Best Atla Alternatives in 2025
Find the top alternatives to Atla currently available. Compare ratings, reviews, pricing, and features of Atla alternatives in 2025. Slashdot lists the best Atla alternatives on the market that offer competing products that are similar to Atla. Sort through Atla alternatives below to make the best choice for your needs
-
1
Vertex AI
Google
743 RatingsFully managed ML tools allow you to build, deploy and scale machine-learning (ML) models quickly, for any use case. Vertex AI Workbench is natively integrated with BigQuery Dataproc and Spark. You can use BigQuery to create and execute machine-learning models in BigQuery by using standard SQL queries and spreadsheets or you can export datasets directly from BigQuery into Vertex AI Workbench to run your models there. Vertex Data Labeling can be used to create highly accurate labels for data collection. Vertex AI Agent Builder empowers developers to design and deploy advanced generative AI applications for enterprise use. It supports both no-code and code-driven development, enabling users to create AI agents through natural language prompts or by integrating with frameworks like LangChain and LlamaIndex. -
2
Convo
Convo
$29 per monthKanvo offers a seamless JavaScript SDK that enhances LangGraph-based AI agents with integrated memory, observability, and resilience, all without the need for any infrastructure setup. The SDK allows developers to integrate just a few lines of code to activate features such as persistent memory for storing facts, preferences, and goals, as well as threaded conversations for multi-user engagement and real-time monitoring of agent activities, which records every interaction, tool usage, and LLM output. Its innovative time-travel debugging capabilities enable users to checkpoint, rewind, and restore any agent's run state with ease, ensuring that workflows are easily reproducible and errors can be swiftly identified. Built with an emphasis on efficiency and user-friendliness, Convo's streamlined interface paired with its MIT-licensed SDK provides developers with production-ready, easily debuggable agents straight from installation, while also ensuring that data control remains entirely with the users. This combination of features positions Kanvo as a powerful tool for developers looking to create sophisticated AI applications without the typical complexities associated with data management. -
3
LangChain provides a comprehensive framework that empowers developers to build and scale intelligent applications using large language models (LLMs). By integrating data and APIs, LangChain enables context-aware applications that can perform reasoning tasks. The suite includes LangGraph, a tool for orchestrating complex workflows, and LangSmith, a platform for monitoring and optimizing LLM-driven agents. LangChain supports the full lifecycle of LLM applications, offering tools to handle everything from initial design and deployment to post-launch performance management. Its flexibility makes it an ideal solution for businesses looking to enhance their applications with AI-powered reasoning and automation.
-
4
TraceRoot.AI
TraceRoot.AI
$49 per monthTraceRoot.AI serves as an open-source, AI-driven observability and debugging platform that aims to assist engineering teams in swiftly addressing production challenges. By merging telemetry data into a unified correlated execution tree, it offers essential causal insights into failures. AI agents leverage this structured representation to summarize problems, identify probable root causes, and even propose actionable solutions or generate GitHub issues and pull requests. Users can engage in interactive trace exploration, featuring zoomable log clusters and detailed views on spans and latency, complemented by insights linked to the code itself. Additionally, lightweight SDKs for Python and TypeScript facilitate effortless instrumentation via OpenTelemetry, accommodating both self-hosted and cloud-based deployments. A key aspect of the platform is its human-in-the-loop interaction, which allows developers to influence the reasoning process by selecting relevant spans or logs, enabling them to validate the agent's reasoning with traceable context. This collaborative approach not only enhances debugging efficiency but also empowers teams with greater control over the issue resolution process. -
5
LangSmith
LangChain
Unexpected outcomes are a common occurrence in software development. With complete insight into the entire sequence of calls, developers can pinpoint the origins of errors and unexpected results in real time with remarkable accuracy. The discipline of software engineering heavily depends on unit testing to create efficient and production-ready software solutions. LangSmith offers similar capabilities tailored specifically for LLM applications. You can quickly generate test datasets, execute your applications on them, and analyze the results without leaving the LangSmith platform. This tool provides essential observability for mission-critical applications with minimal coding effort. LangSmith is crafted to empower developers in navigating the complexities and leveraging the potential of LLMs. We aim to do more than just create tools; we are dedicated to establishing reliable best practices for developers. You can confidently build and deploy LLM applications, backed by comprehensive application usage statistics. This includes gathering feedback, filtering traces, measuring costs and performance, curating datasets, comparing chain efficiencies, utilizing AI-assisted evaluations, and embracing industry-leading practices to enhance your development process. This holistic approach ensures that developers are well-equipped to handle the challenges of LLM integrations. -
6
LangMem
LangChain
LangMem is a versatile and lightweight Python SDK developed by LangChain that empowers AI agents by providing them with the ability to maintain long-term memory. This enables these agents to capture, store, modify, and access significant information from previous interactions, allowing them to enhance their intelligence and personalization over time. The SDK features three distinct types of memory and includes tools for immediate memory management as well as background processes for efficient updates outside of active user sessions. With its storage-agnostic core API, LangMem can integrate effortlessly with various backends, and it boasts native support for LangGraph’s long-term memory store, facilitating type-safe memory consolidation through Pydantic-defined schemas. Developers can easily implement memory functionalities into their agents using straightforward primitives, which allows for smooth memory creation, retrieval, and prompt optimization during conversational interactions. This flexibility and ease of use make LangMem a valuable tool for enhancing the capability of AI-driven applications. -
