Best AtScale Alternatives in 2025
Find the top alternatives to AtScale currently available. Compare ratings, reviews, pricing, and features of AtScale alternatives in 2025. Slashdot lists the best AtScale alternatives on the market that offer competing products that are similar to AtScale. Sort through AtScale alternatives below to make the best choice for your needs
-
1
Teradata VantageCloud
Teradata
975 RatingsTeradata VantageCloud: Open, Scalable Cloud Analytics for AI VantageCloud is Teradata’s cloud-native analytics and data platform designed for performance and flexibility. It unifies data from multiple sources, supports complex analytics at scale, and makes it easier to deploy AI and machine learning models in production. With built-in support for multi-cloud and hybrid deployments, VantageCloud lets organizations manage data across AWS, Azure, Google Cloud, and on-prem environments without vendor lock-in. Its open architecture integrates with modern data tools and standard formats, giving developers and data teams freedom to innovate while keeping costs predictable. -
2
BigQuery is a serverless, multicloud data warehouse that makes working with all types of data effortless, allowing you to focus on extracting valuable business insights quickly. As a central component of Google’s data cloud, it streamlines data integration, enables cost-effective and secure scaling of analytics, and offers built-in business intelligence for sharing detailed data insights. With a simple SQL interface, it also supports training and deploying machine learning models, helping to foster data-driven decision-making across your organization. Its robust performance ensures that businesses can handle increasing data volumes with minimal effort, scaling to meet the needs of growing enterprises. Gemini within BigQuery brings AI-powered tools that enhance collaboration and productivity, such as code recommendations, visual data preparation, and intelligent suggestions aimed at improving efficiency and lowering costs. The platform offers an all-in-one environment with SQL, a notebook, and a natural language-based canvas interface, catering to data professionals of all skill levels. This cohesive workspace simplifies the entire analytics journey, enabling teams to work faster and more efficiently.
-
3
dbt
dbt Labs
206 Ratingsdbt Labs is redefining how data teams work with SQL. Instead of waiting on complex ETL processes, dbt lets data analysts and data engineers build production-ready transformations directly in the warehouse, using code, version control, and CI/CD. This community-driven approach puts power back in the hands of practitioners while maintaining governance and scalability for enterprise use. With a rapidly growing open-source community and an enterprise-grade cloud platform, dbt is at the heart of the modern data stack. It’s the go-to solution for teams who want faster analytics, higher quality data, and the confidence that comes from transparent, testable transformations. -
4
Big Data Quality must always be verified to ensure that data is safe, accurate, and complete. Data is moved through multiple IT platforms or stored in Data Lakes. The Big Data Challenge: Data often loses its trustworthiness because of (i) Undiscovered errors in incoming data (iii). Multiple data sources that get out-of-synchrony over time (iii). Structural changes to data in downstream processes not expected downstream and (iv) multiple IT platforms (Hadoop DW, Cloud). Unexpected errors can occur when data moves between systems, such as from a Data Warehouse to a Hadoop environment, NoSQL database, or the Cloud. Data can change unexpectedly due to poor processes, ad-hoc data policies, poor data storage and control, and lack of control over certain data sources (e.g., external providers). DataBuck is an autonomous, self-learning, Big Data Quality validation tool and Data Matching tool.
-
5
AnalyticsCreator
AnalyticsCreator
46 RatingsAccelerate your data journey with AnalyticsCreator—a metadata-driven data warehouse automation solution purpose-built for the Microsoft data ecosystem. AnalyticsCreator simplifies the design, development, and deployment of modern data architectures, including dimensional models, data marts, data vaults, or blended modeling approaches tailored to your business needs. Seamlessly integrate with Microsoft SQL Server, Azure Synapse Analytics, Microsoft Fabric (including OneLake and SQL Endpoint Lakehouse environments), and Power BI. AnalyticsCreator automates ELT pipeline creation, data modeling, historization, and semantic layer generation—helping reduce tool sprawl and minimizing manual SQL coding. Designed to support CI/CD pipelines, AnalyticsCreator connects easily with Azure DevOps and GitHub for version-controlled deployments across development, test, and production environments. This ensures faster, error-free releases while maintaining governance and control across your entire data engineering workflow. Key features include automated documentation, end-to-end data lineage tracking, and adaptive schema evolution—enabling teams to manage change, reduce risk, and maintain auditability at scale. AnalyticsCreator empowers agile data engineering by enabling rapid prototyping and production-grade deployments for Microsoft-centric data initiatives. By eliminating repetitive manual tasks and deployment risks, AnalyticsCreator allows your team to focus on delivering actionable business insights—accelerating time-to-value for your data products and analytics initiatives. -
6
Domo
Domo
49 RatingsDomo puts data to work for everyone so they can multiply their impact on the business. Underpinned by a secure data foundation, our cloud-native data experience platform makes data visible and actionable with user-friendly dashboards and apps. Domo helps companies optimize critical business processes at scale and in record time to spark bold curiosity that powers exponential business results. -
7
Cognos Analytics with Watson brings BI to a new level with AI capabilities that provide a complete, trustworthy, and complete picture of your company. They can forecast the future, predict outcomes, and explain why they might happen. Built-in AI can be used to speed up and improve the blending of data or find the best tables for your model. AI can help you uncover hidden trends and drivers and provide insights in real-time. You can create powerful visualizations and tell the story of your data. You can also share insights via email or Slack. Combine advanced analytics with data science to unlock new opportunities. Self-service analytics that is governed and secures data from misuse adapts to your needs. You can deploy it wherever you need it - on premises, on the cloud, on IBM Cloud Pak®, for Data or as a hybrid option.
