuration tasks, developers and IT experts can utilize Azure PowerShell and Azure CLI effectively. The Azure portal and Azure Storage Explorer serve as intuitive user-interface tools for engaging with Azure Storage resources. The platform's durability and high availability are enhanced by built-in redundancy, ensuring data safety even during temporary hardware failures. Furthermore, users can choose to replicate their data across multiple data centers or geographical regions, offering extra safeguards against local disasters or unforeseen events. This level of protection reinforces Azure Storage’s commitment to providing reliable and secure cloud storage solutions for its users.
  • 16
    Hopsworks Reviews

    Hopsworks

    Logical Clocks

    $1 per month
    Hopsworks is a comprehensive open-source platform designed to facilitate the creation and management of scalable Machine Learning (ML) pipelines, featuring the industry's pioneering Feature Store for ML. Users can effortlessly transition from data analysis and model creation in Python, utilizing Jupyter notebooks and conda, to executing robust, production-ready ML pipelines without needing to acquire knowledge about managing a Kubernetes cluster. The platform is capable of ingesting data from a variety of sources, whether they reside in the cloud, on-premise, within IoT networks, or stem from your Industry 4.0 initiatives. You have the flexibility to deploy Hopsworks either on your own infrastructure or via your chosen cloud provider, ensuring a consistent user experience regardless of the deployment environment, be it in the cloud or a highly secure air-gapped setup. Moreover, Hopsworks allows you to customize alerts for various events triggered throughout the ingestion process, enhancing your workflow efficiency. This makes it an ideal choice for teams looking to streamline their ML operations while maintaining control over their data environments.
  • 17
    Gurobi Optimizer Reviews
    By leveraging our advanced algorithms, you can enhance your model's complexity to more accurately reflect real-world scenarios while ensuring you can solve it within the given timeframe. Seamlessly incorporate Gurobi into your existing applications using familiar programming languages. Our user-friendly programming interfaces are crafted to be efficient and contemporary, helping you reduce the learning curve while boosting your overall productivity. The Python API we offer includes advanced modeling features that simplify the creation of optimization models, making the process more straightforward. You have the option to utilize Anaconda Python distributions, which come with pre-compiled libraries to facilitate application development, or choose Spyder for visual development and Jupyter for a notebook-style development experience, ensuring you have versatile tools at your disposal. Additionally, Gurobi's robust capabilities empower users to tackle increasingly complex optimization challenges with confidence.
  • 18
    Gradio Reviews
    Create and Share Engaging Machine Learning Applications. Gradio offers the quickest way to showcase your machine learning model through a user-friendly web interface, enabling anyone to access it from anywhere! You can easily install Gradio using pip. Setting up a Gradio interface involves just a few lines of code in your project. There are various interface types available to connect your function effectively. Gradio can be utilized in Python notebooks or displayed as a standalone webpage. Once you create an interface, it can automatically generate a public link that allows your colleagues to interact with the model remotely from their devices. Moreover, after developing your interface, you can host it permanently on Hugging Face. Hugging Face Spaces will take care of hosting the interface on their servers and provide you with a shareable link, ensuring your work is accessible to a wider audience. With Gradio, sharing your machine learning solutions becomes an effortless task!
  • 19
    Zerve AI Reviews
    By combining the advantages of a notebook with the functionality of an IDE, experts are empowered to analyze data while simultaneously developing reliable code, all supported by a fully automated cloud infrastructure. Zerve revolutionizes the data science development environment, providing teams focused on data science and machine learning with a cohesive platform to explore, collaborate, construct, and deploy their AI projects like never before. This innovative tool ensures true language interoperability, allowing users to seamlessly integrate Python, R, SQL, or Markdown within the same workspace, facilitating the connection of various code blocks. Zerve eliminates the frustrations of lengthy code execution or cumbersome containers by enabling unlimited parallel processing throughout the entire development process. Furthermore, artifacts generated during analysis are automatically serialized, versioned, stored, and preserved, making it simple to modify any step in the data pipeline without the need to reprocess earlier stages. Users also benefit from precise control over computing resources and additional memory, which is essential for handling intricate data transformations. With Zerve, data science teams can enhance their workflow efficiency and streamline project management significantly.
  • 20
    PythonAnywhere Reviews