7
Maxim
Maxim
$29/seat/ month Maxim is a enterprise-grade stack that enables AI teams to build applications with speed, reliability, and quality. Bring the best practices from traditional software development to your non-deterministic AI work flows. Playground for your rapid engineering needs. Iterate quickly and systematically with your team. Organise and version prompts away from the codebase. Test, iterate and deploy prompts with no code changes. Connect to your data, RAG Pipelines, and prompt tools. Chain prompts, other components and workflows together to create and test workflows. Unified framework for machine- and human-evaluation. Quantify improvements and regressions to deploy with confidence. Visualize the evaluation of large test suites and multiple versions. Simplify and scale human assessment pipelines. Integrate seamlessly into your CI/CD workflows. Monitor AI system usage in real-time and optimize it with speed. -
8
Lunary
Lunary
$20 per monthLunary serves as a platform for AI developers, facilitating the management, enhancement, and safeguarding of Large Language Model (LLM) chatbots. It encompasses a suite of features, including tracking conversations and feedback, analytics for costs and performance, debugging tools, and a prompt directory that supports version control and team collaboration. The platform is compatible with various LLMs and frameworks like OpenAI and LangChain and offers SDKs compatible with both Python and JavaScript. Additionally, Lunary incorporates guardrails designed to prevent malicious prompts and protect against sensitive data breaches. Users can deploy Lunary within their VPC using Kubernetes or Docker, enabling teams to evaluate LLM responses effectively. The platform allows for an understanding of the languages spoken by users, experimentation with different prompts and LLM models, and offers rapid search and filtering capabilities. Notifications are sent out when agents fail to meet performance expectations, ensuring timely interventions. With Lunary's core platform being fully open-source, users can choose to self-host or utilize cloud options, making it easy to get started in a matter of minutes. Overall, Lunary equips AI teams with the necessary tools to optimize their chatbot systems while maintaining high standards of security and performance. -
9
Mistral AI Studio
Mistral AI
$14.99 per monthMistral AI Studio serves as a comprehensive platform for organizations and development teams to create, tailor, deploy, and oversee sophisticated AI agents, models, and workflows, guiding them from initial concepts to full-scale production. This platform includes a variety of reusable components such as agents, tools, connectors, guardrails, datasets, workflows, and evaluation mechanisms, all enhanced by observability and telemetry features that allow users to monitor agent performance, identify root causes, and ensure transparency in AI operations. With capabilities like Agent Runtime for facilitating the repetition and sharing of multi-step AI behaviors, AI Registry for organizing and managing model assets, and Data & Tool Connections that ensure smooth integration with existing enterprise systems, Mistral AI Studio accommodates a wide range of tasks, from refining open-source models to integrating them seamlessly into infrastructure and deploying robust AI solutions at an enterprise level. Furthermore, the platform's modular design promotes flexibility, enabling teams to adapt and scale their AI initiatives as needed. -
10
Logfire
Pydantic
$2 per monthPydantic Logfire serves as an observability solution aimed at enhancing the monitoring of Python applications by converting logs into practical insights. It offers valuable performance metrics, tracing capabilities, and a comprehensive view of application dynamics, which encompasses request headers, bodies, and detailed execution traces. Built upon OpenTelemetry, Pydantic Logfire seamlessly integrates with widely-used libraries, ensuring user-friendliness while maintaining the adaptability of OpenTelemetry’s functionalities. Developers can enrich their applications with structured data and easily queryable Python objects, allowing them to obtain real-time insights through a variety of visualizations, dashboards, and alert systems. In addition, Logfire facilitates manual tracing, context logging, and exception handling, presenting a contemporary logging framework. This tool is specifically designed for developers in search of a streamlined and efficient observability solution, boasting ready-to-use integrations and user-centric features. Its flexibility and comprehensive capabilities make it a valuable asset for anyone looking to improve their application's monitoring strategy. -
11
Flowise
Flowise AI
FreeFlowise is a versatile open-source platform that simplifies the creation of tailored Large Language Model (LLM) applications using an intuitive drag-and-drop interface designed for low-code development. This platform accommodates connections with multiple LLMs, such as LangChain and LlamaIndex, and boasts more than 100 integrations to support the building of AI agents and orchestration workflows. Additionally, Flowise offers a variety of APIs, SDKs, and embedded widgets that enable smooth integration into pre-existing systems, ensuring compatibility across different platforms, including deployment in isolated environments using local LLMs and vector databases. As a result, developers can efficiently create and manage sophisticated AI solutions with minimal technical barriers. -
12
Langdock
Langdock
FreeSupport for ChatGPT and LangChain is now natively integrated, with additional platforms like Bing and HuggingFace on the horizon. You can either manually input your API documentation or import it using an existing OpenAPI specification. Gain insights into the request prompt, parameters, headers, body, and other relevant data. Furthermore, you can monitor comprehensive live metrics regarding your plugin's performance, such as latencies and errors. Tailor your own dashboards to track funnels and aggregate various metrics for deeper analysis. This functionality empowers users to optimize their systems effectively. -
13
Atlas Planning Platform
John Galt Solutions
