Best Arize AI Alternatives in 2025

Find the top alternatives to Arize AI currently available. Compare ratings, reviews, pricing, and features of Arize AI alternatives in 2025. Slashdot lists the best Arize AI alternatives on the market that offer competing products that are similar to Arize AI. Sort through Arize AI alternatives below to make the best choice for your needs

  • 1
    New Relic Reviews
    Top Pick
    See Software
    Learn More
    Compare Both
    Around 25 million engineers work across dozens of distinct functions. Engineers are using New Relic as every company is becoming a software company to gather real-time insight and trending data on the performance of their software. This allows them to be more resilient and provide exceptional customer experiences. New Relic is the only platform that offers an all-in one solution. New Relic offers customers a secure cloud for all metrics and events, powerful full-stack analytics tools, and simple, transparent pricing based on usage. New Relic also has curated the largest open source ecosystem in the industry, making it simple for engineers to get started using observability.
  • 2
    Epsagon Reviews

    Epsagon

    Epsagon

    $89 per month
    Epsagon allows teams to instantly visualize, understand, and optimize their microservice architectures. With our unique lightweight auto-instrumentation, gaps in data and manual work associated with other APM solutions are eliminated, providing significant reductions in issue detection, root cause analysis and resolution times. Epsagon can increase development speed and reduce application downtime.
  • 3
    Sematext Cloud Reviews
    Top Pick
    Sematext Cloud provides all-in-one observability solutions for modern software-based businesses. It provides key insights into both front-end and back-end performance. Sematext includes infrastructure, synthetic monitoring, transaction tracking, log management, and real user & synthetic monitoring. Sematext provides full-stack visibility for businesses by quickly and easily exposing key performance issues through a single Cloud solution or On-Premise.
  • 4
    IBM Instana Reviews
    IBM Instana sets the benchmark for incident prevention, offering comprehensive full-stack visibility with one-second precision and a notification time of just three seconds. In the current landscape of rapidly evolving and intricate cloud infrastructures, the financial repercussions of an hour of downtime can soar into the six-figure range or more. Conventional application performance monitoring (APM) tools often fall short, lacking the speed and depth required to effectively address and contextualize technical issues, and they usually necessitate extensive training for super users before they can be utilized effectively. In contrast, IBM Instana Observability transcends the limitations of standard APM tools by making observability accessible to a wider audience, enabling individuals from DevOps, SRE, platform engineering, ITOps, and development teams to obtain the necessary data and context without barriers. The Instana Dynamic APM functions through a specialized agent architecture, utilizing sensors—automated, lightweight programs specifically designed to monitor particular entities and ensure optimal performance. As a result, organizations can respond to incidents proactively and maintain a higher level of service continuity.
  • 5
    Dynatrace Reviews
    The Dynatrace software intelligence platform revolutionizes the way organizations operate by offering a unique combination of observability, automation, and intelligence all within a single framework. Say goodbye to cumbersome toolkits and embrace a unified platform that enhances automation across your dynamic multicloud environments while facilitating collaboration among various teams. This platform fosters synergy between business, development, and operations through a comprehensive array of tailored use cases centralized in one location. It enables you to effectively manage and integrate even the most intricate multicloud scenarios, boasting seamless compatibility with all leading cloud platforms and technologies. Gain an expansive understanding of your environment that encompasses metrics, logs, and traces, complemented by a detailed topological model that includes distributed tracing, code-level insights, entity relationships, and user experience data—all presented in context. By integrating Dynatrace’s open API into your current ecosystem, you can streamline automation across all aspects, from development and deployment to cloud operations and business workflows, ultimately leading to increased efficiency and innovation. This cohesive approach not only simplifies management but also drives measurable improvements in performance and responsiveness across the board.
  • 6
    Gantry Reviews
    Gain a comprehensive understanding of your model's efficacy by logging both inputs and outputs while enhancing them with relevant metadata and user insights. This approach allows you to truly assess your model's functionality and identify areas that require refinement. Keep an eye out for errors and pinpoint underperforming user segments and scenarios that may need attention. The most effective models leverage user-generated data; therefore, systematically collect atypical or low-performing instances to enhance your model through retraining. Rather than sifting through countless outputs following adjustments to your prompts or models, adopt a programmatic evaluation of your LLM-driven applications. Rapidly identify and address performance issues by monitoring new deployments in real-time and effortlessly updating the version of your application that users engage with. Establish connections between your self-hosted or third-party models and your current data repositories for seamless integration. Handle enterprise-scale data effortlessly with our serverless streaming data flow engine, designed for efficiency and scalability. Moreover, Gantry adheres to SOC-2 standards and incorporates robust enterprise-grade authentication features to ensure data security and integrity. This dedication to compliance and security solidifies trust with users while optimizing performance.
  • 7
    Evidently AI Reviews

