Best Arize Phoenix Alternatives in 2025
Find the top alternatives to Arize Phoenix currently available. Compare ratings, reviews, pricing, and features of Arize Phoenix alternatives in 2025. Slashdot lists the best Arize Phoenix alternatives on the market that offer competing products that are similar to Arize Phoenix. Sort through Arize Phoenix alternatives below to make the best choice for your needs
-
1
Vertex AI
Google
713 RatingsFully managed ML tools allow you to build, deploy and scale machine-learning (ML) models quickly, for any use case. Vertex AI Workbench is natively integrated with BigQuery Dataproc and Spark. You can use BigQuery to create and execute machine-learning models in BigQuery by using standard SQL queries and spreadsheets or you can export datasets directly from BigQuery into Vertex AI Workbench to run your models there. Vertex Data Labeling can be used to create highly accurate labels for data collection. Vertex AI Agent Builder empowers developers to design and deploy advanced generative AI applications for enterprise use. It supports both no-code and code-driven development, enabling users to create AI agents through natural language prompts or by integrating with frameworks like LangChain and LlamaIndex. -
2
The Dynatrace software intelligence platform revolutionizes the way organizations operate by offering a unique combination of observability, automation, and intelligence all within a single framework. Say goodbye to cumbersome toolkits and embrace a unified platform that enhances automation across your dynamic multicloud environments while facilitating collaboration among various teams. This platform fosters synergy between business, development, and operations through a comprehensive array of tailored use cases centralized in one location. It enables you to effectively manage and integrate even the most intricate multicloud scenarios, boasting seamless compatibility with all leading cloud platforms and technologies. Gain an expansive understanding of your environment that encompasses metrics, logs, and traces, complemented by a detailed topological model that includes distributed tracing, code-level insights, entity relationships, and user experience data—all presented in context. By integrating Dynatrace’s open API into your current ecosystem, you can streamline automation across all aspects, from development and deployment to cloud operations and business workflows, ultimately leading to increased efficiency and innovation. This cohesive approach not only simplifies management but also drives measurable improvements in performance and responsiveness across the board.
-
3
Edge Delta
Edge Delta
$0.20 per GBEdge Delta is a new way to do observability. We are the only provider that processes your data as it's created and gives DevOps, platform engineers and SRE teams the freedom to route it anywhere. As a result, customers can make observability costs predictable, surface the most useful insights, and shape your data however they need. Our primary differentiator is our distributed architecture. We are the only observability provider that pushes data processing upstream to the infrastructure level, enabling users to process their logs and metrics as soon as they’re created at the source. Data processing includes: * Shaping, enriching, and filtering data * Creating log analytics * Distilling metrics libraries into the most useful data * Detecting anomalies and triggering alerts We combine our distributed approach with a column-oriented backend to help users store and analyze massive data volumes without impacting performance or cost. By using Edge Delta, customers can reduce observability costs without sacrificing visibility. Additionally, they can surface insights and trigger alerts before data leaves their environment. -
4
Maxim
Maxim
$29/seat/ month Maxim is a enterprise-grade stack that enables AI teams to build applications with speed, reliability, and quality. Bring the best practices from traditional software development to your non-deterministic AI work flows. Playground for your rapid engineering needs. Iterate quickly and systematically with your team. Organise and version prompts away from the codebase. Test, iterate and deploy prompts with no code changes. Connect to your data, RAG Pipelines, and prompt tools. Chain prompts, other components and workflows together to create and test workflows. Unified framework for machine- and human-evaluation. Quantify improvements and regressions to deploy with confidence. Visualize the evaluation of large test suites and multiple versions. Simplify and scale human assessment pipelines. Integrate seamlessly into your CI/CD workflows. Monitor AI system usage in real-time and optimize it with speed. -
5
With a suite observability tools, you can confidently evaluate, test and ship LLM apps across your development and production lifecycle. Log traces and spans. Define and compute evaluation metrics. Score LLM outputs. Compare performance between app versions. Record, sort, find, and understand every step that your LLM app makes to generate a result. You can manually annotate and compare LLM results in a table. Log traces in development and production. Run experiments using different prompts, and evaluate them against a test collection. You can choose and run preconfigured evaluation metrics, or create your own using our SDK library. Consult the built-in LLM judges to help you with complex issues such as hallucination detection, factuality and moderation. Opik LLM unit tests built on PyTest provide reliable performance baselines. Build comprehensive test suites for every deployment to evaluate your entire LLM pipe-line.