Modern supply chains must be able to immediately respond to changing market demand patterns and disruptions. The Atlas Planning Platform has been a key tool for leading companies over the past 20 years. The Atlas Planning Platform supports digital twin capabilities for your physical supply chain. It continuously optimizes it with advanced machine learning algorithms and the most recent AI technology. Machine learning and automation are essential to support digital supply chains. Atlas' AI and policy capabilities allow you to autonomously execute tasks. Our automated machine learning combs through mountains and data to identify the most important. Atlas Planning Platform seamlessly integrates both structured and unstructured planning data sources, including ERP, IoT and market. Our unified data model instantly ripples changes across all planning time periods and levels of granularity in your multi-enterprise supply chains. -
14
Chainlit
Chainlit
Chainlit is a versatile open-source Python library that accelerates the creation of production-ready conversational AI solutions. By utilizing Chainlit, developers can swiftly design and implement chat interfaces in mere minutes rather than spending weeks on development. The platform seamlessly integrates with leading AI tools and frameworks such as OpenAI, LangChain, and LlamaIndex, facilitating diverse application development. Among its notable features, Chainlit supports multimodal functionalities, allowing users to handle images, PDFs, and various media formats to boost efficiency. Additionally, it includes strong authentication mechanisms compatible with providers like Okta, Azure AD, and Google, enhancing security measures. The Prompt Playground feature allows developers to refine prompts contextually, fine-tuning templates, variables, and LLM settings for superior outcomes. To ensure transparency and effective monitoring, Chainlit provides real-time insights into prompts, completions, and usage analytics, fostering reliable and efficient operations in the realm of language models. Overall, Chainlit significantly streamlines the process of building conversational AI applications, making it a valuable tool for developers in this rapidly evolving field. -
15
Agency
Agency
Agency specializes in assisting businesses in the development, assessment, and oversight of AI agents, brought to you by the team at AgentOps.ai. Agen.cy (Agency AI) is at the forefront of AI technology, creating advanced AI agents with tools such as CrewAI, AutoGen, CamelAI, LLamaIndex, Langchain, Cohere, MultiOn, and numerous others, ensuring a comprehensive approach to artificial intelligence solutions. -
16
Lamatic.ai
Lamatic.ai
$100 per monthIntroducing a comprehensive managed PaaS that features a low-code visual builder, VectorDB, along with integrations for various applications and models, designed for the creation, testing, and deployment of high-performance AI applications on the edge. This solution eliminates inefficient and error-prone tasks, allowing users to simply drag and drop models, applications, data, and agents to discover the most effective combinations. You can deploy solutions in less than 60 seconds while significantly reducing latency. The platform supports seamless observation, testing, and iteration processes, ensuring that you maintain visibility and utilize tools that guarantee precision and dependability. Make informed, data-driven decisions with detailed reports on requests, LLM interactions, and usage analytics, while also accessing real-time traces by node. The experimentation feature simplifies the optimization of various elements, including embeddings, prompts, and models, ensuring continuous enhancement. This platform provides everything necessary to launch and iterate at scale, backed by a vibrant community of innovative builders who share valuable insights and experiences. The collective effort distills the most effective tips and techniques for developing AI applications, resulting in an elegant solution that enables the creation of agentic systems with the efficiency of a large team. Furthermore, its intuitive and user-friendly interface fosters seamless collaboration and management of AI applications, making it accessible for everyone involved. -
17
Instructor
Instructor
FreeInstructor serves as a powerful tool for developers who wish to derive structured data from natural language input by utilizing Large Language Models (LLMs). By integrating seamlessly with Python's Pydantic library, it enables users to specify the desired output structures through type hints, which not only streamlines schema validation but also enhances compatibility with various integrated development environments (IDEs). The platform is compatible with multiple LLM providers such as OpenAI, Anthropic, Litellm, and Cohere, thus offering a wide range of implementation options. Its customizable features allow users to define specific validators and tailor error messages, significantly improving the data validation workflow. Trusted by engineers from notable platforms like Langflow, Instructor demonstrates a high level of reliability and effectiveness in managing structured outputs driven by LLMs. Additionally, the reliance on Pydantic and type hints simplifies the process of schema validation and prompting, requiring less effort and code from developers while ensuring smooth integration with their IDEs. This adaptability makes Instructor an invaluable asset for developers looking to enhance their data extraction and validation processes. -
18
PydanticAI
Pydantic
FreePydanticAI is an innovative framework crafted in Python that aims to facilitate the creation of high-quality applications leveraging generative AI technologies. Developed by the creators of Pydantic, this framework connects effortlessly with leading AI models such as OpenAI, Anthropic, and Gemini. It features a type-safe architecture, enabling real-time debugging and performance tracking through the Pydantic Logfire system. By utilizing Pydantic for output validation, PydanticAI guarantees structured and consistent responses from models. Additionally, the framework incorporates a dependency injection system, which aids in the iterative process of development and testing, and allows for the streaming of LLM outputs to support quick validation. Perfectly suited for AI-centric initiatives, PydanticAI promotes an adaptable and efficient composition of agents while adhering to established Python best practices. Ultimately, the goal behind PydanticAI is to replicate the user-friendly experience of FastAPI in the realm of generative AI application development, thereby enhancing the overall workflow for developers. -
19
Deductive AI
Deductive AI