    Evidently AI

    Evidently AI

    $500 per month
    An open-source platform for monitoring machine learning models offers robust observability features. It allows users to evaluate, test, and oversee models throughout their journey from validation to deployment. Catering to a range of data types, from tabular formats to natural language processing and large language models, it is designed with both data scientists and ML engineers in mind. This tool provides everything necessary for the reliable operation of ML systems in a production environment. You can begin with straightforward ad hoc checks and progressively expand to a comprehensive monitoring solution. All functionalities are integrated into a single platform, featuring a uniform API and consistent metrics. The design prioritizes usability, aesthetics, and the ability to share insights easily. Users gain an in-depth perspective on data quality and model performance, facilitating exploration and troubleshooting. Setting up takes just a minute, allowing for immediate testing prior to deployment, validation in live environments, and checks during each model update. The platform also eliminates the hassle of manual configuration by automatically generating test scenarios based on a reference dataset. It enables users to keep an eye on every facet of their data, models, and testing outcomes. By proactively identifying and addressing issues with production models, it ensures sustained optimal performance and fosters ongoing enhancements. Additionally, the tool's versatility makes it suitable for teams of any size, enabling collaborative efforts in maintaining high-quality ML systems.
  • 8
    Langfuse Reviews
    Langfuse is a free and open-source LLM engineering platform that helps teams to debug, analyze, and iterate their LLM Applications. Observability: Incorporate Langfuse into your app to start ingesting traces. Langfuse UI : inspect and debug complex logs, user sessions and user sessions Langfuse Prompts: Manage versions, deploy prompts and manage prompts within Langfuse Analytics: Track metrics such as cost, latency and quality (LLM) to gain insights through dashboards & data exports Evals: Calculate and collect scores for your LLM completions Experiments: Track app behavior and test it before deploying new versions Why Langfuse? - Open source - Models and frameworks are agnostic - Built for production - Incrementally adaptable - Start with a single LLM or integration call, then expand to the full tracing for complex chains/agents - Use GET to create downstream use cases and export the data
  • 9
    InsightFinder Reviews

    InsightFinder

    InsightFinder

    $2.5 per core per month
    InsightFinder Unified Intelligence Engine platform (UIE) provides human-centered AI solutions to identify root causes of incidents and prevent them from happening. InsightFinder uses patented self-tuning, unsupervised machine learning to continuously learn from logs, traces and triage threads of DevOps Engineers and SREs to identify root causes and predict future incidents. Companies of all sizes have adopted the platform and found that they can predict business-impacting incidents hours ahead of time with clearly identified root causes. You can get a complete overview of your IT Ops environment, including trends and patterns as well as team activities. You can also view calculations that show overall downtime savings, cost-of-labor savings, and the number of incidents solved.
  • 10
    WhyLabs Reviews
    Enhance your observability framework to swiftly identify data and machine learning challenges, facilitate ongoing enhancements, and prevent expensive incidents. Begin with dependable data by consistently monitoring data-in-motion to catch any quality concerns. Accurately detect shifts in data and models while recognizing discrepancies between training and serving datasets, allowing for timely retraining. Continuously track essential performance metrics to uncover any decline in model accuracy. It's crucial to identify and mitigate risky behaviors in generative AI applications to prevent data leaks and protect these systems from malicious attacks. Foster improvements in AI applications through user feedback, diligent monitoring, and collaboration across teams. With purpose-built agents, you can integrate in just minutes, allowing for the analysis of raw data without the need for movement or duplication, thereby ensuring both privacy and security. Onboard the WhyLabs SaaS Platform for a variety of use cases, utilizing a proprietary privacy-preserving integration that is security-approved for both healthcare and banking sectors, making it a versatile solution for sensitive environments. Additionally, this approach not only streamlines workflows but also enhances overall operational efficiency.
  • 11
    UpTrain Reviews
    Obtain scores that assess factual accuracy, context retrieval quality, guideline compliance, tonality, among other metrics. Improvement is impossible without measurement. UpTrain consistently evaluates your application's performance against various criteria and notifies you of any declines, complete with automatic root cause analysis. This platform facilitates swift and effective experimentation across numerous prompts, model providers, and personalized configurations by generating quantitative scores that allow for straightforward comparisons and the best prompt selection. Hallucinations have been a persistent issue for LLMs since their early days. By measuring the extent of hallucinations and the quality of the retrieved context, UpTrain aids in identifying responses that lack factual correctness, ensuring they are filtered out before reaching end-users. Additionally, this proactive approach enhances the reliability of responses, fostering greater trust in automated systems.
  • 12
    Mona Reviews
    Mona is a flexible and intelligent monitoring platform for AI / ML. Data science teams leverage Mona’s powerful analytical engine to gain granular insights about the behavior of their data and models, and detect issues within specific segments of data, in order to reduce business risk and pinpoint areas that need improvements. Mona enables tracking custom metrics for any AI use case within any industry and easily integrates with existing tech stacks. In 2018, we ventured on a mission to empower data teams to make AI more impactful and reliable, and to raise the collective confidence of business and technology leaders in their ability to make the most out of AI. We have built the leading intelligent monitoring platform to provide data and AI teams with continuous insights to help them reduce risks, optimize their operations, and ultimately build more valuable AI systems. Enterprises in a variety of industries leverage Mona for NLP/NLU, speech, computer vision, and machine learning use cases. Mona was founded by experienced product leaders from Google and McKinsey&Co, is backed by top VCs, and is HQ in Atlanta, Georgia. In 2021, Mona was recognized by Gartner as a Cool Vendor in AI Operationalization and Engineering.
  • 13
    Censius AI Observability Platform Reviews
    Censius is a forward-thinking startup operating within the realms of machine learning and artificial intelligence, dedicated to providing AI observability solutions tailored for enterprise ML teams. With the growing reliance on machine learning models, it is crucial to maintain a keen oversight on their performance. As a specialized AI Observability Platform, Censius empowers organizations, regardless of their size, to effectively deploy their machine-learning models in production environments with confidence. The company has introduced its flagship platform designed to enhance accountability and provide clarity in data science initiatives. This all-encompassing ML monitoring tool enables proactive surveillance of entire ML pipelines, allowing for the identification and resolution of various issues, including drift, skew, data integrity, and data quality challenges. By implementing Censius, users can achieve several key benefits, such as: 1. Monitoring and documenting essential model metrics 2. Accelerating recovery times through precise issue detection 3. Articulating problems and recovery plans to stakeholders 4. Clarifying the rationale behind model decisions 5. Minimizing downtime for users 6. Enhancing trust among customers Moreover, Censius fosters a culture of continuous improvement, ensuring that organizations can adapt to evolving challenges in the machine learning landscape.
  • 14
    Langtrace Reviews
    Langtrace is an open-source observability solution designed to gather and evaluate traces and metrics, aiming to enhance your LLM applications. It prioritizes security with its cloud platform being SOC 2 Type II certified, ensuring your data remains highly protected. The tool is compatible with a variety of popular LLMs, frameworks, and vector databases. Additionally, Langtrace offers the option for self-hosting and adheres to the OpenTelemetry standard, allowing traces to be utilized by any observability tool of your preference and thus avoiding vendor lock-in. Gain comprehensive visibility and insights into your complete ML pipeline, whether working with a RAG or a fine-tuned model, as it effectively captures traces and logs across frameworks, vector databases, and LLM requests. Create annotated golden datasets through traced LLM interactions, which can then be leveraged for ongoing testing and improvement of your AI applications. Langtrace comes equipped with heuristic, statistical, and model-based evaluations to facilitate this enhancement process, thereby ensuring that your systems evolve alongside the latest advancements in technology. With its robust features, Langtrace empowers developers to maintain high performance and reliability in their machine learning projects.
  • 15
    Aquarium Reviews