-
8
Pentaho+ is an integrated suite of products that provides data integration, analytics and cataloging. It also optimizes and improves quality. This allows for seamless data management and drives innovation and informed decisions. Pentaho+ helped customers achieve 3x more improved data trust and 7x more impactful business results, as well as a 70% increase productivity.
-
9
Qrvey
Qrvey
About Qrvey Qrvey pioneered multi-tenant self-service analytics for SaaS companies and now leads the evolution toward AI-driven, autonomous analytics. With over 20 years of experience, we provide industry-leading guidance and support, ensuring our clients achieve their analytics goals. Our deep understanding of multi-tenant SaaS architecture and comprehensive services make us the partner of choice for SaaS leaders. About Qrvey Platform Qrvey is the embedded analytics platform designed specifically for SaaS companies. Qrvey offers insight, agility and growth. Insight for your customers · True self-service with unlimited customization · AI-driven insights · No-code workflow automation Agility for your product team · End-to-end embedded analytics platform · Native multi-tenant security · Flexible multi-cloud deployments Growth for your business · Flat-rate pricing for scale · Unmatched monetization opportunities · Embedded services -
10
Snowflake offers a unified AI Data Cloud platform that transforms how businesses store, analyze, and leverage data by eliminating silos and simplifying architectures. It features interoperable storage that enables seamless access to diverse datasets at massive scale, along with an elastic compute engine that delivers leading performance for a wide range of workloads. Snowflake Cortex AI integrates secure access to cutting-edge large language models and AI services, empowering enterprises to accelerate AI-driven insights. The platform’s cloud services automate and streamline resource management, reducing complexity and cost. Snowflake also offers Snowgrid, which securely connects data and applications across multiple regions and cloud providers for a consistent experience. Their Horizon Catalog provides built-in governance to manage security, privacy, compliance, and access control. Snowflake Marketplace connects users to critical business data and apps to foster collaboration within the AI Data Cloud network. Serving over 11,000 customers worldwide, Snowflake supports industries from healthcare and finance to retail and telecom.
-
11
Fivetran
Fivetran
Fivetran is a comprehensive data integration solution designed to centralize and streamline data movement for organizations of all sizes. With more than 700 pre-built connectors, it effortlessly transfers data from SaaS apps, databases, ERPs, and files into data warehouses and lakes, enabling real-time analytics and AI-driven insights. The platform’s scalable pipelines automatically adapt to growing data volumes and business complexity. Leading companies such as Dropbox, JetBlue, Pfizer, and National Australia Bank rely on Fivetran to reduce data ingestion time from weeks to minutes and improve operational efficiency. Fivetran offers strong security compliance with certifications including SOC 1 & 2, GDPR, HIPAA, ISO 27001, PCI DSS, and HITRUST. Users can programmatically create and manage pipelines through its REST API for seamless extensibility. The platform supports governance features like role-based access controls and integrates with transformation tools like dbt Labs. Fivetran helps organizations innovate by providing reliable, secure, and automated data pipelines tailored to their evolving needs. -
12
SSAS
Microsoft
When deployed as an on-premises server, SQL Server Analysis Services provides comprehensive support for various model types, including tabular models at all compatibility levels based on the version, multidimensional models, data mining capabilities, and Power Pivot features for SharePoint. The standard process for implementation involves setting up a SQL Server Analysis Services instance, designing either a tabular or multidimensional data model, deploying this model as a database to the server instance, processing it to populate with data, and configuring user permissions to facilitate data access. Once the setup is complete, client applications that are compatible with Analysis Services can easily utilize the data model as a source. These models typically gather data from external systems, primarily from data warehouses utilizing either SQL Server or Oracle relational database engines, though tabular models can connect to a variety of additional data sources. This versatility makes SQL Server Analysis Services a powerful tool for analytics and business intelligence. -
13
Kyvos Semantic Layer
Kyvos Insights
18 RatingsKyvos is a semantic data lakehouse designed to speed up every BI and AI initiative, offering lightning-fast analytics at an infinite scale with maximum cost efficiency and the lowest possible carbon footprint. The platform provides high-performance storage for both structured and unstructured data, ensuring trusted data for AI applications. It is built to scale seamlessly, making it an ideal solution for enterprises aiming to maximize their data’s potential. Kyvos is infrastructure-agnostic, which means it fits perfectly into any modern data or AI stack, whether deployed on-premises or in the cloud. Leading companies rely on Kyvos as a unified source for cost-effective, high-performance analytics that foster deep, meaningful insights and context-aware AI application development. By leveraging Kyvos, organizations can break through data barriers, accelerate decision-making, and enhance their AI-driven initiatives. The platform's flexibility allows businesses to create a scalable foundation for a range of data-driven solutions. -