Deductive AI is an innovative platform that transforms the way organizations address intricate system failures. By seamlessly integrating your entire codebase with telemetry data, which includes metrics, events, logs, and traces, it enables teams to identify the root causes of problems with remarkable speed and accuracy. This platform simplifies the debugging process, significantly minimizing downtime and enhancing overall system dependability. With its ability to integrate with your codebase and existing observability tools, Deductive AI constructs a comprehensive knowledge graph that is driven by a code-aware reasoning engine, effectively diagnosing root issues similar to a seasoned engineer. It rapidly generates a knowledge graph containing millions of nodes, revealing intricate connections between the codebase and telemetry data. Furthermore, it orchestrates numerous specialized AI agents to meticulously search for, uncover, and analyze the subtle indicators of root causes dispersed across all linked sources, ensuring a thorough investigative process. This level of automation not only accelerates troubleshooting but also empowers teams to maintain higher system performance and reliability. -
20
AgentHub
AgentHub
AgentHub serves as a dedicated staging platform designed to emulate, trace, and assess AI agents within a secure and private sandbox, allowing for deployment with assurance, agility, and accuracy. Its straightforward setup enables users to onboard agents in mere minutes, complemented by a strong evaluation framework that offers detailed multi-step trace logging, LLM graders, and customizable assessment options. Users can engage in realistic simulations with adjustable personas to replicate varied behaviors and stress-test scenarios, while dataset enhancement techniques artificially increase test set size for thorough evaluation. The system also supports prompt experimentation, facilitating large-scale dynamic testing across multiple prompts, and includes side-by-side trace analysis for comparing decisions, tool usage, and results from different runs. Additionally, an integrated AI Copilot is available to scrutinize traces, interpret outcomes, and respond to inquiries based on the user's specific code and data, transforming agent executions into clear and actionable insights. Furthermore, the platform offers a combination of human-in-the-loop and automated feedback mechanisms, alongside tailored onboarding and expert guidance to ensure best practices are followed throughout the process. This comprehensive approach empowers users to optimize agent performance effectively. -
21
Laminar
Laminar
$25 per monthLaminar is a comprehensive open-source platform designed to facilitate the creation of top-tier LLM products. The quality of your LLM application is heavily dependent on the data you manage. With Laminar, you can efficiently gather, analyze, and leverage this data. By tracing your LLM application, you gain insight into each execution phase while simultaneously gathering critical information. This data can be utilized to enhance evaluations through the use of dynamic few-shot examples and for the purpose of fine-tuning your models. Tracing occurs seamlessly in the background via gRPC, ensuring minimal impact on performance. Currently, both text and image models can be traced, with audio model tracing expected to be available soon. You have the option to implement LLM-as-a-judge or Python script evaluators that operate on each data span received. These evaluators provide labeling for spans, offering a more scalable solution than relying solely on human labeling, which is particularly beneficial for smaller teams. Laminar empowers users to go beyond the constraints of a single prompt, allowing for the creation and hosting of intricate chains that may include various agents or self-reflective LLM pipelines, thus enhancing overall functionality and versatility. This capability opens up new avenues for experimentation and innovation in LLM development. -
22
Base AI
Base AI
FreeDiscover a seamless approach to creating serverless autonomous AI agents equipped with memory capabilities. Begin by developing local-first, agentic pipelines, tools, and memory systems, and deploy them effortlessly with a single command. Base AI empowers developers to craft high-quality AI agents with memory (RAG) using TypeScript, which can then be deployed as a highly scalable API via Langbase, the creators behind Base AI. This web-first platform offers TypeScript support and a user-friendly RESTful API, allowing for straightforward integration of AI into your web stack, similar to the process of adding a React component or API route, regardless of whether you are utilizing Next.js, Vue, or standard Node.js. With many AI applications available on the web, Base AI accelerates the delivery of AI features, enabling you to develop locally without incurring cloud expenses. Moreover, Git support is integrated by default, facilitating the branching and merging of AI models as if they were code. Comprehensive observability logs provide the ability to debug AI-related JavaScript, offering insights into decisions, data points, and outputs. Essentially, this tool functions like Chrome DevTools tailored for your AI projects, transforming the way you develop and manage AI functionalities in your applications. By utilizing Base AI, developers can significantly enhance productivity while maintaining full control over their AI implementations. -
23
RevDeBug
RevDeBug
Effortless debugging for microservices allows for immediate identification of the code responsible for service failures, even in cases of elusive errors. Gain insights into each request, outlier, and issue without the need for extra logging or error reproduction efforts. Discover the fundamental causes of every error with comprehensive context derived from logs, metrics, traces, and instances of failed code execution. Benefit from seamless end-to-end tracing supported by automatic instrumentation, enabling a detailed view of logs, metrics, traces, and the history of code execution failures. Experience thorough performance monitoring that aids in swiftly pinpointing and eliminating application bottlenecks. Enjoy real-time topology discovery that provides complete visibility of dependencies across all services involved. Utilize highly adaptable dashboards and notification systems to detect issues before they reach end users. Furthermore, ensure that all failed tests and errors are documented automatically, making it easier to address each failure effectively and facilitating a rapid feedback loop between testing and development teams throughout the entire development process. This approach not only enhances collaboration but also significantly improves overall software quality. -
24
Byne
Byne