    PythonAnywhere

    PythonAnywhere

    $5 per month per app
    Start without any cost today! Our introductory plan provides you with access to machines equipped with a complete Python environment. You can easily develop and host your website or any code directly in your browser, eliminating the need for software installation or server management. Just focus on writing your application; there's no requirement to set up or maintain a web server—everything is already configured and ready to use. You can even carry your development environment with you! As long as you have a browser and an Internet connection, you possess all the tools you need. PythonAnywhere offers a comprehensive Python environment that’s ideal for both students and educators—allowing you to focus on teaching instead of dealing with installation issues. Should you need assistance with PythonAnywhere, you can communicate directly with our development team, ensuring that help comes from experienced developers. We simplify a typically complex process, allowing you to dedicate your energy to crafting innovative applications for your audience. This way, you can maximize your productivity while minimizing technical distractions.
  • 21
    Pathway Reviews
    Scalable Python framework designed to build real-time intelligent applications, data pipelines, and integrate AI/ML models
  • 22
    Edison Analysis Reviews

    Edison Analysis

    Edison Scientific

    $50 per month
    Edison Analysis serves as an advanced scientific data-analysis tool developed by Edison Scientific, functioning as the core analytical engine for their AI Scientist platform known as Kosmos. It is accessible through both Edison’s platform and an API, facilitating intricate scientific data analysis. By iteratively constructing and refining Jupyter notebooks within a specialized environment, this agent takes a dataset alongside a prompt to thoroughly explore, analyze, and interpret the information, ultimately delivering detailed insights, comprehensive reports, and visualizations akin to the work of a human scientist. It is capable of executing code in Python, R, and Bash, and incorporates a wide array of common scientific-analysis libraries within a Docker framework. As all operations occur within a notebook, the logic behind the analysis remains completely transparent and accountable; users have the ability to examine how data was processed, the parameters selected, and the reasoning that led to conclusions, while also being able to download the notebook and related assets whenever they wish. This innovative approach not only enhances the understanding of scientific data but also fosters greater collaboration among researchers by providing a clear record of the entire analytical process.
  • 23
    Kubeflow Reviews
    The Kubeflow initiative aims to simplify the process of deploying machine learning workflows on Kubernetes, ensuring they are both portable and scalable. Rather than duplicating existing services, our focus is on offering an easy-to-use platform for implementing top-tier open-source ML systems across various infrastructures. Kubeflow is designed to operate seamlessly wherever Kubernetes is running. It features a specialized TensorFlow training job operator that facilitates the training of machine learning models, particularly excelling in managing distributed TensorFlow training tasks. Users can fine-tune the training controller to utilize either CPUs or GPUs, adapting it to different cluster configurations. In addition, Kubeflow provides functionalities to create and oversee interactive Jupyter notebooks, allowing for tailored deployments and resource allocation specific to data science tasks. You can test and refine your workflows locally before transitioning them to a cloud environment whenever you are prepared. This flexibility empowers data scientists to iterate efficiently, ensuring that their models are robust and ready for production.
  • 24
    Azure Data Science Virtual Machines Reviews
    DSVMs, or Data Science Virtual Machines, are pre-configured Azure Virtual Machine images equipped with a variety of widely-used tools for data analysis, machine learning, and AI training. They ensure a uniform setup across teams, encouraging seamless collaboration and sharing of resources while leveraging Azure's scalability and management features. Offering a near-zero setup experience, these VMs provide a fully cloud-based desktop environment tailored for data science applications. They facilitate rapid and low-friction deployment suitable for both classroom settings and online learning environments. Users can execute analytics tasks on diverse Azure hardware configurations, benefiting from both vertical and horizontal scaling options. Moreover, the pricing structure allows individuals to pay only for the resources they utilize, ensuring cost-effectiveness. With readily available GPU clusters that come pre-configured for deep learning tasks, users can hit the ground running. Additionally, the VMs include various examples, templates, and sample notebooks crafted or validated by Microsoft, which aids in the smooth onboarding process for numerous tools and capabilities, including but not limited to Neural Networks through frameworks like PyTorch and TensorFlow, as well as data manipulation using R, Python, Julia, and SQL Server. This comprehensive package not only accelerates the learning curve for newcomers but also enhances productivity for seasoned data scientists.