    Aquarium

    Aquarium

    $1,250 per month
    Aquarium's innovative embedding technology identifies significant issues in your model's performance and connects you with the appropriate data to address them. Experience the benefits of neural network embeddings while eliminating the burdens of infrastructure management and debugging embedding models. Effortlessly uncover the most pressing patterns of model failures within your datasets. Gain insights into the long tail of edge cases, enabling you to prioritize which problems to tackle first. Navigate through extensive unlabeled datasets to discover scenarios that fall outside the norm. Utilize few-shot learning technology to initiate new classes with just a few examples. The larger your dataset, the greater the value we can provide. Aquarium is designed to effectively scale with datasets that contain hundreds of millions of data points. Additionally, we offer dedicated solutions engineering resources, regular customer success meetings, and user training to ensure that our clients maximize their benefits. For organizations concerned about privacy, we also provide an anonymous mode that allows the use of Aquarium without risking exposure of sensitive information, ensuring that security remains a top priority. Ultimately, with Aquarium, you can enhance your model's capabilities while maintaining the integrity of your data.
  • 16
    Apica Reviews
    Apica offers a unified platform for efficient data management, addressing complexity and cost challenges. The Apica Ascent platform enables users to collect, control, store, and observe data while swiftly identifying and resolving performance issues. Key features include: *Real-time telemetry data analysis *Automated root cause analysis using machine learning *Fleet tool for automated agent management *Flow tool for AI/ML-powered pipeline optimization *Store for unlimited, cost-effective data storage *Observe for modern observability management, including MELT data handling and dashboard creation This comprehensive solution streamlines troubleshooting in complex distributed systems and integrates synthetic and real data seamlessly
  • 17
    Fiddler AI Reviews
    Fiddler is a pioneer in enterprise Model Performance Management. Data Science, MLOps, and LOB teams use Fiddler to monitor, explain, analyze, and improve their models and build trust into AI. The unified environment provides a common language, centralized controls, and actionable insights to operationalize ML/AI with trust. It addresses the unique challenges of building in-house stable and secure MLOps systems at scale. Unlike observability solutions, Fiddler seamlessly integrates deep XAI and analytics to help you grow into advanced capabilities over time and build a framework for responsible AI practices. Fortune 500 organizations use Fiddler across training and production models to accelerate AI time-to-value and scale and increase revenue.
  • 18
    Logfire Reviews