2¢ per generation requestStart developing in the cloud and deploying on your own server using retrieval-augmented generation, agents, and more. We offer a straightforward pricing model with a fixed fee for each request. Requests can be categorized into two main types: document indexation and generation. Document indexation involves incorporating a document into your knowledge base, while generation utilizes that knowledge base to produce LLM-generated content through RAG. You can establish a RAG workflow by implementing pre-existing components and crafting a prototype tailored to your specific needs. Additionally, we provide various supporting features, such as the ability to trace outputs back to their original documents and support for multiple file formats during ingestion. By utilizing Agents, you can empower the LLM to access additional tools. An Agent-based architecture can determine the necessary data and conduct searches accordingly. Our agent implementation simplifies the hosting of execution layers and offers pre-built agents suited for numerous applications, making your development process even more efficient. With these resources at your disposal, you can create a robust system that meets your demands. -
25
Arize Phoenix
Arize AI
FreePhoenix serves as a comprehensive open-source observability toolkit tailored for experimentation, evaluation, and troubleshooting purposes. It empowers AI engineers and data scientists to swiftly visualize their datasets, assess performance metrics, identify problems, and export relevant data for enhancements. Developed by Arize AI, the creators of a leading AI observability platform, alongside a dedicated group of core contributors, Phoenix is compatible with OpenTelemetry and OpenInference instrumentation standards. The primary package is known as arize-phoenix, and several auxiliary packages cater to specialized applications. Furthermore, our semantic layer enhances LLM telemetry within OpenTelemetry, facilitating the automatic instrumentation of widely-used packages. This versatile library supports tracing for AI applications, allowing for both manual instrumentation and seamless integrations with tools like LlamaIndex, Langchain, and OpenAI. By employing LLM tracing, Phoenix meticulously logs the routes taken by requests as they navigate through various stages or components of an LLM application, thus providing a clearer understanding of system performance and potential bottlenecks. Ultimately, Phoenix aims to streamline the development process, enabling users to maximize the efficiency and reliability of their AI solutions. -
26
DeviceAtlas
DeviceAtlas
$399 per yearDeviceAtlas stands as the leading authority in device detection and data solutions, uniquely positioned to serve web, app, and mobile operator settings. Utilizing our patented technology, we offer a unified device identifier that allows for comprehensive insights into device traffic across various connected platforms. By facilitating precise device targeting for advertising campaigns, DeviceAtlas significantly boosts conversion rates and provides in-depth analytics. As the benchmark within the online advertising sector, DeviceAtlas for Web excels as the premier solution for interpreting User-Agent strings in the digital landscape. Whether your goal is to assess device traffic patterns, enhance conversion rates for digital marketing, or tailor content for your audience, DeviceAtlas empowers you to effectively maximize your online reach and impact. Its versatility ensures that businesses can strategically engage with their target demographics like never before. -
27
Nomic Atlas
Nomic AI
$50 per monthAtlas seamlessly integrates into your workflow by structuring text and embedding datasets into dynamic maps for easy exploration via a web browser. No longer will you need to sift through Excel spreadsheets, log DataFrames, or flip through lengthy lists to grasp your data. With the capability to automatically read, organize, and summarize your document collections, Atlas highlights emerging trends and patterns. Its well-organized data interface provides a quick way to identify anomalies and problematic data that could threaten the success of your AI initiatives. You can label and tag your data during the cleaning process, with instant synchronization to your Jupyter Notebook. While vector databases are essential for powerful applications like recommendation systems, they often present significant interpretive challenges. Atlas not only stores and visualizes your vectors but also allows comprehensive search functionality through all of your data using a single API, making data management more efficient and user-friendly. By enhancing accessibility and clarity, Atlas empowers users to make informed decisions based on their data insights. -
28
PromptLayer
PromptLayer
FreeIntroducing the inaugural platform designed specifically for prompt engineers, where you can log OpenAI requests, review usage history, monitor performance, and easily manage your prompt templates. With this tool, you’ll never lose track of that perfect prompt again, ensuring GPT operates seamlessly in production. More than 1,000 engineers have placed their trust in this platform to version their prompts and oversee API utilization effectively. Begin integrating your prompts into production by creating an account on PromptLayer; just click “log in” to get started. Once you’ve logged in, generate an API key and make sure to store it securely. After you’ve executed a few requests, you’ll find them displayed on the PromptLayer dashboard! Additionally, you can leverage PromptLayer alongside LangChain, a widely used Python library that facilitates the development of LLM applications with a suite of useful features like chains, agents, and memory capabilities. Currently, the main method to access PromptLayer is via our Python wrapper library, which you can install effortlessly using pip. This streamlined approach enhances your workflow and maximizes the efficiency of your prompt engineering endeavors. -
29
ChatGPT Atlas
OpenAI
Free 1 RatingChatGPT Atlas reimagines the browser as an AI-powered super-assistant, merging ChatGPT’s conversational intelligence with seamless, context-aware web navigation. Instead of toggling between pages and chats, Atlas allows ChatGPT to understand the site you’re viewing and help directly within it—summarizing content, completing forms, or finding related information in real time. Built-in browser memory means your assistant can recall previous pages, projects, and goals, offering continuity across sessions. The optional agent mode lets ChatGPT autonomously perform tasks—like researching, scheduling, or analyzing—while visibly showing its actions to maintain transparency and user oversight. Privacy remains central: you can turn off visibility, clear browsing memories, or go incognito at any time. Designed with enterprise-grade safety, Atlas prevents access to local files or unapproved apps, minimizing risks from hidden or malicious web instructions. It also supports parental controls and customizable data-sharing options, giving users full command of how their information is used. Available today for Free, Plus, Pro, and Business users, ChatGPT Atlas marks the next evolution of intelligent, secure browsing. -