-
6
SigNoz
SigNoz
$199 per monthSigNoz serves as an open-source alternative to Datadog and New Relic, providing a comprehensive solution for all your observability requirements. This all-in-one platform encompasses APM, logs, metrics, exceptions, alerts, and customizable dashboards, all enhanced by an advanced query builder. With SigNoz, there's no need to juggle multiple tools for monitoring traces, metrics, and logs. It comes equipped with impressive pre-built charts and a robust query builder that allows you to explore your data in depth. By adopting an open-source standard, users can avoid vendor lock-in and enjoy greater flexibility. You can utilize OpenTelemetry's auto-instrumentation libraries, enabling you to begin with minimal to no coding changes. OpenTelemetry stands out as a comprehensive solution for all telemetry requirements, establishing a unified standard for telemetry signals that boosts productivity and ensures consistency among teams. Users can compose queries across all telemetry signals, perform aggregates, and implement filters and formulas to gain deeper insights from their information. SigNoz leverages ClickHouse, a high-performance open-source distributed columnar database, which ensures that data ingestion and aggregation processes are remarkably fast. This makes it an ideal choice for teams looking to enhance their observability practices without compromising on performance. -
7
OpenTelemetry
OpenTelemetry
OpenTelemetry provides high-quality, widely accessible, and portable telemetry for enhanced observability. It consists of a suite of tools, APIs, and SDKs designed to help you instrument, generate, collect, and export telemetry data, including metrics, logs, and traces, which are essential for evaluating your software's performance and behavior. This framework is available in multiple programming languages, making it versatile and suitable for diverse applications. You can effortlessly create and gather telemetry data from your software and services, subsequently forwarding it to various analytical tools for deeper insights. OpenTelemetry seamlessly integrates with well-known libraries and frameworks like Spring, ASP.NET Core, and Express, among others. The process of installation and integration is streamlined, often requiring just a few lines of code to get started. As a completely free and open-source solution, OpenTelemetry enjoys widespread adoption and support from major players in the observability industry, ensuring a robust community and continual improvements. This makes it an appealing choice for developers seeking to enhance their software monitoring capabilities. -
8
Prefix
Stackify
$99 per monthMaximizing your application's performance is a breeze with the FREE trial of Prefix, which incorporates OpenTelemetry. This state-of-the-art open-source observability protocol allows OTel Prefix to enhance application development through seamless ingestion of universal telemetry data, unparalleled observability, and extensive language support. By empowering developers with the capabilities of OpenTelemetry, OTel Prefix propels performance optimization efforts for your entire DevOps team. With exceptional visibility into user environments, new technologies, frameworks, and architectures, OTel Prefix streamlines every phase of code development, app creation, and ongoing performance improvements. Featuring Summary Dashboards, integrated logs, distributed tracing, intelligent suggestions, and the convenient ability to navigate between logs and traces, Prefix equips developers with robust APM tools that can significantly enhance their workflow. As such, utilizing OTel Prefix can lead to not only improved performance but also a more efficient development process overall. -
9
TelemetryHub
TelemetryHub by Scout APM
FreeBuilt on the open-source framework OpenTelemetry, TelemetryHub is the ultimate observability guide, providing data in a single pane of glass for all logs, metrics, and tracing data. A simple, reliable full-stack application monitoring tool that visualizes your complex telemetry data in a consumable format with no propriety configuration or customizations required. TelemetryHub is an easy-to-use and affordable full-stack observability solution provided by Scout APM, an established Application Performance Monitoring tool. -
10
Logfire
Pydantic
$2 per monthPydantic Logfire serves as an observability solution aimed at enhancing the monitoring of Python applications by converting logs into practical insights. It offers valuable performance metrics, tracing capabilities, and a comprehensive view of application dynamics, which encompasses request headers, bodies, and detailed execution traces. Built upon OpenTelemetry, Pydantic Logfire seamlessly integrates with widely-used libraries, ensuring user-friendliness while maintaining the adaptability of OpenTelemetry’s functionalities. Developers can enrich their applications with structured data and easily queryable Python objects, allowing them to obtain real-time insights through a variety of visualizations, dashboards, and alert systems. In addition, Logfire facilitates manual tracing, context logging, and exception handling, presenting a contemporary logging framework. This tool is specifically designed for developers in search of a streamlined and efficient observability solution, boasting ready-to-use integrations and user-centric features. Its flexibility and comprehensive capabilities make it a valuable asset for anyone looking to improve their application's monitoring strategy. -
11
Literal AI
Literal AI
Literal AI is a collaborative platform crafted to support engineering and product teams in the creation of production-ready Large Language Model (LLM) applications. It features an array of tools focused on observability, evaluation, and analytics, which allows for efficient monitoring, optimization, and integration of different prompt versions. Among its noteworthy functionalities are multimodal logging, which incorporates vision, audio, and video, as well as prompt management that includes versioning and A/B testing features. Additionally, it offers a prompt playground that allows users to experiment with various LLM providers and configurations. Literal AI is designed to integrate effortlessly with a variety of LLM providers and AI frameworks, including OpenAI, LangChain, and LlamaIndex, and comes equipped with SDKs in both Python and TypeScript for straightforward code instrumentation. The platform further facilitates the development of experiments against datasets, promoting ongoing enhancements and minimizing the risk of regressions in LLM applications. With these capabilities, teams can not only streamline their workflows but also foster innovation and ensure high-quality outputs in their projects. -