    Logfire

    Pydantic

    $2 per month
    Pydantic Logfire serves as an observability solution aimed at enhancing the monitoring of Python applications by converting logs into practical insights. It offers valuable performance metrics, tracing capabilities, and a comprehensive view of application dynamics, which encompasses request headers, bodies, and detailed execution traces. Built upon OpenTelemetry, Pydantic Logfire seamlessly integrates with widely-used libraries, ensuring user-friendliness while maintaining the adaptability of OpenTelemetry’s functionalities. Developers can enrich their applications with structured data and easily queryable Python objects, allowing them to obtain real-time insights through a variety of visualizations, dashboards, and alert systems. In addition, Logfire facilitates manual tracing, context logging, and exception handling, presenting a contemporary logging framework. This tool is specifically designed for developers in search of a streamlined and efficient observability solution, boasting ready-to-use integrations and user-centric features. Its flexibility and comprehensive capabilities make it a valuable asset for anyone looking to improve their application's monitoring strategy.
  • 19
    Robust Intelligence Reviews
    The Robust Intelligence Platform is designed to integrate effortlessly into your machine learning lifecycle, thereby mitigating the risk of model failures. It identifies vulnerabilities within your model, blocks erroneous data from infiltrating your AI system, and uncovers statistical issues such as data drift. Central to our testing methodology is a singular test that assesses the resilience of your model against specific types of production failures. Stress Testing performs hundreds of these evaluations to gauge the readiness of the model for production deployment. The insights gained from these tests enable the automatic configuration of a tailored AI Firewall, which safeguards the model from particular failure risks that it may face. Additionally, Continuous Testing operates during production to execute these tests, offering automated root cause analysis that is driven by the underlying factors of any test failure. By utilizing all three components of the Robust Intelligence Platform in tandem, you can maintain the integrity of your machine learning processes, ensuring optimal performance and reliability. This holistic approach not only enhances model robustness but also fosters a proactive stance in managing potential issues before they escalate.
  • 20
    Arthur AI Reviews
    Monitor the performance of your models to identify and respond to data drift, enhancing accuracy for improved business results. Foster trust, ensure regulatory compliance, and promote actionable machine learning outcomes using Arthur’s APIs that prioritize explainability and transparency. Actively supervise for biases, evaluate model results against tailored bias metrics, and enhance your models' fairness. Understand how each model interacts with various demographic groups, detect biases early, and apply Arthur's unique bias reduction strategies. Arthur is capable of scaling to accommodate up to 1 million transactions per second, providing quick insights. Only authorized personnel can perform actions, ensuring data security. Different teams or departments can maintain separate environments with tailored access controls, and once data is ingested, it becomes immutable, safeguarding the integrity of metrics and insights. This level of control and monitoring not only improves model performance but also supports ethical AI practices.
  • 21
    Splunk IT Service Intelligence Reviews
    Safeguard business service-level agreements by utilizing dashboards that enable monitoring of service health, troubleshooting alerts, and conducting root cause analyses. Enhance mean time to resolution (MTTR) through real-time event correlation, automated incident prioritization, and seamless integrations with IT service management (ITSM) and orchestration tools. Leverage advanced analytics, including anomaly detection, adaptive thresholding, and predictive health scoring, to keep an eye on key performance indicators (KPIs) and proactively avert potential issues up to 30 minutes ahead of time. Track performance in alignment with business operations through ready-made dashboards that not only display service health but also visually link services to their underlying infrastructure. Employ side-by-side comparisons of various services while correlating metrics over time to uncover root causes effectively. Utilize machine learning algorithms alongside historical service health scores to forecast future incidents accurately. Implement adaptive thresholding and anomaly detection techniques that automatically refine rules based on previously observed behaviors, ensuring that your alerts remain relevant and timely. This continuous monitoring and adjustment of thresholds can significantly enhance operational efficiency.
  • 22
    Rakuten SixthSense Reviews
    Revolutionizing observability brings context and performance into a unified space, suitable for any stack and scale. Achieve thorough end-to-end visibility by effortlessly monitoring applications, infrastructure, databases, and more from a single, user-friendly dashboard. With just a few clicks, trace and analyze digital journeys seamlessly from browsers and applications to the infrastructure layer. Discover invaluable insights into user experiences, identify where dropouts occur, and highlight critical aspects of business transactions through in-depth user analytics and real user monitoring (RUM). This allows for quick adaptation, optimization, and innovation powered by real-time visibility and swift root-cause analysis. Additionally, our dedicated team of experts is available 24/7, 365 days a year, ensuring you receive prompt assistance and tailored support for your unique requirements, which further enhances your operational efficiency. The combination of these features empowers businesses to stay ahead in a rapidly evolving digital landscape.
  • 23
    Galileo Reviews
    Understanding the shortcomings of models can be challenging, particularly in identifying which data caused poor performance and the reasons behind it. Galileo offers a comprehensive suite of tools that allows machine learning teams to detect and rectify data errors up to ten times quicker. By analyzing your unlabeled data, Galileo can automatically pinpoint patterns of errors and gaps in the dataset utilized by your model. We recognize that the process of ML experimentation can be chaotic, requiring substantial data and numerous model adjustments over multiple iterations. With Galileo, you can manage and compare your experiment runs in a centralized location and swiftly distribute reports to your team. Designed to seamlessly fit into your existing ML infrastructure, Galileo enables you to send a curated dataset to your data repository for retraining, direct mislabeled data to your labeling team, and share collaborative insights, among other functionalities. Ultimately, Galileo is specifically crafted for ML teams aiming to enhance the quality of their models more efficiently and effectively. This focus on collaboration and speed makes it an invaluable asset for teams striving to innovate in the machine learning landscape.
  • 24
    OpenLIT Reviews
    OpenLIT serves as an observability tool that is fully integrated with OpenTelemetry, specifically tailored for application monitoring. It simplifies the integration of observability into AI projects, requiring only a single line of code for setup. This tool is compatible with leading LLM libraries, such as those from OpenAI and HuggingFace, making its implementation feel both easy and intuitive. Users can monitor LLM and GPU performance, along with associated costs, to optimize efficiency and scalability effectively. The platform streams data for visualization, enabling rapid decision-making and adjustments without compromising application performance. OpenLIT's user interface is designed to provide a clear view of LLM expenses, token usage, performance metrics, and user interactions. Additionally, it facilitates seamless connections to widely-used observability platforms like Datadog and Grafana Cloud for automatic data export. This comprehensive approach ensures that your applications are consistently monitored, allowing for proactive management of resources and performance. With OpenLIT, developers can focus on enhancing their AI models while the tool manages observability seamlessly.
  • 25
    Traversal Reviews
    Traversal is an innovative AI-driven Site Reliability Engineering (SRE) solution that functions round the clock, autonomously identifying, addressing, and even preventing production issues. It meticulously analyzes logs, metrics, traces, and your codebase to pinpoint the root causes of errors or delays, quickly highlighting the impacted areas, critical bottleneck services, and potential root causes with relevant evidence in a matter of minutes. Leveraging advancements in causal machine learning, reasoning from large language models, and intelligent AI agents, Traversal proactively resolves problems before alerts are triggered, ensuring seamless operations. Tailored for complex organizations and vital infrastructure, it accommodates diverse data types, supports bring-your-own models, and offers optional on-premises deployment for added flexibility. With its straightforward integration into existing systems requiring only read-only access—without the need for agents, sidecars, or any write operations to production—Traversal guarantees data privacy and control. By effortlessly fitting into your observability framework, it not only accelerates the resolution process but also significantly reduces downtime, further enhancing operational efficiency and reliability. Furthermore, its ability to adapt to various environments makes it a versatile asset for businesses striving for uninterrupted service delivery.
  • 26
    Portkey Reviews

