AutoGen Description
An open-source programming framework designed for agent-based AI is available in the form of AutoGen. This framework presents a multi-agent conversational system that serves as a user-friendly abstraction layer, enabling the efficient creation of workflows involving large language models. AutoGen encompasses a diverse array of functional systems that cater to numerous applications across different fields and levels of complexity. Furthermore, it enhances the performance of inference APIs for large language models, offering opportunities to optimize efficiency and minimize expenses. By leveraging this framework, developers can streamline their projects while exploring innovative solutions in AI.
AutoGen Alternatives
LM-Kit.NET
LM-Kit.NET is an enterprise-grade toolkit designed for seamlessly integrating generative AI into your .NET applications, fully supporting Windows, Linux, and macOS. Empower your C# and VB.NET projects with a flexible platform that simplifies the creation and orchestration of dynamic AI agents.
Leverage efficient Small Language Models for on‑device inference, reducing computational load, minimizing latency, and enhancing security by processing data locally. Experience the power of Retrieval‑Augmented Generation (RAG) to boost accuracy and relevance, while advanced AI agents simplify complex workflows and accelerate development.
Native SDKs ensure smooth integration and high performance across diverse platforms. With robust support for custom AI agent development and multi‑agent orchestration, LM‑Kit.NET streamlines prototyping, deployment, and scalability—enabling you to build smarter, faster, and more secure solutions trusted by professionals worldwide.
Learn more
Vertex AI
Fully managed ML tools allow you to build, deploy and scale machine-learning (ML) models quickly, for any use case.
Vertex AI Workbench is natively integrated with BigQuery Dataproc and Spark. You can use BigQuery to create and execute machine-learning models in BigQuery by using standard SQL queries and spreadsheets or you can export datasets directly from BigQuery into Vertex AI Workbench to run your models there. Vertex Data Labeling can be used to create highly accurate labels for data collection.
Vertex AI Agent Builder empowers developers to design and deploy advanced generative AI applications for enterprise use. It supports both no-code and code-driven development, enabling users to create AI agents through natural language prompts or by integrating with frameworks like LangChain and LlamaIndex.
Learn more
Appsmith
Appsmith enables organizations to create custom internal applications quickly with minimal coding. The platform allows users to build applications by connecting data sources, APIs, and workflows through a user-friendly drag-and-drop interface. Appsmith's flexibility with JavaScript lets developers fully customize components, while the open-source architecture and enterprise security features ensure scalability and compliance. With self-hosting and cloud deployment options, businesses can choose the best setup for their needs, whether for simple dashboards or complex business applications.
Appsmith offers a comprehensive solution for creating and deploying custom AI agents that can automate key business processes. Designed for sales, support, and people management teams, the platform allows companies to embed conversational agents into their systems. Appsmith's AI agents enhance operational efficiency by managing routine tasks, providing real-time insights, and boosting team productivity, all while leveraging secure data.
Learn more
Agno
Agno is a streamlined framework designed for creating agents equipped with memory, knowledge, tools, and reasoning capabilities. It allows developers to construct a variety of agents, including reasoning agents, multimodal agents, teams of agents, and comprehensive agent workflows. Additionally, Agno features an attractive user interface that facilitates communication with agents and includes tools for performance monitoring and evaluation. Being model-agnostic, it ensures a consistent interface across more than 23 model providers, eliminating the risk of vendor lock-in. Agents can be instantiated in roughly 2μs on average, which is about 10,000 times quicker than LangGraph, while consuming an average of only 3.75KiB of memory—50 times less than LangGraph. The framework prioritizes reasoning, enabling agents to engage in "thinking" and "analysis" through reasoning models, ReasoningTools, or a tailored CoT+Tool-use method. Furthermore, Agno supports native multimodality, allowing agents to handle various inputs and outputs such as text, images, audio, and video. The framework's sophisticated multi-agent architecture encompasses three operational modes: route, collaborate, and coordinate, enhancing the flexibility and effectiveness of agent interactions. By integrating these features, Agno provides a robust platform for developing intelligent agents that can adapt to diverse tasks and scenarios.
Learn more
Pricing
Pricing Starts At:
Free
Pricing Information:
Open source
Free Version:
Yes
Integrations
Company Details
Company:
Microsoft
Year Founded:
1975
Headquarters:
United States
Website:
microsoft.github.io/autogen/
Recommended Products
Keep company data safe with Chrome Enterprise
Make AI work your way with Chrome Enterprise. Block unapproved sites and set custom data controls that align with your company's policies.
Product Details
Platforms
Windows
Types of Training
Training Docs
AutoGen Features and Options
AutoGen Lists
AutoGen User Reviews
Write a Review- Previous
- Next