12
DeepEval
Confident AI
FreeDeepEval offers an intuitive open-source framework designed for the assessment and testing of large language model systems, similar to what Pytest does but tailored specifically for evaluating LLM outputs. It leverages cutting-edge research to measure various performance metrics, including G-Eval, hallucinations, answer relevancy, and RAGAS, utilizing LLMs and a range of other NLP models that operate directly on your local machine. This tool is versatile enough to support applications developed through methods like RAG, fine-tuning, LangChain, or LlamaIndex. By using DeepEval, you can systematically explore the best hyperparameters to enhance your RAG workflow, mitigate prompt drift, or confidently shift from OpenAI services to self-hosting your Llama2 model. Additionally, the framework features capabilities for synthetic dataset creation using advanced evolutionary techniques and integrates smoothly with well-known frameworks, making it an essential asset for efficient benchmarking and optimization of LLM systems. Its comprehensive nature ensures that developers can maximize the potential of their LLM applications across various contexts. -
13
Langtrace
Langtrace
FreeLangtrace is an open-source observability solution designed to gather and evaluate traces and metrics, aiming to enhance your LLM applications. It prioritizes security with its cloud platform being SOC 2 Type II certified, ensuring your data remains highly protected. The tool is compatible with a variety of popular LLMs, frameworks, and vector databases. Additionally, Langtrace offers the option for self-hosting and adheres to the OpenTelemetry standard, allowing traces to be utilized by any observability tool of your preference and thus avoiding vendor lock-in. Gain comprehensive visibility and insights into your complete ML pipeline, whether working with a RAG or a fine-tuned model, as it effectively captures traces and logs across frameworks, vector databases, and LLM requests. Create annotated golden datasets through traced LLM interactions, which can then be leveraged for ongoing testing and improvement of your AI applications. Langtrace comes equipped with heuristic, statistical, and model-based evaluations to facilitate this enhancement process, thereby ensuring that your systems evolve alongside the latest advancements in technology. With its robust features, Langtrace empowers developers to maintain high performance and reliability in their machine learning projects. -
14
Pyroscope
Pyroscope
FreeOpen source continuous profiling allows you to identify and resolve your most critical performance challenges across code, infrastructure, and CI/CD pipelines. It offers the ability to tag data based on dimensions that are significant to your organization. This solution facilitates the economical and efficient storage of vast amounts of high cardinality profiling data. With FlameQL, users can execute custom queries to swiftly select and aggregate profiles, making analysis straightforward and efficient. You can thoroughly examine application performance profiles using our extensive suite of profiling tools. Gain insights into CPU and memory resource utilization at any moment, enabling you to detect performance issues before your customers notice them. The platform also consolidates profiles from various external profiling tools into a single centralized repository for easier management. Moreover, by linking to your OpenTelemetry tracing data, you can obtain request-specific or span-specific profiles, which significantly enrich other observability data such as traces and logs, ensuring a comprehensive understanding of application performance. This holistic approach fosters proactive monitoring and enhances overall system reliability. -
15
Fluent Bit
Fluent Bit
Fluent Bit is capable of reading data from both local files and network devices, while also extracting metrics in the Prometheus format from your server environment. It automatically tags all events to facilitate filtering, routing, parsing, modification, and output rules effectively. With its built-in reliability features, you can rest assured that in the event of a network or server failure, you can seamlessly resume operations without any risk of losing data. Rather than simply acting as a direct substitute, Fluent Bit significantly enhances your observability framework by optimizing your current logging infrastructure and streamlining the processing of metrics and traces. Additionally, it adheres to a vendor-neutral philosophy, allowing for smooth integration with various ecosystems, including Prometheus and OpenTelemetry. Highly regarded by prominent cloud service providers, financial institutions, and businesses requiring a robust telemetry agent, Fluent Bit adeptly handles a variety of data formats and sources while ensuring excellent performance and reliability. This positions it as a versatile solution that can adapt to the evolving needs of modern data-driven environments. -
16
OpenPipe
OpenPipe
$1.20 per 1M tokensOpenPipe offers an efficient platform for developers to fine-tune their models. It allows you to keep your datasets, models, and evaluations organized in a single location. You can train new models effortlessly with just a click. The system automatically logs all LLM requests and responses for easy reference. You can create datasets from the data you've captured, and even train multiple base models using the same dataset simultaneously. Our managed endpoints are designed to handle millions of requests seamlessly. Additionally, you can write evaluations and compare the outputs of different models side by side for better insights. A few simple lines of code can get you started; just swap out your Python or Javascript OpenAI SDK with an OpenPipe API key. Enhance the searchability of your data by using custom tags. Notably, smaller specialized models are significantly cheaper to operate compared to large multipurpose LLMs. Transitioning from prompts to models can be achieved in minutes instead of weeks. Our fine-tuned Mistral and Llama 2 models routinely exceed the performance of GPT-4-1106-Turbo, while also being more cost-effective. With a commitment to open-source, we provide access to many of the base models we utilize. When you fine-tune Mistral and Llama 2, you maintain ownership of your weights and can download them whenever needed. Embrace the future of model training and deployment with OpenPipe's comprehensive tools and features. -
17
TruLens
TruLens