    Portkey

    Portkey.ai

    $49 per month
    LMOps is a stack that allows you to launch production-ready applications for monitoring, model management and more. Portkey is a replacement for OpenAI or any other provider APIs. Portkey allows you to manage engines, parameters and versions. Switch, upgrade, and test models with confidence. View aggregate metrics for your app and users to optimize usage and API costs Protect your user data from malicious attacks and accidental exposure. Receive proactive alerts if things go wrong. Test your models in real-world conditions and deploy the best performers. We have been building apps on top of LLM's APIs for over 2 1/2 years. While building a PoC only took a weekend, bringing it to production and managing it was a hassle! We built Portkey to help you successfully deploy large language models APIs into your applications. We're happy to help you, regardless of whether or not you try Portkey!
  • 27
    Dash0 Reviews

    Dash0

    Dash0

    $0.20 per month
    Dash0 serves as a comprehensive observability platform rooted in OpenTelemetry, amalgamating metrics, logs, traces, and resources into a single, user-friendly interface that facilitates swift and context-aware monitoring while avoiding vendor lock-in. It consolidates metrics from Prometheus and OpenTelemetry, offering robust filtering options for high-cardinality attributes, alongside heatmap drilldowns and intricate trace visualizations to help identify errors and bottlenecks immediately. Users can take advantage of fully customizable dashboards powered by Perses, featuring code-based configuration and the ability to import from Grafana, in addition to smooth integration with pre-established alerts, checks, and PromQL queries. The platform's AI-driven tools, including Log AI for automated severity inference and pattern extraction, enhance telemetry data seamlessly, allowing users to benefit from sophisticated analytics without noticing the underlying AI processes. These artificial intelligence features facilitate log classification, grouping, inferred severity tagging, and efficient triage workflows using the SIFT framework, ultimately improving the overall monitoring experience. Additionally, Dash0 empowers teams to respond proactively to system issues, ensuring optimal performance and reliability across their applications.
  • 28
    Aporia Reviews
    Craft personalized monitoring solutions for your machine learning models using our incredibly intuitive monitor builder, which alerts you to problems such as concept drift, declines in model performance, and bias, among other issues. Aporia effortlessly integrates with any machine learning infrastructure, whether you're utilizing a FastAPI server on Kubernetes, an open-source deployment solution like MLFlow, or a comprehensive machine learning platform such as AWS Sagemaker. Dive into specific data segments to meticulously observe your model's behavior. Detect unforeseen bias, suboptimal performance, drifting features, and issues related to data integrity. When challenges arise with your ML models in a production environment, having the right tools at your disposal is essential for swiftly identifying the root cause. Additionally, expand your capabilities beyond standard model monitoring with our investigation toolbox, which allows for an in-depth analysis of model performance, specific data segments, statistics, and distributions, ensuring you maintain optimal model functionality and integrity.
  • 29
    Cerebrium Reviews