14
Codd AI
Codd AI
$25k per yearCodd AI addresses a major challenge in the analytics landscape: transforming data into a format that is genuinely suitable for business purposes. Rather than having teams dedicate weeks to the tedious tasks of manually mapping schemas, constructing models, and establishing metrics, Codd leverages generative AI to automatically generate a context-aware semantic layer that connects technical data with the language of the business. As a result, business users can pose inquiries in straightforward English and receive precise, governed responses instantly—whether through BI tools, conversational AI, or various other platforms. Additionally, with built-in governance and auditability, Codd not only accelerates the analytics process but also enhances clarity and reliability. Ultimately, this innovative approach empowers organizations to make more informed decisions based on trustworthy data insights. -
15
Apache Kylin
Apache Software Foundation
Apache Kylin™ is a distributed, open-source Analytical Data Warehouse designed for Big Data, aimed at delivering OLAP (Online Analytical Processing) capabilities in the modern big data landscape. By enhancing multi-dimensional cube technology and precalculation methods on platforms like Hadoop and Spark, Kylin maintains a consistent query performance, even as data volumes continue to expand. This innovation reduces query response times from several minutes to just milliseconds, effectively reintroducing online analytics into the realm of big data. Capable of processing over 10 billion rows in under a second, Kylin eliminates the delays previously associated with report generation, facilitating timely decision-making. It seamlessly integrates data stored on Hadoop with popular BI tools such as Tableau, PowerBI/Excel, MSTR, QlikSense, Hue, and SuperSet, significantly accelerating business intelligence operations on Hadoop. As a robust Analytical Data Warehouse, Kylin supports ANSI SQL queries on Hadoop/Spark and encompasses a wide array of ANSI SQL functions. Moreover, Kylin’s architecture allows it to handle thousands of simultaneous interactive queries with minimal resource usage, ensuring efficient analytics even under heavy loads. This efficiency positions Kylin as an essential tool for organizations seeking to leverage their data for strategic insights. -
16
Querona
YouNeedIT
We make BI and Big Data analytics easier and more efficient. Our goal is to empower business users, make BI specialists and always-busy business more independent when solving data-driven business problems. Querona is a solution for those who have ever been frustrated by a lack in data, slow or tedious report generation, or a long queue to their BI specialist. Querona has a built-in Big Data engine that can handle increasing data volumes. Repeatable queries can be stored and calculated in advance. Querona automatically suggests improvements to queries, making optimization easier. Querona empowers data scientists and business analysts by giving them self-service. They can quickly create and prototype data models, add data sources, optimize queries, and dig into raw data. It is possible to use less IT. Users can now access live data regardless of where it is stored. Querona can cache data if databases are too busy to query live. -
17
Dremio
Dremio
Dremio provides lightning-fast queries as well as a self-service semantic layer directly to your data lake storage. No data moving to proprietary data warehouses, and no cubes, aggregation tables, or extracts. Data architects have flexibility and control, while data consumers have self-service. Apache Arrow and Dremio technologies such as Data Reflections, Columnar Cloud Cache(C3), and Predictive Pipelining combine to make it easy to query your data lake storage. An abstraction layer allows IT to apply security and business meaning while allowing analysts and data scientists access data to explore it and create new virtual datasets. Dremio's semantic layers is an integrated searchable catalog that indexes all your metadata so business users can make sense of your data. The semantic layer is made up of virtual datasets and spaces, which are all searchable and indexed. -
18
Databricks Data Intelligence Platform
Databricks
The Databricks Data Intelligence Platform empowers every member of your organization to leverage data and artificial intelligence effectively. Constructed on a lakehouse architecture, it establishes a cohesive and transparent foundation for all aspects of data management and governance, enhanced by a Data Intelligence Engine that recognizes the distinct characteristics of your data. Companies that excel across various sectors will be those that harness the power of data and AI. Covering everything from ETL processes to data warehousing and generative AI, Databricks facilitates the streamlining and acceleration of your data and AI objectives. By merging generative AI with the integrative advantages of a lakehouse, Databricks fuels a Data Intelligence Engine that comprehends the specific semantics of your data. This functionality enables the platform to optimize performance automatically and manage infrastructure in a manner tailored to your organization's needs. Additionally, the Data Intelligence Engine is designed to grasp the unique language of your enterprise, making the search and exploration of new data as straightforward as posing a question to a colleague, thus fostering collaboration and efficiency. Ultimately, this innovative approach transforms the way organizations interact with their data, driving better decision-making and insights. -