FreeTruLens is a versatile open-source Python library aimed at the systematic evaluation and monitoring of Large Language Model (LLM) applications. It features detailed instrumentation, feedback mechanisms, and an intuitive interface that allows developers to compare and refine various versions of their applications, thereby promoting swift enhancements in LLM-driven projects. The library includes programmatic tools that evaluate the quality of inputs, outputs, and intermediate results, enabling efficient and scalable assessments. With its precise, stack-agnostic instrumentation and thorough evaluations, TruLens assists in pinpointing failure modes while fostering systematic improvements in applications. Developers benefit from an accessible interface that aids in comparing different application versions, supporting informed decision-making and optimization strategies. TruLens caters to a wide range of applications, including but not limited to question-answering, summarization, retrieval-augmented generation, and agent-based systems, making it a valuable asset for diverse development needs. As developers leverage TruLens, they can expect to achieve more reliable and effective LLM applications. -
18
Klu
Klu
$97Klu.ai, a Generative AI Platform, simplifies the design, deployment, and optimization of AI applications. Klu integrates your Large Language Models and incorporates data from diverse sources to give your applications unique context. Klu accelerates the building of applications using language models such as Anthropic Claude (Azure OpenAI), GPT-4 (Google's GPT-4), and over 15 others. It allows rapid prompt/model experiments, data collection and user feedback and model fine tuning while cost-effectively optimising performance. Ship prompt generation, chat experiences and workflows in minutes. Klu offers SDKs for all capabilities and an API-first strategy to enable developer productivity. Klu automatically provides abstractions to common LLM/GenAI usage cases, such as: LLM connectors and vector storage, prompt templates, observability and evaluation/testing tools. -
19
ChainForge
ChainForge
ChainForge serves as an open-source visual programming platform aimed at enhancing prompt engineering and evaluating large language models. This tool allows users to rigorously examine the reliability of their prompts and text-generation models, moving beyond mere anecdotal assessments. Users can conduct simultaneous tests of various prompt concepts and their iterations across different LLMs to discover the most successful combinations. Additionally, it assesses the quality of responses generated across diverse prompts, models, and configurations to determine the best setup for particular applications. Evaluation metrics can be established, and results can be visualized across prompts, parameters, models, and configurations, promoting a data-driven approach to decision-making. The platform also enables the management of multiple conversations at once, allows for the templating of follow-up messages, and supports the inspection of outputs at each interaction to enhance communication strategies. ChainForge is compatible with a variety of model providers, such as OpenAI, HuggingFace, Anthropic, Google PaLM2, Azure OpenAI endpoints, and locally hosted models like Alpaca and Llama. Users have the flexibility to modify model settings and leverage visualization nodes for better insights and outcomes. Overall, ChainForge is a comprehensive tool tailored for both prompt engineering and LLM evaluation, encouraging innovation and efficiency in this field. -
20
Riverbed APM
Riverbed
Enhanced high-definition APM visibility through real user monitoring, synthetic monitoring, and OpenTelemetry offers a solution that is scalable, user-friendly, and simplifies the integration of insights from end users, applications, networks, and the cloud-native space. The rise of microservices within containerized environments on dynamic cloud infrastructures has resulted in a highly transient and distributed landscape at an unprecedented scale. Traditional methods of enhancing APM, which rely on sampled transactions, partial traces, and aggregate metrics, have become ineffective, as legacy APM solutions struggle to identify the reasons behind slow or stalling critical business applications. The Riverbed platform provides cohesive visibility across the contemporary application landscape, ensuring ease of deployment and management, while facilitating quicker resolution of even the most challenging performance issues. Riverbed APM is thoroughly designed for the cloud-native environment, offering extensive monitoring and observability for transactions that operate on the latest cloud and application infrastructures, ultimately enhancing operational efficiency and user experience. This comprehensive approach not only addresses current performance challenges but also positions organizations to adapt to future technological advancements seamlessly. -
21
Splunk APM
Splunk
$660 per Host per yearYou can innovate faster in the cloud, improve user experience and future-proof applications. Splunk is designed for cloud-native enterprises and helps you solve current problems. Splunk helps you detect any problem before it becomes a customer problem. Our AI-driven Directed Problemshooting reduces MTTR. Flexible, open-source instrumentation eliminates lock-in. Optimize performance by seeing all of your application and using AI-driven analytics. You must observe everything in order to deliver an excellent end-user experience. NoSample™, full-fidelity trace ingestion allows you to leverage all your trace data and identify any anomalies. Directed Troubleshooting reduces MTTR to quickly identify service dependencies, correlations with the underlying infrastructure, and root-cause errors mapping. You can break down and examine any transaction by any dimension or metric. You can quickly and easily see how your application behaves in different regions, hosts or versions. -
22
Elastic Observability
Elastic
$16 per monthLeverage the most extensively utilized observability platform, founded on the reliable Elastic Stack (commonly referred to as the ELK Stack), to integrate disparate data sources, providing cohesive visibility and actionable insights. To truly monitor and extract insights from your distributed systems, it is essential to consolidate all your observability data within a single framework. Eliminate data silos by merging application, infrastructure, and user information into a holistic solution that facilitates comprehensive observability and alerting. By integrating limitless telemetry data collection with search-driven problem-solving capabilities, you can achieve superior operational and business outcomes. Unify your data silos by assimilating all telemetry data, including metrics, logs, and traces, from any source into a platform that is open, extensible, and scalable. Enhance the speed of problem resolution through automatic anomaly detection that leverages machine learning and sophisticated data analytics, ensuring you stay ahead in today's fast-paced environment. This integrated approach not only streamlines processes but also empowers teams to make informed decisions swiftly. -