  • 25
    marimo Reviews
    Introducing an innovative reactive notebook designed for Python, which allows you to conduct repeatable experiments, run scripts seamlessly, launch applications, and manage versions using git. 🚀 Comprehensive: it serves as a substitute for jupyter, streamlit, jupytext, ipywidgets, papermill, and additional tools. ⚡️ Dynamic: when you execute a cell, marimo automatically runs all related cells or flags them as outdated. 🖐️ Engaging: easily connect sliders, tables, and plots to your Python code without the need for callbacks. 🔬 Reliable: ensures no hidden states, guarantees deterministic execution, and includes built-in package management for consistency. 🏃 Functional: capable of being executed as a Python script, allowing for customization via CLI arguments. 🛜 Accessible: can be transformed into an interactive web application or presentation, and functions in the browser using WASM. 🛢️ Tailored for data: efficiently query dataframes and databases using SQL, plus filter and search through dataframes effortlessly. 🐍 git-compatible: stores notebooks as .py files, making version control straightforward. ⌨️ A contemporary editor: features include GitHub Copilot, AI helpers, vim keybindings, a variable explorer, and an array of other enhancements to streamline your workflow. With these capabilities, this notebook elevates the way you work with Python, promoting a more efficient and collaborative coding environment.
  • 26
    CData Python Connectors Reviews
    CData Python Connectors make it easy for Python users to connect to SaaS and Big Data, NoSQL and relational data sources. Our Python Connectors provide simple Python database interfaces to (DB-API), making them easy to connect to popular tools like Jupyter Notebook and SQLAlchemy. CData Python Connectors wrap SQL around APIs and data protocol, making it easier to access data from Python. It also allows Python users to connect more than 150 SaaS and Big Data data sources with advanced Python processing. The CData Python Connectors bridge a critical gap in Python tooling, providing consistent connectivity with data-centric interfaces for hundreds of SaaS/Cloud, NoSQL and Big Data sources. Download a 30-day free trial or learn more at: https://ancillary-proxy.atarimworker.io?url=https%3A%2F%2Fwww.cdata.com%2Fpython%2F
  • 27
    Amazon SageMaker Model Building Reviews
    Amazon SageMaker equips users with an extensive suite of tools and libraries essential for developing machine learning models, emphasizing an iterative approach to experimenting with various algorithms and assessing their performance to identify the optimal solution for specific needs. Within SageMaker, you can select from a diverse range of algorithms, including more than 15 that are specifically designed and enhanced for the platform, as well as access over 150 pre-existing models from well-known model repositories with just a few clicks. Additionally, SageMaker includes a wide array of model-building resources, such as Amazon SageMaker Studio Notebooks and RStudio, which allow you to execute machine learning models on a smaller scale to evaluate outcomes and generate performance reports, facilitating the creation of high-quality prototypes. The integration of Amazon SageMaker Studio Notebooks accelerates the model development process and fosters collaboration among team members. These notebooks offer one-click access to Jupyter environments, enabling you to begin working almost immediately, and they also feature functionality for easy sharing of your work with others. Furthermore, the platform's overall design encourages continuous improvement and innovation in machine learning projects.
  • 28
    Altair SLC Reviews
    Over the last two decades, numerous organizations have created SAS language programs that are essential for their functioning. Altair SLC efficiently executes programs that are written in SAS language syntax directly, eliminating the need for translation or the licensing of external products. This results in significant reductions in both capital costs and operating expenses for users, owing to its exceptional capacity to manage extensive data processing demands. Furthermore, Altair SLC comes equipped with a native SAS language compiler that not only processes SAS language and SQL code but also incorporates Python and R compilers, enabling seamless execution of Python and R code while facilitating the exchange of SAS language datasets, Pandas, and R data frames. The platform is versatile, operating on IBM mainframes, cloud environments, and a variety of servers and workstations across different operating systems. Additionally, it offers features for remote job submission and robust data exchange capabilities among mainframe, cloud, and on-premises systems, ensuring seamless integration across diverse computing environments.
  • 29
    Azure Machine Learning Reviews