    Cerebrium

    Cerebrium

    $ 0.00055 per second
    Effortlessly deploy all leading machine learning frameworks like Pytorch, Onnx, and XGBoost with a single line of code. If you lack your own models, take advantage of our prebuilt options that are optimized for performance with sub-second latency. You can also fine-tune smaller models for specific tasks, which helps to reduce both costs and latency while enhancing overall performance. With just a few lines of code, you can avoid the hassle of managing infrastructure because we handle that for you. Seamlessly integrate with premier ML observability platforms to receive alerts about any feature or prediction drift, allowing for quick comparisons between model versions and prompt issue resolution. Additionally, you can identify the root causes of prediction and feature drift to tackle any decline in model performance effectively. Gain insights into which features are most influential in driving your model's performance, empowering you to make informed adjustments. This comprehensive approach ensures that your machine learning processes are both efficient and effective.
  • 30
    IBM Operations Analytics Reviews
    IBM® Z® Operations Analytics is a powerful tool designed to facilitate the searching, visualization, and analysis of extensive structured and unstructured operational data within IBM Z environments, encompassing log files, event records, service requests, and performance metrics. By utilizing your analytics platform alongside machine learning, you can enhance enterprise visibility, pinpoint workload issues, uncover hidden challenges, and expedite root cause analysis. Machine learning aids in establishing a baseline of typical system behavior, enabling the detection of operational anomalies efficiently. Additionally, you can identify nascent issues across various services, allowing for proactive alerts and cognitive adjustments to evolving conditions. This tool offers expert recommendations for corrective measures, enhancing overall service assurance. Furthermore, it helps in spotting atypical workload patterns and reveals common problems that may be obscured in operational datasets. Ultimately, it significantly diminishes the time needed for root cause analysis, thereby capitalizing on the extensive domain knowledge of IBM Z and applying its insights effectively within your analytics framework. By harnessing these capabilities, organizations can achieve a more resilient and responsive operational environment.
  • 31
    aspenONE Asset Performance Management (APM) Reviews
    Receive precise notifications of potential failures weeks or even months ahead by utilizing real-time information and predictive analytics. Make use of an integrated approach that includes prescriptive maintenance, root cause analysis, and RAM analysis to tackle problems at various levels, including equipment, process, and system. Efficiently implement automated Asset Performance Management solutions using minimal intervention machine learning techniques to foresee asset failures and minimize downtime across the entire plant, across systems, or in multiple sites. This proactive strategy not only enhances operational efficiency but also significantly boosts overall productivity.
  • 32
    Arize Phoenix Reviews
    Phoenix serves as a comprehensive open-source observability toolkit tailored for experimentation, evaluation, and troubleshooting purposes. It empowers AI engineers and data scientists to swiftly visualize their datasets, assess performance metrics, identify problems, and export relevant data for enhancements. Developed by Arize AI, the creators of a leading AI observability platform, alongside a dedicated group of core contributors, Phoenix is compatible with OpenTelemetry and OpenInference instrumentation standards. The primary package is known as arize-phoenix, and several auxiliary packages cater to specialized applications. Furthermore, our semantic layer enhances LLM telemetry within OpenTelemetry, facilitating the automatic instrumentation of widely-used packages. This versatile library supports tracing for AI applications, allowing for both manual instrumentation and seamless integrations with tools like LlamaIndex, Langchain, and OpenAI. By employing LLM tracing, Phoenix meticulously logs the routes taken by requests as they navigate through various stages or components of an LLM application, thus providing a clearer understanding of system performance and potential bottlenecks. Ultimately, Phoenix aims to streamline the development process, enabling users to maximize the efficiency and reliability of their AI solutions.
  • 33
    Athina AI Reviews
    Athina functions as a collaborative platform for AI development, empowering teams to efficiently create, test, and oversee their AI applications. It includes a variety of features such as prompt management, evaluation tools, dataset management, and observability, all aimed at facilitating the development of dependable AI systems. With the ability to integrate various models and services, including custom solutions, Athina also prioritizes data privacy through detailed access controls and options for self-hosted deployments. Moreover, the platform adheres to SOC-2 Type 2 compliance standards, ensuring a secure setting for AI development activities. Its intuitive interface enables seamless collaboration between both technical and non-technical team members, significantly speeding up the process of deploying AI capabilities. Ultimately, Athina stands out as a versatile solution that helps teams harness the full potential of artificial intelligence.
  • 34
    Taam Cloud Reviews
    Taam Cloud is a comprehensive platform for integrating and scaling AI APIs, providing access to more than 200 advanced AI models. Whether you're a startup or a large enterprise, Taam Cloud makes it easy to route API requests to various AI models with its fast AI Gateway, streamlining the process of incorporating AI into applications. The platform also offers powerful observability features, enabling users to track AI performance, monitor costs, and ensure reliability with over 40 real-time metrics. With AI Agents, users only need to provide a prompt, and the platform takes care of the rest, creating powerful AI assistants and chatbots. Additionally, the AI Playground lets users test models in a safe, sandbox environment before full deployment. Taam Cloud ensures that security and compliance are built into every solution, providing enterprises with peace of mind when deploying AI at scale. Its versatility and ease of integration make it an ideal choice for businesses looking to leverage AI for automation and enhanced functionality.
  • 35
    IBM Databand Reviews
    Keep a close eye on your data health and the performance of your pipelines. Achieve comprehensive oversight for pipelines utilizing cloud-native technologies such as Apache Airflow, Apache Spark, Snowflake, BigQuery, and Kubernetes. This observability platform is specifically designed for Data Engineers. As the challenges in data engineering continue to escalate due to increasing demands from business stakeholders, Databand offers a solution to help you keep pace. With the rise in the number of pipelines comes greater complexity. Data engineers are now handling more intricate infrastructures than they ever have before while also aiming for quicker release cycles. This environment makes it increasingly difficult to pinpoint the reasons behind process failures, delays, and the impact of modifications on data output quality. Consequently, data consumers often find themselves frustrated by inconsistent results, subpar model performance, and slow data delivery. A lack of clarity regarding the data being provided or the origins of failures fosters ongoing distrust. Furthermore, pipeline logs, errors, and data quality metrics are often gathered and stored in separate, isolated systems, complicating the troubleshooting process. To address these issues effectively, a unified observability approach is essential for enhancing trust and performance in data operations.
  • 36
    Manot Reviews
    Introducing your comprehensive insight management solution tailored for the performance of computer vision models. It enables users to accurately identify the specific factors behind model failures, facilitating effective communication between product managers and engineers through valuable insights. With Manot, product managers gain access to an automated and ongoing feedback mechanism that enhances collaboration with engineering teams. The platform’s intuitive interface ensures that both technical and non-technical users can leverage its features effectively. Manot prioritizes the needs of product managers, delivering actionable insights through visuals that clearly illustrate the areas where model performance may decline. This way, teams can work together more efficiently to address potential issues and improve overall outcomes.
  • 37
    Maxim Reviews