23
Aspecto
Aspecto
$40 per monthIdentify and resolve performance issues and errors within your microservices architecture. Establish connections between root causes by analyzing traces, logs, and metrics. Reduce your costs associated with OpenTelemetry traces through Aspecto's integrated remote sampling feature. The way OTel data is visualized plays a crucial role in enhancing your troubleshooting efficiency. Transition seamlessly from a broad overview to intricate details using top-tier visualization tools. Link logs directly to their corresponding traces effortlessly, maintaining context to expedite issue resolution. Utilize filters, free-text searches, and grouping options to navigate your trace data swiftly and accurately locate the source of the problem. Optimize expenses by sampling only essential data, allowing for trace sampling based on programming languages, libraries, specific routes, and error occurrences. Implement data privacy measures to obscure sensitive information within traces, specific routes, or other critical areas. Moreover, integrate your everyday tools with your operational workflow, including logs, error monitoring, and external event APIs, to create a cohesive and efficient system for managing and troubleshooting issues. This holistic approach not only improves visibility but also empowers teams to tackle problems proactively. -
24
Langfuse is a free and open-source LLM engineering platform that helps teams to debug, analyze, and iterate their LLM Applications. Observability: Incorporate Langfuse into your app to start ingesting traces. Langfuse UI : inspect and debug complex logs, user sessions and user sessions Langfuse Prompts: Manage versions, deploy prompts and manage prompts within Langfuse Analytics: Track metrics such as cost, latency and quality (LLM) to gain insights through dashboards & data exports Evals: Calculate and collect scores for your LLM completions Experiments: Track app behavior and test it before deploying new versions Why Langfuse? - Open source - Models and frameworks are agnostic - Built for production - Incrementally adaptable - Start with a single LLM or integration call, then expand to the full tracing for complex chains/agents - Use GET to create downstream use cases and export the data
-
25
OpenLIT
OpenLIT
FreeOpenLIT serves as an observability tool that is fully integrated with OpenTelemetry, specifically tailored for application monitoring. It simplifies the integration of observability into AI projects, requiring only a single line of code for setup. This tool is compatible with leading LLM libraries, such as those from OpenAI and HuggingFace, making its implementation feel both easy and intuitive. Users can monitor LLM and GPU performance, along with associated costs, to optimize efficiency and scalability effectively. The platform streams data for visualization, enabling rapid decision-making and adjustments without compromising application performance. OpenLIT's user interface is designed to provide a clear view of LLM expenses, token usage, performance metrics, and user interactions. Additionally, it facilitates seamless connections to widely-used observability platforms like Datadog and Grafana Cloud for automatic data export. This comprehensive approach ensures that your applications are consistently monitored, allowing for proactive management of resources and performance. With OpenLIT, developers can focus on enhancing their AI models while the tool manages observability seamlessly. -
26
Apache SkyWalking
Apache
A specialized application performance monitoring tool tailored for distributed systems, particularly optimized for microservices, cloud-native environments, and containerized architectures like Kubernetes. One SkyWalking cluster has the capacity to collect and analyze over 100 billion pieces of telemetry data. It boasts capabilities for log formatting, metric extraction, and the implementation of diverse sampling policies via a high-performance script pipeline. Additionally, it allows for the configuration of alarm rules that can be service-centric, deployment-centric, or API-centric. The tool also has the functionality to forward alarms and all telemetry data to third-party services. Furthermore, it is compatible with various metrics, traces, and logs from established ecosystems, including Zipkin, OpenTelemetry, Prometheus, Zabbix, and Fluentd, ensuring seamless integration and comprehensive monitoring across different platforms. This adaptability makes it an essential tool for organizations looking to optimize their distributed systems effectively. -
27
OpsCruise
OpsCruise
FreeModern cloud-native applications come with significantly more dependencies, fleeting lifecycles, releases, and telemetry data than ever before. Traditional proprietary monitoring and application performance management (APM) solutions were developed for the age of monolithic applications and fixed infrastructure. These legacy tools tend to be costly, intrusive, and fragmented, often creating more confusion than clarity. While open-source and cloud monitoring options provide a solid starting point, they demand highly experienced engineers to effectively integrate, maintain, and interpret the data they generate. As you navigate the complexities of transitioning to contemporary infrastructure, your existing monitoring framework may be pushed to its limits. This signals the need for a new strategy. Enter OpsCruise! Our platform boasts an in-depth understanding of Kubernetes, and when paired with our innovative machine learning-based behavior profiling, it equips your team to anticipate performance issues and quickly identify their origins. Best of all, this can be achieved at a fraction of the cost of existing monitoring solutions, eliminating the need for code instrumentation, agent deployment, or the upkeep of open-source tools. With OpsCruise, you're not just adopting a new tool; you're embracing a transformational shift in how you manage and optimize your infrastructure. -
28
Small Hours
Small Hours