    Streamline the entire machine learning lifecycle from start to finish. Equip developers and data scientists with an extensive array of efficient tools for swiftly building, training, and deploying machine learning models. Enhance the speed of market readiness and promote collaboration among teams through leading-edge MLOps—akin to DevOps but tailored for machine learning. Drive innovation within a secure, reliable platform that prioritizes responsible AI practices. Cater to users of all expertise levels with options for both code-centric and drag-and-drop interfaces, along with automated machine learning features. Implement comprehensive MLOps functionalities that seamlessly align with existing DevOps workflows, facilitating the management of the entire machine learning lifecycle. Emphasize responsible AI by providing insights into model interpretability and fairness, securing data through differential privacy and confidential computing, and maintaining control over the machine learning lifecycle with audit trails and datasheets. Additionally, ensure exceptional compatibility with top open-source frameworks and programming languages such as MLflow, Kubeflow, ONNX, PyTorch, TensorFlow, Python, and R, thus broadening accessibility and usability for diverse projects. By fostering an environment that promotes collaboration and innovation, teams can achieve remarkable advancements in their machine learning endeavors.
  • 30
    Zepl Reviews
    Coordinate, explore, and oversee all projects within your data science team efficiently. With Zepl's advanced search functionality, you can easily find and repurpose both models and code. The enterprise collaboration platform provided by Zepl allows you to query data from various sources like Snowflake, Athena, or Redshift while developing your models using Python. Enhance your data interaction with pivoting and dynamic forms that feature visualization tools such as heatmaps, radar, and Sankey charts. Each time you execute your notebook, Zepl generates a new container, ensuring a consistent environment for your model runs. Collaborate with teammates in a shared workspace in real time, or leave feedback on notebooks for asynchronous communication. Utilize precise access controls to manage how your work is shared, granting others read, edit, and execute permissions to facilitate teamwork and distribution. All notebooks benefit from automatic saving and version control, allowing you to easily name, oversee, and revert to previous versions through a user-friendly interface, along with smooth exporting capabilities to Github. Additionally, the platform supports integration with external tools, further streamlining your workflow and enhancing productivity.
  • 31
    Azure Arc Reviews
    Azure Arc serves as a strategic bridge between on-premises, edge, and multicloud infrastructures, empowering organizations to unify management under a single Azure framework. It supports hybrid operations by bringing Azure security, compliance, and governance services to workloads no matter where they run. Through Arc, enterprises can streamline VMware lifecycle management, deploy Kubernetes clusters, and extend Azure data services directly into their datacenters. It also enhances modernization by enabling containerized apps, SQL Server management, and Windows Server deployments with new cloud-driven capabilities. Developers can maintain familiar workflows with GitHub and Visual Studio Code while benefiting from consistent APIs and centralized observability via Azure Monitor. Security is reinforced by Microsoft’s 34,000 security engineers and over 100 compliance certifications, making Arc suitable for regulated industries. With pricing that includes core inventory at no cost and paid add-ons like advanced security and monitoring, it scales to fit enterprise needs. Customer success stories from companies like Chevron, LALIGA, and Coles demonstrate how Azure Arc accelerates innovation and simplifies operations in real-world scenarios.
  • 32
    Lightly Reviews
    Enhance your app development process with Lightly, a versatile multilingual cloud IDE that allows you to produce high-quality code effortlessly using AI-assisted coding and real-time collaboration tools. This robust platform supports various programming languages, such as Java, Python, C++, HTML, and JavaScript, enabling you to write, execute, and troubleshoot code conveniently from your iPad at any location. With its AI-generated code capabilities, you can swiftly create code snippets, while the collaborative features facilitate seamless teamwork, allowing multiple users to work together on projects in real-time. Additionally, Lightly simplifies deployment and hosting by managing the infrastructure for you, with project images available to streamline deployment across AWS, Azure, GCP, or any other cloud service provider. By allowing you to concentrate on your creative ideas, Lightly's AI programming assistant takes care of the technical details, enhancing your productivity and effectiveness in developing applications. In this way, you can focus more on innovation while relying on advanced technology to support your development efforts.
  • 33
    Chalk Reviews