    Maxim

    Maxim

    $29/seat/month
    Maxim is a enterprise-grade stack that enables AI teams to build applications with speed, reliability, and quality. Bring the best practices from traditional software development to your non-deterministic AI work flows. Playground for your rapid engineering needs. Iterate quickly and systematically with your team. Organise and version prompts away from the codebase. Test, iterate and deploy prompts with no code changes. Connect to your data, RAG Pipelines, and prompt tools. Chain prompts, other components and workflows together to create and test workflows. Unified framework for machine- and human-evaluation. Quantify improvements and regressions to deploy with confidence. Visualize the evaluation of large test suites and multiple versions. Simplify and scale human assessment pipelines. Integrate seamlessly into your CI/CD workflows. Monitor AI system usage in real-time and optimize it with speed.
  • 38
    fixa Reviews

    fixa

    fixa

    $0.03 per minute
    Fixa is an innovative open-source platform created to assist in monitoring, debugging, and enhancing voice agents powered by AI. It features an array of tools designed to analyze vital performance indicators, including latency, interruptions, and accuracy during voice interactions. Users are able to assess response times, monitor latency metrics such as TTFW and percentiles like p50, p90, and p95, as well as identify occasions where the voice agent may interrupt the user. Furthermore, fixa enables custom evaluations to verify that the voice agent delivers precise answers, while also providing tailored Slack alerts to inform teams of any emerging issues. With straightforward pricing options, fixa caters to teams across various stages of development, from novices to those with specialized requirements. It additionally offers volume discounts and priority support for enterprises, while prioritizing data security through compliance with standards such as SOC 2 and HIPAA. This commitment to security ensures that organizations can trust the platform with sensitive information and maintain their operational integrity.
  • 39
    VirtualMetric Reviews
    VirtualMetric is a comprehensive data monitoring solution that provides organizations with real-time insights into security, network, and server performance. Using its advanced DataStream pipeline, VirtualMetric efficiently collects and processes security logs, reducing the burden on SIEM systems by filtering irrelevant data and enabling faster threat detection. The platform supports a wide range of systems, offering automatic log discovery and transformation across environments. With features like zero data loss and compliance storage, VirtualMetric ensures that organizations can meet security and regulatory requirements while minimizing storage costs and enhancing overall IT operations.
  • 40
    Deductive AI Reviews
    Deductive AI is an innovative platform that transforms the way organizations address intricate system failures. By seamlessly integrating your entire codebase with telemetry data, which includes metrics, events, logs, and traces, it enables teams to identify the root causes of problems with remarkable speed and accuracy. This platform simplifies the debugging process, significantly minimizing downtime and enhancing overall system dependability. With its ability to integrate with your codebase and existing observability tools, Deductive AI constructs a comprehensive knowledge graph that is driven by a code-aware reasoning engine, effectively diagnosing root issues similar to a seasoned engineer. It rapidly generates a knowledge graph containing millions of nodes, revealing intricate connections between the codebase and telemetry data. Furthermore, it orchestrates numerous specialized AI agents to meticulously search for, uncover, and analyze the subtle indicators of root causes dispersed across all linked sources, ensuring a thorough investigative process. This level of automation not only accelerates troubleshooting but also empowers teams to maintain higher system performance and reliability.
  • 41
    Virtana Platform Reviews
    Before transitioning to the public cloud, it's essential to utilize an AI-driven observability platform that enables you to manage costs, enhance performance, monitor your systems, and ensure uptime across various environments, including data centers and both private and public clouds. Enterprises often grapple with the critical question of which workloads to migrate and how to mitigate unforeseen expenses and performance drops after moving to the cloud. The Virtana unified observability platform offers a solution by facilitating migration and optimization across hybrid, public, and private cloud landscapes. This comprehensive platform gathers precise data and leverages AIOps technologies—such as machine learning and sophisticated data analytics—to deliver intelligent insights on individual workloads, empowering organizations to make informed decisions regarding their migration strategy. By harnessing this platform, businesses can effectively navigate the complexities of cloud migration while adhering to performance standards and optimizing their overall infrastructure.
  • 42
    Helicone Reviews