Small Hours serves as an AI-driven observability platform designed to diagnose server exceptions, evaluate their impact, and direct them to the appropriate personnel or team. You can utilize Markdown or your current runbook to assist our tool in troubleshooting various issues effectively. We offer seamless integration with any stack through OpenTelemetry support. You can connect to your existing alerts to pinpoint critical problems swiftly. By linking your codebases and runbooks, you can provide necessary context and instructions for smoother operations. Rest assured, your code and data remain secure and are never stored. The platform intelligently categorizes issues and can even generate pull requests as needed. It is specifically optimized for enterprise-scale performance and speed. With our 24/7 automated root cause analysis, you can significantly reduce downtime while maximizing operational efficiency, ensuring your systems run smoothly at all times. -
29
Elastic APM
Elastic
$95 per monthGain comprehensive insight into your cloud-native and distributed applications, encompassing everything from microservices to serverless setups, allowing for swift identification and resolution of underlying issues. Effortlessly integrate Application Performance Management (APM) to automatically detect anomalies, visualize service dependencies, and streamline the investigation of outliers and unusual behaviors. Enhance your application code with robust support for widely-used programming languages, OpenTelemetry, and distributed tracing methodologies. Recognize performance bottlenecks through automated, curated visual representations of all dependencies, which include cloud services, messaging systems, data storage, and third-party services along with their performance metrics. Investigate anomalies in detail, diving into transaction specifics and various metrics for a more profound analysis of your application’s performance. By employing these strategies, you can ensure that your services run optimally and deliver a superior user experience. -
30
Utilize BenchLLM for real-time code evaluation, allowing you to create comprehensive test suites for your models while generating detailed quality reports. You can opt for various evaluation methods, including automated, interactive, or tailored strategies to suit your needs. Our passionate team of engineers is dedicated to developing AI products without sacrificing the balance between AI's capabilities and reliable outcomes. We have designed an open and adaptable LLM evaluation tool that fulfills a long-standing desire for a more effective solution. With straightforward and elegant CLI commands, you can execute and assess models effortlessly. This CLI can also serve as a valuable asset in your CI/CD pipeline, enabling you to track model performance and identify regressions during production. Test your code seamlessly as you integrate BenchLLM, which readily supports OpenAI, Langchain, and any other APIs. Employ a range of evaluation techniques and create insightful visual reports to enhance your understanding of model performance, ensuring quality and reliability in your AI developments.
-
31
Broadcom WatchTower Platform
Broadcom
Improving business outcomes involves making it easier to spot and address high-priority incidents. The WatchTower Platform serves as a comprehensive observability tool that streamlines incident resolution specifically within mainframe environments by effectively integrating and correlating events, data flows, and metrics across various IT silos. It provides a cohesive and intuitive interface for operations teams, allowing them to optimize their workflows. Leveraging established AIOps solutions, WatchTower is adept at detecting potential problems at an early stage, which aids in proactive mitigation. Additionally, it utilizes OpenTelemetry to transmit mainframe data and insights to observability tools, allowing enterprise SREs to pinpoint bottlenecks and improve operational effectiveness. By enhancing alerts with relevant context, WatchTower eliminates the necessity for logging into multiple tools to gather essential information. Its workflows expedite the processes of problem identification, investigation, and incident resolution, while also simplifying the handover and escalation of issues. With such capabilities, WatchTower not only enhances incident management but also empowers teams to proactively maintain high service availability. -
32
Uptrace
Uptrace
$100 per monthUptrace is an observability platform built on OpenTelemetry that enables users to track, comprehend, and enhance intricate distributed systems effectively. With a single, streamlined dashboard, you can oversee your entire application stack efficiently. This setup provides a swift view of all services, hosts, and systems in one place. The distributed tracing feature allows you to follow the journey of a request as it flows through various services and components, highlighting the timing of each operation along with any logs and errors that arise in real-time. Through metrics, you can swiftly gauge, visualize, and monitor a variety of operations using tools such as percentiles, heatmaps, and histograms. By receiving alerts when your application experiences downtime or when a performance issue is detected, you can respond to incidents more promptly. Moreover, the platform allows you to monitor all aspects—spans, logs, errors, and metrics—using a unified query language, simplifying the observability process further. This comprehensive approach ensures that you have all the necessary insights to maintain optimal performance in your distributed systems. -
33
PromptLayer
PromptLayer
FreeIntroducing the inaugural platform designed specifically for prompt engineers, where you can log OpenAI requests, review usage history, monitor performance, and easily manage your prompt templates. With this tool, you’ll never lose track of that perfect prompt again, ensuring GPT operates seamlessly in production. More than 1,000 engineers have placed their trust in this platform to version their prompts and oversee API utilization effectively. Begin integrating your prompts into production by creating an account on PromptLayer; just click “log in” to get started. Once you’ve logged in, generate an API key and make sure to store it securely. After you’ve executed a few requests, you’ll find them displayed on the PromptLayer dashboard! Additionally, you can leverage PromptLayer alongside LangChain, a widely used Python library that facilitates the development of LLM applications with a suite of useful features like chains, agents, and memory capabilities. Currently, the main method to access PromptLayer is via our Python wrapper library, which you can install effortlessly using pip. This streamlined approach enhances your workflow and maximizes the efficiency of your prompt engineering endeavors. -