    Experience robust data engineering processes free from the challenges of infrastructure management. By utilizing straightforward, modular Python, you can define intricate streaming, scheduling, and data backfill pipelines with ease. Transition from traditional ETL methods and access your data instantly, regardless of its complexity. Seamlessly blend deep learning and large language models with structured business datasets to enhance decision-making. Improve forecasting accuracy using up-to-date information, eliminate the costs associated with vendor data pre-fetching, and conduct timely queries for online predictions. Test your ideas in Jupyter notebooks before moving them to a live environment. Avoid discrepancies between training and serving data while developing new workflows in mere milliseconds. Monitor all of your data operations in real-time to effortlessly track usage and maintain data integrity. Have full visibility into everything you've processed and the ability to replay data as needed. Easily integrate with existing tools and deploy on your infrastructure, while setting and enforcing withdrawal limits with tailored hold periods. With such capabilities, you can not only enhance productivity but also ensure streamlined operations across your data ecosystem.
  • 34
    Vertex AI Notebooks Reviews
    Vertex AI Notebooks offers a comprehensive, end-to-end solution for machine learning development within Google Cloud. It combines the power of Colab Enterprise and Vertex AI Workbench to give data scientists and developers the tools to accelerate model training and deployment. This fully managed platform provides seamless integration with BigQuery, Dataproc, and other Google Cloud services, enabling efficient data exploration, visualization, and advanced ML model development. With built-in features like automated infrastructure management, users can focus on model building without worrying about backend maintenance. Vertex AI Notebooks also supports collaborative workflows, making it ideal for teams to work on complex AI projects together.
  • 35
    Ray Reviews
    You can develop on your laptop, then scale the same Python code elastically across hundreds or GPUs on any cloud. Ray converts existing Python concepts into the distributed setting, so any serial application can be easily parallelized with little code changes. With a strong ecosystem distributed libraries, scale compute-heavy machine learning workloads such as model serving, deep learning, and hyperparameter tuning. Scale existing workloads (e.g. Pytorch on Ray is easy to scale by using integrations. Ray Tune and Ray Serve native Ray libraries make it easier to scale the most complex machine learning workloads like hyperparameter tuning, deep learning models training, reinforcement learning, and training deep learning models. In just 10 lines of code, you can get started with distributed hyperparameter tune. Creating distributed apps is hard. Ray is an expert in distributed execution.
  • 36
    Azure App Service Reviews
    Effortlessly create, launch, and expand web applications and APIs precisely how you want. Choose from a variety of frameworks including .NET, .NET Core, Node.js, Java, Python, or PHP, whether you're utilizing containers or operating on Windows or Linux platforms. Achieve strict enterprise-level standards for performance, security, and compliance through a reliable, fully managed service that processes more than 40 billion requests daily. This fully managed service ensures infrastructure upkeep, security updates, and scalability are handled seamlessly. It also features integrated CI/CD capabilities and supports deployments without downtime. With comprehensive security and compliance measures, including SOC and PCI certifications, you can deploy effortlessly across various environments such as public cloud, Azure Government, and on-premises settings. You have the flexibility to utilize your preferred code or container alongside your chosen framework. Enhance developer efficiency with deep integration into Visual Studio Code and Visual Studio, while also optimizing your CI/CD processes via Git, GitHub, GitHub Actions, Atlassian Bitbucket, Azure DevOps, Docker Hub, and Azure Container Registry. Furthermore, this platform allows for continuous updates and improvements, ensuring your applications remain cutting edge and responsive to user needs.
  • 37
    Microsoft Genomics Reviews
    Rather than overseeing your own data centers, leverage Microsoft's extensive experience and scale in managing exabyte-level workloads. With Microsoft Genomics hosted on Azure, you gain access to the performance and scalability of a top-tier supercomputing facility, available on-demand in the cloud environment. Benefit from a backend network that boasts MPI latency of less than three microseconds and a non-blocking throughput of 32 gigabits per second (Gbps). This advanced network features remote direct memory access technology, allowing parallel applications to effectively scale to thousands of cores. Azure equips you with high memory and HPC-class CPUs designed to accelerate your results significantly. You can easily adjust your resources up or down according to your needs and only pay for what you consume, helping to manage costs efficiently. Address data sovereignty concerns with Azure's global network of data centers while ensuring compliance with regulatory requirements. Integration into your current pipeline is seamless, thanks to a REST-based API along with a straightforward Python client, making it easy to enhance your workflows. Additionally, this flexibility allows you to respond swiftly to changing demands in your projects.