30
mcp-use
mcp-use
FreeMCP-Use is an open-source platform designed for developers that provides an array of SDKs, cloud infrastructure, and an intuitive control interface to facilitate the creation, management, and deployment of AI agents utilizing the Model Context Protocol (MCP). The platform allows connections to various MCP servers, each offering distinct tool functionalities such as web browsing, file handling, or specialized third-party integrations, all accessible through a single, unified MCPClient. Developers are empowered to build custom agents (using MCPAgent) that can intelligently choose the most suitable server for each specific task by leveraging configurable pipelines or a built-in server management system. By streamlining processes like authentication, managing access control, audit logging, observability, and creating sandboxed runtime environments, it ensures that both self-hosted and managed MCP developments are primed for production use. Moreover, MCP-Use enhances the development experience by integrating with well-known frameworks such as LangChain (Python) and LangChain.js (TypeScript), significantly speeding up the process of building AI agents equipped with diverse tools. In addition, its user-friendly architecture encourages developers to innovate and experiment with new AI functionalities more efficiently. -
31
SciPhi
SciPhi
$249 per monthCreate your RAG system using a more straightforward approach than options such as LangChain, enabling you to select from an extensive array of hosted and remote services for vector databases, datasets, Large Language Models (LLMs), and application integrations. Leverage SciPhi to implement version control for your system through Git and deploy it from any location. SciPhi's platform is utilized internally to efficiently manage and deploy a semantic search engine that encompasses over 1 billion embedded passages. The SciPhi team will support you in the embedding and indexing process of your initial dataset within a vector database. After this, the vector database will seamlessly integrate into your SciPhi workspace alongside your chosen LLM provider, ensuring a smooth operational flow. This comprehensive setup allows for enhanced performance and flexibility in handling complex data queries. -
32
NVIDIA NeMo Guardrails
NVIDIA
NVIDIA NeMo Guardrails serves as an open-source toolkit aimed at improving the safety, security, and compliance of conversational applications powered by large language models. This toolkit empowers developers to establish, coordinate, and enforce various AI guardrails, thereby ensuring that interactions with generative AI remain precise, suitable, and relevant. Utilizing Colang, a dedicated language for crafting adaptable dialogue flows, it integrates effortlessly with renowned AI development frameworks such as LangChain and LlamaIndex. NeMo Guardrails provides a range of functionalities, including content safety measures, topic regulation, detection of personally identifiable information, enforcement of retrieval-augmented generation, and prevention of jailbreak scenarios. Furthermore, the newly launched NeMo Guardrails microservice streamlines rail orchestration, offering API-based interaction along with tools that facilitate improved management and maintenance of guardrails. This advancement signifies a critical step toward more responsible AI deployment in conversational contexts. -
33
Traversal
Traversal
Traversal is an innovative AI-driven Site Reliability Engineering (SRE) solution that functions round the clock, autonomously identifying, addressing, and even preventing production issues. It meticulously analyzes logs, metrics, traces, and your codebase to pinpoint the root causes of errors or delays, quickly highlighting the impacted areas, critical bottleneck services, and potential root causes with relevant evidence in a matter of minutes. Leveraging advancements in causal machine learning, reasoning from large language models, and intelligent AI agents, Traversal proactively resolves problems before alerts are triggered, ensuring seamless operations. Tailored for complex organizations and vital infrastructure, it accommodates diverse data types, supports bring-your-own models, and offers optional on-premises deployment for added flexibility. With its straightforward integration into existing systems requiring only read-only access—without the need for agents, sidecars, or any write operations to production—Traversal guarantees data privacy and control. By effortlessly fitting into your observability framework, it not only accelerates the resolution process but also significantly reduces downtime, further enhancing operational efficiency and reliability. Furthermore, its ability to adapt to various environments makes it a versatile asset for businesses striving for uninterrupted service delivery. -
34
Cognee
Cognee
$25 per monthCognee is an innovative open-source AI memory engine that converts unprocessed data into well-structured knowledge graphs, significantly improving the precision and contextual comprehension of AI agents. It accommodates a variety of data formats, such as unstructured text, media files, PDFs, and tables, while allowing seamless integration with multiple data sources. By utilizing modular ECL pipelines, Cognee efficiently processes and organizes data, facilitating the swift retrieval of pertinent information by AI agents. It is designed to work harmoniously with both vector and graph databases and is compatible with prominent LLM frameworks, including OpenAI, LlamaIndex, and LangChain. Notable features encompass customizable storage solutions, RDF-based ontologies for intelligent data structuring, and the capability to operate on-premises, which promotes data privacy and regulatory compliance. Additionally, Cognee boasts a distributed system that is scalable and adept at managing substantial data volumes, all while aiming to minimize AI hallucinations by providing a cohesive and interconnected data environment. This makes it a vital resource for developers looking to enhance the capabilities of their AI applications. -
35
AutoGen
Microsoft
FreeAn open-source programming framework designed for agent-based AI is available in the form of AutoGen. This framework presents a multi-agent conversational system that serves as a user-friendly abstraction layer, enabling the efficient creation of workflows involving large language models. AutoGen encompasses a diverse array of functional systems that cater to numerous applications across different fields and levels of complexity. Furthermore, it enhances the performance of inference APIs for large language models, offering opportunities to optimize efficiency and minimize expenses. By leveraging this framework, developers can streamline their projects while exploring innovative solutions in AI. -