34
Latitude
Latitude
$0Latitude is a comprehensive platform for prompt engineering, helping product teams design, test, and optimize AI prompts for large language models (LLMs). It provides a suite of tools for importing, refining, and evaluating prompts using real-time data and synthetic datasets. The platform integrates with production environments to allow seamless deployment of new prompts, with advanced features like automatic prompt refinement and dataset management. Latitude’s ability to handle evaluations and provide observability makes it a key tool for organizations seeking to improve AI performance and operational efficiency. -
35
Traceloop
Traceloop
$59 per monthTraceloop is an all-encompassing observability platform tailored for the monitoring, debugging, and quality assessment of outputs generated by Large Language Models (LLMs). It features real-time notifications for any unexpected variations in output quality and provides execution tracing for each request, allowing for gradual implementation of changes to models and prompts. Developers can effectively troubleshoot and re-execute production issues directly within their Integrated Development Environment (IDE), streamlining the debugging process. The platform is designed to integrate smoothly with the OpenLLMetry SDK and supports a variety of programming languages, including Python, JavaScript/TypeScript, Go, and Ruby. To evaluate LLM outputs comprehensively, Traceloop offers an extensive array of metrics that encompass semantic, syntactic, safety, and structural dimensions. These metrics include QA relevance, faithfulness, overall text quality, grammatical accuracy, redundancy detection, focus evaluation, text length, word count, and the identification of sensitive information such as Personally Identifiable Information (PII), secrets, and toxic content. Additionally, it provides capabilities for validation through regex, SQL, and JSON schema, as well as code validation, ensuring a robust framework for the assessment of model performance. With such a diverse toolkit, Traceloop enhances the reliability and effectiveness of LLM outputs significantly. -
36
Ragas
Ragas
FreeRagas is a comprehensive open-source framework aimed at testing and evaluating applications that utilize Large Language Models (LLMs). It provides automated metrics to gauge performance and resilience, along with the capability to generate synthetic test data that meets specific needs, ensuring quality during both development and production phases. Furthermore, Ragas is designed to integrate smoothly with existing technology stacks, offering valuable insights to enhance the effectiveness of LLM applications. The project is driven by a dedicated team that combines advanced research with practical engineering strategies to support innovators in transforming the landscape of LLM applications. Users can create high-quality, diverse evaluation datasets that are tailored to their specific requirements, allowing for an effective assessment of their LLM applications in real-world scenarios. This approach not only fosters quality assurance but also enables the continuous improvement of applications through insightful feedback and automatic performance metrics that clarify the robustness and efficiency of the models. Additionally, Ragas stands as a vital resource for developers seeking to elevate their LLM projects to new heights. -
37
MLflow
MLflow
MLflow is an open-source suite designed to oversee the machine learning lifecycle, encompassing aspects such as experimentation, reproducibility, deployment, and a centralized model registry. The platform features four main components that facilitate various tasks: tracking and querying experiments encompassing code, data, configurations, and outcomes; packaging data science code to ensure reproducibility across multiple platforms; deploying machine learning models across various serving environments; and storing, annotating, discovering, and managing models in a unified repository. Among these, the MLflow Tracking component provides both an API and a user interface for logging essential aspects like parameters, code versions, metrics, and output files generated during the execution of machine learning tasks, enabling later visualization of results. It allows for logging and querying experiments through several interfaces, including Python, REST, R API, and Java API. Furthermore, an MLflow Project is a structured format for organizing data science code, ensuring it can be reused and reproduced easily, with a focus on established conventions. Additionally, the Projects component comes equipped with an API and command-line tools specifically designed for executing these projects effectively. Overall, MLflow streamlines the management of machine learning workflows, making it easier for teams to collaborate and iterate on their models. -
38
Observe
Observe
$0.35 Per GiBApplication Performance Management Get complete visibility into the health and performance of applications. Detect and resolve performance issues no matter where they occur in the entire stack. No sampling. No blindspots. Log Analytics Search and analyze event data across your applications, infrastructure, security, or business without worrying about indexing, data tiers, retention policies, or cost. Keep all log data always hot. Infrastructure Monitoring Capture metrics across your infrastructure – cloud, Kubernetes, serverless, applications or from over 400 pre-built integrations. Visualize the entire stack and troubleshoot performance issues in real-time. O11y AI Investigate and resolve incidents faster with O11y Investigator. Use natural language to explore observability data with O11y Copilot, generate Regular Expressions effortlessly with O11y Regex, and obtain precise answers with O11y GPT. Observe for Snowflake Comprehensive observability into Snowflake workloads. Optimize performance and resource utilization. Deliver secure and compliant operations. -
39
Jaeger
Jaeger
FreeObservability platforms that utilize distributed tracing, like Jaeger, play a crucial role in the functioning of contemporary software applications designed with a microservices architecture. By tracking the movement of requests and data through a distributed system, Jaeger provides visibility into how these requests interact with various services, which can often lead to delays or errors. This platform adeptly links these different elements, enabling users to pinpoint performance issues, diagnose errors, and enhance the overall reliability of applications. Furthermore, Jaeger stands out as a fully open source solution that is designed to be cloud-native and capable of scaling indefinitely. Its ability to provide deep insights into complex systems makes it an invaluable tool for developers aiming to optimize application performance. -