19
Microsoft Fabric
Microsoft
$156.334/month/ 2CU Connecting every data source with analytics services on a single AI-powered platform will transform how people access, manage, and act on data and insights. All your data. All your teams. All your teams in one place. Create an open, lake-centric hub to help data engineers connect data from various sources and curate it. This will eliminate sprawl and create custom views for all. Accelerate analysis through the development of AI models without moving data. This reduces the time needed by data scientists to deliver value. Microsoft Teams, Microsoft Excel, and Microsoft Teams are all great tools to help your team innovate faster. Connect people and data responsibly with an open, scalable solution. This solution gives data stewards more control, thanks to its built-in security, compliance, and governance. -
20
SAP Datasphere
SAP
SAP Datasphere serves as a cohesive data experience platform within the SAP Business Data Cloud, aimed at delivering smooth and scalable access to essential business data. By integrating information from both SAP and non-SAP systems, it harmonizes various data environments, facilitating quicker and more precise decision-making. The platform features capabilities such as data federation, cataloging, semantic modeling, and real-time data integration, ensuring organizations maintain consistent and contextualized data across both hybrid and cloud settings. Furthermore, SAP Datasphere streamlines data management by retaining business context and logic, thus providing an all-encompassing view of data that not only drives innovation but also optimizes business processes. This integration ultimately empowers businesses to leverage their data more effectively in an increasingly competitive landscape. -
21
IBM Cloud Pak for Data
IBM
$699 per monthThe primary obstacle in expanding AI-driven decision-making lies in the underutilization of data. IBM Cloud Pak® for Data provides a cohesive platform that integrates a data fabric, enabling seamless connection and access to isolated data, whether it resides on-premises or in various cloud environments, without necessitating data relocation. It streamlines data accessibility by automatically identifying and organizing data to present actionable knowledge assets to users, while simultaneously implementing automated policy enforcement to ensure secure usage. To further enhance the speed of insights, this platform incorporates a modern cloud data warehouse that works in harmony with existing systems. It universally enforces data privacy and usage policies across all datasets, ensuring compliance is maintained. By leveraging a high-performance cloud data warehouse, organizations can obtain insights more rapidly. Additionally, the platform empowers data scientists, developers, and analysts with a comprehensive interface to construct, deploy, and manage reliable AI models across any cloud infrastructure. Moreover, enhance your analytics capabilities with Netezza, a robust data warehouse designed for high performance and efficiency. This comprehensive approach not only accelerates decision-making but also fosters innovation across various sectors. -
22
EntelliFusion
Teksouth
EntelliFusion by Teksouth is a fully managed, end to end solution. EntelliFusion's architecture is a one-stop solution for outfitting a company's data infrastructure. Instead of trying to put together multiple platforms for data prep, data warehouse and governance, and then deploying a lot of IT resources to make it all work, EntelliFusion's architecture offers a single platform. EntelliFusion unites data silos into a single platform that allows for cross-functional KPI's. This creates powerful insights and holistic solutions. EntelliFusion's "military born" technology has been able to withstand the rigorous demands of the USA's top echelon in military operations. It was scaled up across the DOD over twenty years. EntelliFusion is built using the most recent Microsoft technologies and frameworks, which allows it to continue being improved and innovated. EntelliFusion is data-agnostic and infinitely scalable. It guarantees accuracy and performance to encourage end-user tool adoption. -
23
K2View believes that every enterprise should be able to leverage its data to become as disruptive and agile as possible. We enable this through our Data Product Platform, which creates and manages a trusted dataset for every business entity – on demand, in real time. The dataset is always in sync with its sources, adapts to changes on the fly, and is instantly accessible to any authorized data consumer. We fuel operational use cases, including customer 360, data masking, test data management, data migration, and legacy application modernization – to deliver business outcomes at half the time and cost of other alternatives.