    Helicone

    Helicone

    $1 per 10,000 requests
    Monitor expenses, usage, and latency for GPT applications seamlessly with just one line of code. Renowned organizations that leverage OpenAI trust our service. We are expanding our support to include Anthropic, Cohere, Google AI, and additional platforms in the near future. Stay informed about your expenses, usage patterns, and latency metrics. With Helicone, you can easily integrate models like GPT-4 to oversee API requests and visualize outcomes effectively. Gain a comprehensive view of your application through a custom-built dashboard specifically designed for generative AI applications. All your requests can be viewed in a single location, where you can filter them by time, users, and specific attributes. Keep an eye on expenditures associated with each model, user, or conversation to make informed decisions. Leverage this information to enhance your API usage and minimize costs. Additionally, cache requests to decrease latency and expenses, while actively monitoring errors in your application and addressing rate limits and reliability issues using Helicone’s robust features. This way, you can optimize performance and ensure that your applications run smoothly.
  • 43
    Sensai Reviews
    Sensai offers a cutting-edge AI-driven platform for detecting anomalies, performing root cause analysis, and forecasting issues, which allows for immediate problem resolution. The Sensai AI solution greatly enhances system uptime and accelerates the identification of root causes. By equipping IT leaders with the tools to effectively manage service level agreements (SLAs), it boosts both performance and profitability. Additionally, it automates and simplifies the processes of anomaly detection, prediction, root cause analysis, and resolution. With its comprehensive perspective and integrated analytics, Sensai seamlessly connects with third-party tools. Users benefit from pre-trained algorithms and models available from the outset, ensuring a swift and efficient implementation. This holistic approach helps organizations maintain operational efficiency while proactively addressing potential disruptions.
  • 44
    Nazar Reviews
    Nazar was developed to address the challenges of managing several databases across multi-cloud or hybrid settings. Fully equipped for the primary database engines, it effectively removes the necessity for juggling multiple tools. By providing a standardized and user-friendly method for establishing new servers on the platform, it significantly reduces setup time. Users can obtain a cohesive overview of their database performance on a singular dashboard, eliminating the hassle of interfacing with various tools that offer inconsistent views and metrics. The real competition lies not in the tedious setup, log tracing, or querying of data dictionaries; rather, Nazar leverages the inherent capabilities of the DBMS for monitoring, thus eliminating the need for additional agents. Furthermore, Nazar automates both anomaly detection and root-cause analysis, which leads to a decrease in mean time to resolution (MTTR) while proactively identifying issues to prevent incidents, ensuring optimal application and business performance. With its comprehensive approach, Nazar not only enhances efficiency but also empowers users to focus on strategic initiatives rather than mundane tasks.
  • 45
    Opster Reviews

    Opster

    Opster

    $2.2 per GB per month
    Opster's AutoOps platform optimizes mapping, stabilizes operations, and improves resource utilization to reduce hardware costs and improve performance. Orchestration, management capabilities, and ticket-based support are not enough. AutoOps provides all the support you need, in real time. AutoOps can diagnose issues in all aspects of Elasticsearch operations. The system provides precise root cause analysis and also helps to resolve the problem. AutoOps can perform advanced optimizations, such as shard rebalancing and blocking heavy searches. It can also optimize templates. These optimizations will ensure your cluster operates at its peak performance and maximum resilience. Opster's AutoOps platform enables customers to dramatically reduce the hardware required for their deployment by optimizing mapping, stabilizing operations, and improving resource utilization.