40
HoneyHive
HoneyHive
AI engineering can be transparent rather than opaque. With a suite of tools for tracing, assessment, prompt management, and more, HoneyHive emerges as a comprehensive platform for AI observability and evaluation, aimed at helping teams create dependable generative AI applications. This platform equips users with resources for model evaluation, testing, and monitoring, promoting effective collaboration among engineers, product managers, and domain specialists. By measuring quality across extensive test suites, teams can pinpoint enhancements and regressions throughout the development process. Furthermore, it allows for the tracking of usage, feedback, and quality on a large scale, which aids in swiftly identifying problems and fostering ongoing improvements. HoneyHive is designed to seamlessly integrate with various model providers and frameworks, offering the necessary flexibility and scalability to accommodate a wide range of organizational requirements. This makes it an ideal solution for teams focused on maintaining the quality and performance of their AI agents, delivering a holistic platform for evaluation, monitoring, and prompt management, ultimately enhancing the overall effectiveness of AI initiatives. As organizations increasingly rely on AI, tools like HoneyHive become essential for ensuring robust performance and reliability. -
41
Apica
Apica
Apica offers a unified platform for efficient data management, addressing complexity and cost challenges. The Apica Ascent platform enables users to collect, control, store, and observe data while swiftly identifying and resolving performance issues. Key features include: *Real-time telemetry data analysis *Automated root cause analysis using machine learning *Fleet tool for automated agent management *Flow tool for AI/ML-powered pipeline optimization *Store for unlimited, cost-effective data storage *Observe for modern observability management, including MELT data handling and dashboard creation This comprehensive solution streamlines troubleshooting in complex distributed systems and integrates synthetic and real data seamlessly -
42
Chatbot Arena
Chatbot Arena
FreePose any inquiry to two different anonymous AI chatbots, such as ChatGPT, Gemini, Claude, or Llama, and select the most impressive answer; you can continue this process until one emerges as the champion. Should the identity of any AI be disclosed, your selection will be disqualified. You have the option to upload an image and converse, or utilize text-to-image models like DALL-E 3, Flux, and Ideogram to create visuals. Additionally, you can engage with GitHub repositories using the RepoChat feature. Our platform, which is supported by over a million community votes, evaluates and ranks the top LLMs and AI chatbots. Chatbot Arena serves as a collaborative space for crowdsourced AI evaluation, maintained by researchers at UC Berkeley SkyLab and LMArena. We also offer the FastChat project as open source on GitHub and provide publicly available datasets for further exploration. This initiative fosters a thriving community centered around AI advancements and user engagement. -
43
Pezzo
Pezzo
$0Pezzo serves as an open-source platform for LLMOps, specifically designed for developers and their teams. With merely two lines of code, users can effortlessly monitor and troubleshoot AI operations, streamline collaboration and prompt management in a unified location, and swiftly implement updates across various environments. This efficiency allows teams to focus more on innovation rather than operational challenges. -
44
Deepchecks
Deepchecks
$1,000 per monthLaunch top-notch LLM applications swiftly while maintaining rigorous testing standards. You should never feel constrained by the intricate and often subjective aspects of LLM interactions. Generative AI often yields subjective outcomes, and determining the quality of generated content frequently necessitates the expertise of a subject matter professional. If you're developing an LLM application, you're likely aware of the myriad constraints and edge cases that must be managed before a successful release. Issues such as hallucinations, inaccurate responses, biases, policy deviations, and potentially harmful content must all be identified, investigated, and addressed both prior to and following the launch of your application. Deepchecks offers a solution that automates the assessment process, allowing you to obtain "estimated annotations" that only require your intervention when absolutely necessary. With over 1000 companies utilizing our platform and integration into more than 300 open-source projects, our core LLM product is both extensively validated and reliable. You can efficiently validate machine learning models and datasets with minimal effort during both research and production stages, streamlining your workflow and improving overall efficiency. This ensures that you can focus on innovation without sacrificing quality or safety. -
45
promptfoo
promptfoo
FreePromptfoo proactively identifies and mitigates significant risks associated with large language models before they reach production. The founders boast a wealth of experience in deploying and scaling AI solutions for over 100 million users, utilizing automated red-teaming and rigorous testing to address security, legal, and compliance challenges effectively. By adopting an open-source, developer-centric methodology, Promptfoo has become the leading tool in its field, attracting a community of more than 20,000 users. It offers custom probes tailored to your specific application, focusing on identifying critical failures instead of merely targeting generic vulnerabilities like jailbreaks and prompt injections. With a user-friendly command-line interface, live reloading, and efficient caching, users can operate swiftly without the need for SDKs, cloud services, or login requirements. This tool is employed by teams reaching millions of users and is backed by a vibrant open-source community. Users can create dependable prompts, models, and retrieval-augmented generation (RAG) systems with benchmarks that align with their unique use cases. Additionally, it enhances the security of applications through automated red teaming and pentesting, while also expediting evaluations via its caching, concurrency, and live reloading features. Consequently, Promptfoo stands out as a comprehensive solution for developers aiming for both efficiency and security in their AI applications.