-
24
Enterprise Enabler
Stone Bond Technologies
Enterprise Enabler brings together disparate information from various sources and isolated data sets, providing a cohesive view within a unified platform; this includes data housed in the cloud, distributed across isolated databases, stored on instruments, located in Big Data repositories, or found within different spreadsheets and documents. By seamlessly integrating all your data, it empowers you to make timely and well-informed business choices. The system creates logical representations of data sourced from its original locations, enabling you to effectively reuse, configure, test, deploy, and monitor everything within a single cohesive environment. This allows for the analysis of your business data as events unfold, helping to optimize asset utilization, reduce costs, and enhance your business processes. Remarkably, our deployment timeline is typically 50-90% quicker, ensuring that your data sources are connected and operational in record time, allowing for real-time decision-making based on the most current information available. With this solution, organizations can enhance collaboration and efficiency, leading to improved overall performance and strategic advantage in the market. -
25
Talend Data Fabric
Qlik
Talend Data Fabric's cloud services are able to efficiently solve all your integration and integrity problems -- on-premises or in cloud, from any source, at any endpoint. Trusted data delivered at the right time for every user. With an intuitive interface and minimal coding, you can easily and quickly integrate data, files, applications, events, and APIs from any source to any location. Integrate quality into data management to ensure compliance with all regulations. This is possible through a collaborative, pervasive, and cohesive approach towards data governance. High quality, reliable data is essential to make informed decisions. It must be derived from real-time and batch processing, and enhanced with market-leading data enrichment and cleaning tools. Make your data more valuable by making it accessible internally and externally. Building APIs is easy with the extensive self-service capabilities. This will improve customer engagement. -
26
Nexla
Nexla
$1000/month Nexla's automated approach to data engineering has made it possible for data users for the first time to access ready-to-use data without the need for any connectors or code. Nexla is unique in that it combines no-code and low-code with a developer SDK, bringing together users of all skill levels on one platform. Nexla's data-as a-product core combines integration preparation, monitoring, delivery, and monitoring of data into one system, regardless of data velocity or format. Nexla powers mission-critical data for JPMorgan and Doordash, LinkedIn LiveRamp, J&J, as well as other leading companies across industries. -
27
Stardog
Stardog Union
$0Data engineers and scientists can be 95% better at their jobs with ready access to the most flexible semantic layer, explainable AI and reusable data modelling. They can create and expand semantic models, understand data interrelationships, and run federated query to speed up time to insight. Stardog's graph data virtualization and high performance graph database are the best available -- at a price that is up to 57x less than competitors -- to connect any data source, warehouse, or enterprise data lakehouse without copying or moving data. Scale users and use cases at a lower infrastructure cost. Stardog's intelligent inference engine applies expert knowledge dynamically at query times to uncover hidden patterns and unexpected insights in relationships that lead to better data-informed business decisions and outcomes. -
28
Azure Synapse Analytics
Microsoft
1 RatingAzure Synapse represents the advanced evolution of Azure SQL Data Warehouse. It is a comprehensive analytics service that integrates enterprise data warehousing with Big Data analytics capabilities. Users can query data flexibly, choosing between serverless or provisioned resources, and can do so at scale. By merging these two domains, Azure Synapse offers a cohesive experience for ingesting, preparing, managing, and delivering data, catering to the immediate requirements of business intelligence and machine learning applications. This integration enhances the efficiency and effectiveness of data-driven decision-making processes. -
29
Mozart Data
Mozart Data
Mozart Data is the all-in-one modern data platform for consolidating, organizing, and analyzing your data. Set up a modern data stack in an hour, without any engineering. Start getting more out of your data and making data-driven decisions today. -
30
Delphix
Perforce
Delphix is the industry leader for DataOps. It provides an intelligent data platform that accelerates digital change for leading companies around world. The Delphix DataOps Platform supports many systems, including mainframes, Oracle databases, ERP apps, and Kubernetes container. Delphix supports a wide range of data operations that enable modern CI/CD workflows. It also automates data compliance with privacy regulations such as GDPR, CCPA and the New York Privacy Act. Delphix also helps companies to sync data between private and public clouds, accelerating cloud migrations and customer experience transformations, as well as the adoption of disruptive AI technologies. -
31
IBM DataStage
IBM
Boost the pace of AI innovation through cloud-native data integration offered by IBM Cloud Pak for Data. With AI-driven data integration capabilities accessible from anywhere, the effectiveness of your AI and analytics is directly linked to the quality of the data supporting them. Utilizing a modern container-based architecture, IBM® DataStage® for IBM Cloud Pak® for Data ensures the delivery of superior data. This solution merges top-tier data integration with DataOps, governance, and analytics within a unified data and AI platform. By automating administrative tasks, it helps in lowering total cost of ownership (TCO). The platform's AI-based design accelerators, along with ready-to-use integrations with DataOps and data science services, significantly hasten AI advancements. Furthermore, its parallelism and multicloud integration capabilities enable the delivery of reliable data on a large scale across diverse hybrid or multicloud settings. Additionally, you can efficiently manage the entire data and analytics lifecycle on the IBM Cloud Pak for Data platform, which encompasses a variety of services such as data science, event messaging, data virtualization, and data warehousing, all bolstered by a parallel engine and automated load balancing features. This comprehensive approach ensures that your organization stays ahead in the rapidly evolving landscape of data and AI. -