36
AgentOps
AgentOps
$40 per monthIntroducing a premier developer platform designed for the testing and debugging of AI agents, we provide the essential tools so you can focus on innovation. With our system, you can visually monitor events like LLM calls, tool usage, and the interactions of multiple agents. Additionally, our rewind and replay feature allows for precise review of agent executions at specific moments. Maintain a comprehensive log of data, encompassing logs, errors, and prompt injection attempts throughout the development cycle from prototype to production. Our platform seamlessly integrates with leading agent frameworks, enabling you to track, save, and oversee every token your agent processes. You can also manage and visualize your agent's expenditures with real-time price updates. Furthermore, our service enables you to fine-tune specialized LLMs at a fraction of the cost, making it up to 25 times more affordable on saved completions. Create your next agent with the benefits of evaluations, observability, and replays at your disposal. With just two simple lines of code, you can liberate yourself from terminal constraints and instead visualize your agents' actions through your AgentOps dashboard. Once AgentOps is configured, every execution of your program is documented as a session, ensuring that all relevant data is captured automatically, allowing for enhanced analysis and optimization. This not only streamlines your workflow but also empowers you to make data-driven decisions to improve your AI agents continuously. -
37
Agent Builder
OpenAI
Agent Builder is a component of OpenAI’s suite designed for creating agentic applications, which are systems that leverage large language models to autonomously carry out multi-step tasks while incorporating governance, tool integration, memory, orchestration, and observability features. This platform provides a flexible collection of components—such as models, tools, memory/state, guardrails, and workflow orchestration—which developers can piece together to create agents that determine the appropriate moments to utilize a tool, take action, or pause and transfer control. Additionally, OpenAI has introduced a new Responses API that merges chat functions with integrated tool usage, alongside an Agents SDK available in Python and JS/TS that simplifies the control loop, enforces guardrails (validations on inputs and outputs), manages agent handoffs, oversees session management, and tracks agent activities. Furthermore, agents can be enhanced with various built-in tools, including web search, file search, or computer functionalities, as well as custom function-calling tools, allowing for a diverse range of operational capabilities. Overall, this comprehensive ecosystem empowers developers to craft sophisticated applications that can adapt and respond to user needs with remarkable efficiency. -
38
HumanLayer
HumanLayer
$500 per monthHumanLayer provides an API and SDK that allows AI agents to engage with humans for feedback, input, and approvals. It ensures that critical function calls are monitored by human oversight through approval workflows that operate across platforms like Slack and email. By seamlessly integrating with your favorite Large Language Model (LLM) and various frameworks, HumanLayer equips AI agents with secure access to external information. The platform is compatible with numerous frameworks and LLMs, such as LangChain, CrewAI, ControlFlow, LlamaIndex, Haystack, OpenAI, Claude, Llama3.1, Mistral, Gemini, and Cohere. Key features include structured approval workflows, integration of human input as a tool, and tailored responses that can escalate as needed. It enables the pre-filling of response prompts for more fluid interactions between humans and agents. Additionally, users can direct requests to specific individuals or teams and manage which users have the authority to approve or reply to LLM inquiries. By allowing the flow of control to shift from human-initiated to agent-initiated, HumanLayer enhances the versatility of AI interactions. Furthermore, the platform allows for the incorporation of multiple human communication channels into your agent's toolkit, thereby expanding the range of user engagement options. -
39
Vivgrid
Vivgrid
$25 per monthVivgrid serves as a comprehensive development platform tailored for AI agents, focusing on critical aspects such as observability, debugging, safety, and a robust global deployment framework. It provides complete transparency into agent activities by logging prompts, memory retrievals, tool interactions, and reasoning processes, allowing developers to identify and address any points of failure or unexpected behavior. Furthermore, it enables the testing and enforcement of safety protocols, including refusal rules and filters, while facilitating human-in-the-loop oversight prior to deployment. Vivgrid also manages the orchestration of multi-agent systems equipped with stateful memory, dynamically assigning tasks across various agent workflows. On the deployment front, it utilizes a globally distributed inference network to guarantee low-latency execution, achieving response times under 50 milliseconds, and offers real-time metrics on latency, costs, and usage. By integrating debugging, evaluation, safety, and deployment into a single coherent framework, Vivgrid aims to streamline the process of delivering resilient AI systems without the need for disparate components in observability, infrastructure, and orchestration, ultimately enhancing efficiency for developers. This holistic approach empowers teams to focus on innovation rather than the complexities of system integration. -
40
FastAgency
FastAgency
FreeFastAgency is an innovative open-source framework aimed at streamlining the transition of multi-agent AI workflows from initial prototypes to full-scale production. It offers a cohesive programming interface that works with multiple agent-based AI frameworks, allowing developers to implement agentic workflows in both experimental and operational environments. By incorporating functionalities such as multi-runtime support, smooth integration with external APIs, and a command-line interface for orchestration, FastAgency makes it easier to construct scalable architectures suitable for deploying AI workflows. At present, it is compatible with the AutoGen framework, and there are intentions to broaden its compatibility to include CrewAI, Swarm, and LangGraph in the near future. This flexibility enables developers to switch between different frameworks effortlessly, selecting the one that best aligns with their project's requirements. Additionally, FastAgency provides a shared programming interface that allows developers to create essential workflows once and utilize them across various user interfaces without the need for redundant coding, thereby enhancing efficiency and productivity in AI development. As a result, FastAgency not only accelerates deployment but also fosters innovation and collaboration among developers in the AI landscape. -