  • 38
    scikit-learn Reviews
    Scikit-learn offers a user-friendly and effective suite of tools for predictive data analysis, making it an indispensable resource for those in the field. This powerful, open-source machine learning library is built for the Python programming language and aims to simplify the process of data analysis and modeling. Drawing from established scientific libraries like NumPy, SciPy, and Matplotlib, Scikit-learn presents a diverse array of both supervised and unsupervised learning algorithms, positioning itself as a crucial asset for data scientists, machine learning developers, and researchers alike. Its structure is designed to be both consistent and adaptable, allowing users to mix and match different components to meet their unique requirements. This modularity empowers users to create intricate workflows, streamline repetitive processes, and effectively incorporate Scikit-learn into expansive machine learning projects. Furthermore, the library prioritizes interoperability, ensuring seamless compatibility with other Python libraries, which greatly enhances data processing capabilities and overall efficiency. As a result, Scikit-learn stands out as a go-to toolkit for anyone looking to delve into the world of machine learning.
  • 39
    Anaconda Reviews
    Top Pick
    Empowering businesses to engage in genuine data science quickly and effectively through a comprehensive machine learning platform is crucial. By minimizing the time spent managing tools and infrastructure, organizations can concentrate on developing machine learning applications that drive growth. Anaconda Enterprise alleviates the challenges associated with ML operations, grants access to open-source innovations, and lays the groundwork for robust data science and machine learning operations without confining users to specific models, templates, or workflows. Software developers and data scientists can seamlessly collaborate within AE to create, test, debug, and deploy models using their chosen programming languages and tools. Additionally, AE facilitates access to both notebooks and integrated development environments (IDEs), enhancing collaborative efficiency. Users can also select from a variety of example projects or utilize preconfigured projects tailored to their needs. Furthermore, AE automatically containerizes projects, ensuring they can be effortlessly transitioned between various environments as required. This flexibility ultimately empowers teams to innovate and adapt to changing business demands more readily.
  • 40
    Azure Data Lake Reviews
    Azure Data Lake offers a comprehensive set of features designed to facilitate the storage of data in any form, size, and speed for developers, data scientists, and analysts alike, enabling a wide range of processing and analytics across various platforms and programming languages. By simplifying the ingestion and storage of data, it accelerates the process of launching batch, streaming, and interactive analytics. Additionally, Azure Data Lake is compatible with existing IT frameworks for identity, management, and security, which streamlines data management and governance. Its seamless integration with operational stores and data warehouses allows for the extension of current data applications without disruption. Leveraging insights gained from working with enterprise clients and managing some of the world's largest processing and analytics tasks for services such as Office 365, Xbox Live, Azure, Windows, Bing, and Skype, Azure Data Lake addresses many of the scalability and productivity hurdles that hinder your ability to fully utilize data. Ultimately, it empowers organizations to harness their data's potential more effectively and efficiently than ever before.
  • 41
    Visual Studio Reviews
    Visual Studio by Microsoft is a complete ecosystem for professional developers, combining robust coding environments, integrated AI capabilities, and advanced collaboration tools. The flagship Visual Studio 2022 IDE delivers an all-in-one workspace with compilers, debuggers, designers, and performance profilers for .NET, C++, C#, and Azure development. Meanwhile, Visual Studio Code (VS Code) offers a lightweight yet powerful editor that runs on Windows, macOS, and Linux, ideal for web, JavaScript, Python, and container-based workflows. With GitHub Copilot integration, developers receive intelligent code completions, automated refactoring, and natural language explanations of complex logic. Agent Mode introduces an AI-driven assistant that can edit across files, execute builds, and resolve compile or test errors autonomously. Built-in tools like unit test generators, CI-aware policy enforcement, and style validation help ensure clean, testable, and secure code. Thousands of extensions from the Visual Studio Marketplace expand functionality for database, cloud, and DevOps workflows. Together, these platforms redefine productivity, helping teams code smarter and deliver innovation faster.
  • 42
    Hex Reviews