32
Aggua
Aggua
Aggua serves as an augmented AI platform for data fabric that empowers both data and business teams to access their information, fostering trust while providing actionable data insights, ultimately leading to more comprehensive, data-driven decision-making. Rather than being left in the dark about the intricacies of your organization's data stack, you can quickly gain clarity with just a few clicks. This platform offers insights into data costs, lineage, and documentation without disrupting your data engineer’s busy schedule. Instead of investing excessive time on identifying how a change in data type might impact your data pipelines, tables, and overall infrastructure, automated lineage allows data architects and engineers to focus on implementing changes rather than sifting through logs and DAGs. As a result, teams can work more efficiently and effectively, leading to faster project completions and improved operational outcomes. -
33
Informatica Data Engineering
Informatica
Efficiently ingest, prepare, and manage data pipelines at scale specifically designed for cloud-based AI and analytics. The extensive data engineering suite from Informatica equips users with all the essential tools required to handle large-scale data engineering tasks that drive AI and analytical insights, including advanced data integration, quality assurance, streaming capabilities, data masking, and preparation functionalities. With the help of CLAIRE®-driven automation, users can quickly develop intelligent data pipelines, which feature automatic change data capture (CDC), allowing for the ingestion of thousands of databases and millions of files alongside streaming events. This approach significantly enhances the speed of achieving return on investment by enabling self-service access to reliable, high-quality data. Gain genuine, real-world perspectives on Informatica's data engineering solutions from trusted peers within the industry. Additionally, explore reference architectures designed for sustainable data engineering practices. By leveraging AI-driven data engineering in the cloud, organizations can ensure their analysts and data scientists have access to the dependable, high-quality data essential for transforming their business operations effectively. Ultimately, this comprehensive approach not only streamlines data management but also empowers teams to make data-driven decisions with confidence. -
34
CelerData Cloud
CelerData
CelerData is an advanced SQL engine designed to enable high-performance analytics directly on data lakehouses, removing the necessity for conventional data warehouse ingestion processes. It achieves impressive query speeds in mere seconds, facilitates on-the-fly JOIN operations without incurring expensive denormalization, and streamlines system architecture by enabling users to execute intensive workloads on open format tables. Based on the open-source StarRocks engine, this platform surpasses older query engines like Trino, ClickHouse, and Apache Druid in terms of latency, concurrency, and cost efficiency. With its cloud-managed service operating within your own VPC, users maintain control over their infrastructure and data ownership while CelerData manages the upkeep and optimization tasks. This platform is poised to support real-time OLAP, business intelligence, and customer-facing analytics applications, and it has garnered the trust of major enterprise clients, such as Pinterest, Coinbase, and Fanatics, who have realized significant improvements in latency and cost savings. Beyond enhancing performance, CelerData’s capabilities allow businesses to harness their data more effectively, ensuring they remain competitive in a data-driven landscape. -
35
SAP HANA
SAP
SAP HANA is an in-memory database designed to handle both transactional and analytical workloads using a single copy of data, regardless of type. It effectively dissolves the barriers between transactional and analytical processes within organizations, facilitating rapid decision-making whether deployed on-premises or in the cloud. This innovative database management system empowers users to create intelligent, real-time solutions, enabling swift decision-making from a unified data source. By incorporating advanced analytics, it enhances the capabilities of next-generation transaction processing. Organizations can build data solutions that capitalize on cloud-native attributes such as scalability, speed, and performance. With SAP HANA Cloud, businesses can access reliable, actionable information from one cohesive platform while ensuring robust security, privacy, and data anonymization, reflecting proven enterprise standards. In today's fast-paced environment, an intelligent enterprise relies on timely insights derived from data, emphasizing the need for real-time delivery of such valuable information. As the demand for immediate access to insights grows, leveraging an efficient database like SAP HANA becomes increasingly critical for organizations aiming to stay competitive. -
36
Fraxses
Intenda
Numerous products are available that assist businesses in this endeavor, but if your main goals are to build a data-driven organization while maximizing efficiency and minimizing costs, the only option worth considering is Fraxses, the leading distributed data platform in the world. Fraxses gives clients on-demand access to data, providing impactful insights through a solution that supports either a data mesh or data fabric architecture. Imagine a data mesh as a framework that overlays various data sources, linking them together and allowing them to operate as a cohesive unit. In contrast to other platforms focused on data integration and virtualization, Fraxses boasts a decentralized architecture that sets it apart. Although Fraxses is fully capable of accommodating traditional data integration methods, the future is leaning towards a novel approach where data is delivered directly to users, eliminating the necessity for a centrally managed data lake or platform. This innovative perspective not only enhances user autonomy but also streamlines data accessibility across the organization. -
37
data.world
data.world