41
Aspecto
Aspecto
$40 per monthIdentify and resolve performance issues and errors within your microservices architecture. Establish connections between root causes by analyzing traces, logs, and metrics. Reduce your costs associated with OpenTelemetry traces through Aspecto's integrated remote sampling feature. The way OTel data is visualized plays a crucial role in enhancing your troubleshooting efficiency. Transition seamlessly from a broad overview to intricate details using top-tier visualization tools. Link logs directly to their corresponding traces effortlessly, maintaining context to expedite issue resolution. Utilize filters, free-text searches, and grouping options to navigate your trace data swiftly and accurately locate the source of the problem. Optimize expenses by sampling only essential data, allowing for trace sampling based on programming languages, libraries, specific routes, and error occurrences. Implement data privacy measures to obscure sensitive information within traces, specific routes, or other critical areas. Moreover, integrate your everyday tools with your operational workflow, including logs, error monitoring, and external event APIs, to create a cohesive and efficient system for managing and troubleshooting issues. This holistic approach not only improves visibility but also empowers teams to tackle problems proactively. -
42
SWE-Kit
Composio
$49 per monthSweKit empowers users to create PR agents that can review code, suggest enhancements, uphold coding standards, detect potential problems, automate merge approvals, and offer insights into best practices, thereby streamlining the review process and improving code quality. Additionally, it automates the development of new features, troubleshoots intricate issues, generates and executes tests, fine-tunes code for optimal performance, refactors for better maintainability, and ensures adherence to best practices throughout the codebase, which significantly boosts development speed and efficiency. With its sophisticated code analysis, advanced indexing, and smart file navigation tools, SweKit allows users to effortlessly explore and engage with extensive codebases. Users can pose questions, trace dependencies, uncover logic flows, and receive immediate insights, facilitating smooth interactions with complex code structures. Furthermore, it ensures that documentation remains aligned with the code by automatically updating Mintlify documentation whenever modifications are made to the codebase, guaranteeing that your documentation is precise, current, and accessible for both your team and users. This synchronization fosters a culture of transparency and keeps all stakeholders informed of the latest developments in the project's lifecycle. -
43
Parea
Parea
Parea is a prompt engineering platform designed to allow users to experiment with various prompt iterations, assess and contrast these prompts through multiple testing scenarios, and streamline the optimization process with a single click, in addition to offering sharing capabilities and more. Enhance your AI development process by leveraging key functionalities that enable you to discover and pinpoint the most effective prompts for your specific production needs. The platform facilitates side-by-side comparisons of prompts across different test cases, complete with evaluations, and allows for CSV imports of test cases, along with the creation of custom evaluation metrics. By automating the optimization of prompts and templates, Parea improves the outcomes of large language models, while also providing users the ability to view and manage all prompt versions, including the creation of OpenAI functions. Gain programmatic access to your prompts, which includes comprehensive observability and analytics features, helping you determine the costs, latency, and overall effectiveness of each prompt. Embark on the journey to refine your prompt engineering workflow with Parea today, as it empowers developers to significantly enhance the performance of their LLM applications through thorough testing and effective version control, ultimately fostering innovation in AI solutions. -
44
meshIQ
meshIQ
Middleware Observability & management software for Messaging, event processing, and Streaming Across Hybrid Clouds (MESH). - 360 degree situational awareness® with complete observability of Integration MESH - Manage configuration, administration and deployment in a secure manner and automate them. - Track and trace transactions, messages, and flows - Collect data, monitor performance, and benchmark it meshIQ provides granular controls for managing configurations in the MESH, reducing downtime and allowing quick recovery after outages. It allows you to search, browse, track and trace messages in order to detect bottlenecks, speed up root cause analysis, and detect bottlenecks. Unlocks integration blackbox for visibility across MESH infrastructure in order to visualize, analyse, report and predict. Delivers the capability to trigger automated action based on predefined criteria or intelligent AI/ML actions. -
45
Aspen Mtell
Aspen Technology
Identify patterns in operational data that can forecast deterioration and potential failures long before they occur. By employing accurate failure pattern recognition, you can reduce the frequent occurrence of false positives typically associated with traditional model-based approaches. Utilizing low-touch machine learning, you can swiftly distinguish between normal and abnormal behaviors, ensuring equipment protection starts within weeks rather than extending into months. The integration of Aspen Mtell with Aspen Cloud Connect™ provides connectivity to devices that support OPC UA. This method of recognizing operational patterns not only serves as an initial defense against asset decline but also enhances existing maintenance strategies through the deployment of AI-driven agents across various sites or throughout the entire organization. By focusing on precise failure pattern recognition, the challenge of high false positive rates in model-based solutions is effectively mitigated. Moreover, the rapid identification of operational behaviors facilitates timely equipment protection, ensuring that organizations can respond proactively to potential issues as they arise.