    Hex

    Hex

    $24 per user per month
    Hex unites the finest features of notebooks, business intelligence, and documentation into a cohesive and collaborative user interface, establishing itself as a contemporary Data Workspace. It simplifies the process of connecting to various data sources and allows for collaborative analysis via SQL and Python-based notebooks, enabling users to share their findings as interactive data applications and narratives. Upon entering Hex, the Projects page serves as the default landing area, making it easy to access both your own projects and those shared within your workspace. The outline feature offers a streamlined overview of all cells contained in a project's Logic View, where each cell is annotated with the variables it defines. Furthermore, cells that produce visible outputs—such as chart cells, input parameters, and markdown cells—provide a preview of their results. By clicking on any cell within the outline, users can instantly navigate to that specific location in the logic, enhancing the overall efficiency of the workflow. This functionality ensures that collaboration and data exploration are both intuitive and effective.
  • 43
    CodeSpace Reviews
    This user-friendly, browser-accessible software features interactive curriculum modules that focus on standards-based, project-oriented learning, particularly in the realm of physical computing and robotics. Our innovative learning platform combines a versatile, open-ended coding environment with a comprehensive curriculum designed for educators, alongside an engaging set of hardware tools that encourage exploration and creativity. CodeSpace empowers educators to provide students with authentic learning experiences that connect to the real world. Python, a language renowned for its practicality and widely adopted in industry applications such as Google, YouTube, and Spotify, serves as the foundation of our curriculum, ensuring relevance to students' everyday lives. By emphasizing text-based coding instead of drag-and-drop interfaces, we cater to learners who prioritize meaningful, real-world applications in their education. Our Python curriculum guides both students and teachers progressively through coding fundamentals to intricate projects, fostering a deeper understanding of programming concepts. Additionally, the seamless integration of instructional content with development tools allows students to effectively apply and hone their programming skills in a practical context.
  • 44
    Azure DevOps Reviews

    Azure DevOps

    Microsoft

    $6 per user per month
    1 Rating
    Azure DevOps is a powerful, end-to-end software development platform designed to help teams deliver value faster by providing agile planning, collaborative coding, automated testing, and continuous deployment capabilities. The platform includes Azure Boards for managing work items with customizable Kanban boards and backlogs, Azure Pipelines to automate builds and deployments across any language or cloud, and Azure Repos offering unlimited private Git repositories. Integration with GitHub Copilot further accelerates coding and testing by using AI to suggest and generate code snippets. Azure Test Plans enable manual and exploratory testing to ensure high-quality software releases. Security is deeply embedded across the platform with over 100 compliance certifications and dedicated security experts. Additionally, Azure DevOps supports managed DevOps agent pools to optimize cost and performance. Major enterprises worldwide rely on Azure DevOps to streamline workflows and scale development efforts. The platform is flexible, scalable, and built to support innovation while keeping development secure.
  • 45
    LUIS Reviews
    Language Understanding (LUIS) is an advanced machine learning service designed to incorporate natural language capabilities into applications, bots, and IoT devices. It allows for the rapid creation of tailored models that enhance over time, enabling the integration of natural language features into your applications. LUIS excels at discerning important information within dialogues by recognizing user intentions (intents) and extracting significant details from phrases (entities), all contributing to a sophisticated language understanding model. It works harmoniously with the Azure Bot Service, simplifying the process of developing a highly functional bot. With robust developer resources and customizable pre-existing applications alongside entity dictionaries such as Calendar, Music, and Devices, users can swiftly construct and implement solutions. These dictionaries are enriched by extensive web knowledge, offering billions of entries that aid in accurately identifying key insights from user interactions. Continuous improvement is achieved through active learning, which ensures that the quality of models keeps getting better over time, making LUIS an invaluable tool for modern application development. Ultimately, this service empowers developers to create rich, responsive experiences that enhance user engagement.