$12 per monthdata.world is a cloud-native service meticulously designed for contemporary data architectures, ensuring seamless management of updates, migrations, and ongoing maintenance. This streamlined setup process is complemented by a vast and expanding ecosystem of pre-built integrations with all major cloud data warehouses. When prompt results are essential, your team should concentrate on addressing genuine business challenges rather than grappling with cumbersome data management software. data.world simplifies the process for all users, not just data experts, enabling them to obtain clear, precise, and prompt answers to various business inquiries. Our platform features a cloud-based data catalog that connects isolated and distributed data to well-known business concepts, fostering a cohesive knowledge base that everyone can access, comprehend, and utilize. Furthermore, beyond our enterprise solutions, data.world hosts the largest collaborative open data community globally, where individuals collaborate on diverse projects ranging from social bot detection to acclaimed data journalism initiatives, promoting innovation and shared learning. This unique environment encourages knowledge sharing and empowers users to leverage data in creative and impactful ways. -
38
Lyftrondata
Lyftrondata
If you're looking to establish a governed delta lake, create a data warehouse, or transition from a conventional database to a contemporary cloud data solution, Lyftrondata has you covered. You can effortlessly create and oversee all your data workloads within a single platform, automating the construction of your pipeline and warehouse. Instantly analyze your data using ANSI SQL and business intelligence or machine learning tools, and easily share your findings without the need for custom coding. This functionality enhances the efficiency of your data teams and accelerates the realization of value. You can define, categorize, and locate all data sets in one centralized location, enabling seamless sharing with peers without the complexity of coding, thus fostering insightful data-driven decisions. This capability is particularly advantageous for organizations wishing to store their data once, share it with various experts, and leverage it repeatedly for both current and future needs. In addition, you can define datasets, execute SQL transformations, or migrate your existing SQL data processing workflows to any cloud data warehouse of your choice, ensuring flexibility and scalability in your data management strategy. -
39
TIBCO Data Virtualization
TIBCO Software
A comprehensive enterprise data virtualization solution enables seamless access to a variety of data sources while establishing a robust foundation of datasets and IT-managed data services suitable for virtually any application. The TIBCO® Data Virtualization system, functioning as a contemporary data layer, meets the dynamic demands of organizations with evolving architectures. By eliminating bottlenecks, it fosters consistency and facilitates reuse by providing on-demand access to all data through a unified logical layer that is secure, governed, and accessible to a wide range of users. With immediate availability of all necessary data, organizations can derive actionable insights and respond swiftly in real-time. Users benefit from the ability to effortlessly search for and choose from a self-service directory of virtualized business data, utilizing their preferred analytics tools to achieve desired outcomes. This shift allows them to concentrate more on data analysis rather than on the time-consuming task of data retrieval. Furthermore, the streamlined process enhances productivity and enables teams to make informed decisions quickly and effectively. -
40
Denodo
Denodo Technologies
The fundamental technology that powers contemporary solutions for data integration and management is designed to swiftly link various structured and unstructured data sources. It allows for the comprehensive cataloging of your entire data environment, ensuring that data remains within its original sources and is retrieved as needed, eliminating the requirement for duplicate copies. Users can construct data models tailored to their needs, even when drawing from multiple data sources, while also concealing the intricacies of back-end systems from end users. The virtual model can be securely accessed and utilized through standard SQL alongside other formats such as REST, SOAP, and OData, promoting easy access to diverse data types. It features complete data integration and modeling capabilities, along with an Active Data Catalog that enables self-service for data and metadata exploration and preparation. Furthermore, it incorporates robust data security and governance measures, ensures rapid and intelligent execution of data queries, and provides real-time data delivery in various formats. The system also supports the establishment of data marketplaces and effectively decouples business applications from data systems, paving the way for more informed, data-driven decision-making strategies. This innovative approach enhances the overall agility and responsiveness of organizations in managing their data assets. -
41
OpenText Analytics Database is a cutting-edge analytics platform designed to accelerate decision-making and operational efficiency through fast, real-time data processing and advanced machine learning. Organizations benefit from its flexible deployment options, including on-premises, hybrid, and multi-cloud environments, enabling them to tailor analytics infrastructure to their specific needs and lower overall costs. The platform’s massively parallel processing (MPP) architecture delivers lightning-fast query performance across large, complex datasets. It supports columnar storage and data lakehouse compatibility, allowing seamless analysis of data stored in various formats such as Parquet, ORC, and AVRO. Users can interact with data using familiar languages like SQL, R, Python, Java, and C/C++, making it accessible for both technical and business users. In-database machine learning capabilities allow for building and deploying predictive models without moving data, providing real-time insights. Additional analytics functions include time series, geospatial, and event-pattern matching, enabling deep and diverse data exploration. OpenText Analytics Database is ideal for organizations looking to harness AI and analytics to drive smarter business decisions.
-
42
Isima
Isima
bi(OS)® offers an unmatched speed to insight for developers of data applications in a cohesive manner. With bi(OS)®, the entire process of creating data applications can be completed in just a matter of hours to days. This comprehensive approach encompasses the integration of diverse data sources, the extraction of real-time insights, and the smooth deployment into production environments. By joining forces with enterprise data teams across various sectors, you can transform into the data superhero your organization needs. The combination of Open Source, Cloud, and SaaS has not fulfilled its potential for delivering genuine data-driven results. Enterprises have largely focused their investments on data movement and integration, a strategy that is ultimately unsustainable. A fresh perspective on data management is urgently required, one that considers the unique challenges of enterprises. bi(OS)® is designed by rethinking fundamental principles in enterprise data management, ranging from data ingestion to insight generation. It caters to the needs of API, AI, and BI developers in a cohesive manner, enabling data-driven outcomes within days. As engineers collaborate effectively, a harmonious relationship emerges among IT teams, tools, and processes, creating a lasting competitive advantage for the organization. -
43
Varada
Varada
Varada offers a cutting-edge big data indexing solution that adeptly balances performance and cost while eliminating the need for data operations. This distinct technology acts as an intelligent acceleration layer within your data lake, which remains the central source of truth and operates within the customer's cloud infrastructure (VPC). By empowering data teams to operationalize their entire data lake, Varada facilitates data democratization while ensuring fast, interactive performance, all without requiring data relocation, modeling, or manual optimization. The key advantage lies in Varada's capability to automatically and dynamically index pertinent data, maintaining the structure and granularity of the original source. Additionally, Varada ensures that any query can keep pace with the constantly changing performance and concurrency demands of users and analytics APIs, while also maintaining predictable cost management. The platform intelligently determines which queries to accelerate and which datasets to index, while also flexibly adjusting the cluster to match demand, thereby optimizing both performance and expenses. This holistic approach to data management not only enhances operational efficiency but also allows organizations to remain agile in an ever-evolving data landscape. -
44
Oracle Big Data Preparation
Oracle
Oracle Big Data Preparation Cloud Service is a comprehensive managed Platform as a Service (PaaS) solution that facilitates the swift ingestion, correction, enhancement, and publication of extensive data sets while providing complete visibility in a user-friendly environment. This service allows for seamless integration with other Oracle Cloud Services, like the Oracle Business Intelligence Cloud Service, enabling deeper downstream analysis. Key functionalities include profile metrics and visualizations, which become available once a data set is ingested, offering a visual representation of profile results and summaries for each profiled column, along with outcomes from duplicate entity assessments performed on the entire data set. Users can conveniently visualize governance tasks on the service's Home page, which features accessible runtime metrics, data health reports, and alerts that keep them informed. Additionally, you can monitor your transformation processes and verify that files are accurately processed, while also gaining insights into the complete data pipeline, from initial ingestion through to enrichment and final publication. The platform ensures that users have the tools needed to maintain control over their data management tasks effectively. -
45
Archon Data Store
Platform 3 Solutions
1 RatingThe Archon Data Store™ is a robust and secure platform built on open-source principles, tailored for archiving and managing extensive data lakes. Its compliance capabilities and small footprint facilitate large-scale data search, processing, and analysis across structured, unstructured, and semi-structured data within an organization. By merging the essential characteristics of both data warehouses and data lakes, Archon Data Store creates a seamless and efficient platform. This integration effectively breaks down data silos, enhancing data engineering, analytics, data science, and machine learning workflows. With its focus on centralized metadata, optimized storage solutions, and distributed computing, the Archon Data Store ensures the preservation of data integrity. Additionally, its cohesive strategies for data management, security, and governance empower organizations to operate more effectively and foster innovation at a quicker pace. By offering a singular platform for both archiving and analyzing all organizational data, Archon Data Store not only delivers significant operational efficiencies but also positions your organization for future growth and agility.