What Integrates with Apache Ranger?
Find out what Apache Ranger integrations exist in 2025. Learn what software and services currently integrate with Apache Ranger, and sort them by reviews, cost, features, and more. Below is a list of products that Apache Ranger currently integrates with:
-
1
Apache Solr
Apache Software Foundation
1 RatingSolr is an exceptionally dependable, scalable, and resilient platform that offers distributed indexing, replication, and load-balanced querying, along with automated failover and recovery, centralized configuration, and much more. It serves as the backbone for search and navigation functionalities on numerous major internet platforms worldwide. With its robust matching capabilities, Solr supports a wide range of features such as phrases, wildcards, joins, and grouping across various data types. The system has demonstrated its efficacy at remarkably large scales globally. Solr integrates seamlessly with the tools you already use, simplifying the application development process. It comes equipped with a user-friendly, responsive administrative interface that facilitates the management of Solr instances effortlessly. For those seeking deeper insights into their instances, Solr provides extensive metric data through JMX. Built on the reliable Apache Zookeeper, it allows for straightforward scaling both upwards and downwards. Furthermore, Solr inherently includes features for replication, distribution, rebalancing, and fault tolerance, ensuring that it meets the demands of users right out of the box. Its versatility makes Solr an invaluable asset for organizations aiming to enhance their search capabilities. -
2
Apache Hive
Apache Software Foundation
1 RatingApache Hive is a data warehouse solution that enables the efficient reading, writing, and management of substantial datasets stored across distributed systems using SQL. It allows users to apply structure to pre-existing data in storage. To facilitate user access, it comes equipped with a command line interface and a JDBC driver. As an open-source initiative, Apache Hive is maintained by dedicated volunteers at the Apache Software Foundation. Initially part of the Apache® Hadoop® ecosystem, it has since evolved into an independent top-level project. We invite you to explore the project further and share your knowledge to enhance its development. Users typically implement traditional SQL queries through the MapReduce Java API, which can complicate the execution of SQL applications on distributed data. However, Hive simplifies this process by offering a SQL abstraction that allows for the integration of SQL-like queries, known as HiveQL, into the underlying Java framework, eliminating the need to delve into the complexities of the low-level Java API. This makes working with large datasets more accessible and efficient for developers. -
3
Apache Kafka
The Apache Software Foundation
1 RatingApache Kafka® is a robust, open-source platform designed for distributed streaming. It can scale production environments to accommodate up to a thousand brokers, handling trillions of messages daily and managing petabytes of data with hundreds of thousands of partitions. The system allows for elastic growth and reduction of both storage and processing capabilities. Furthermore, it enables efficient cluster expansion across availability zones or facilitates the interconnection of distinct clusters across various geographic locations. Users can process event streams through features such as joins, aggregations, filters, transformations, and more, all while utilizing event-time and exactly-once processing guarantees. Kafka's built-in Connect interface seamlessly integrates with a wide range of event sources and sinks, including Postgres, JMS, Elasticsearch, AWS S3, among others. Additionally, developers can read, write, and manipulate event streams using a diverse selection of programming languages, enhancing the platform's versatility and accessibility. This extensive support for various integrations and programming environments makes Kafka a powerful tool for modern data architectures. -
4
PHEMI Health DataLab
PHEMI Systems
Unlike most data management systems, PHEMI Health DataLab is built with Privacy-by-Design principles, not as an add-on. This means privacy and data governance are built-in from the ground up, providing you with distinct advantages: Lets analysts work with data without breaching privacy guidelines Includes a comprehensive, extensible library of de-identification algorithms to hide, mask, truncate, group, and anonymize data. Creates dataset-specific or system-wide pseudonyms enabling linking and sharing of data without risking data leakage. Collects audit logs concerning not only what changes were made to the PHEMI system, but also data access patterns. Automatically generates human and machine-readable de- identification reports to meet your enterprise governance risk and compliance guidelines. Rather than a policy per data access point, PHEMI gives you the advantage of one central policy for all access patterns, whether Spark, ODBC, REST, export, and more -
5
Apache HBase
The Apache Software Foundation
Utilize Apache HBase™ when you require immediate and random read/write capabilities for your extensive data sets. This initiative aims to manage exceptionally large tables that can contain billions of rows across millions of columns on clusters built from standard hardware. It features automatic failover capabilities between RegionServers to ensure reliability. Additionally, it provides an intuitive Java API for client interaction, along with a Thrift gateway and a RESTful Web service that accommodates various data encoding formats, including XML, Protobuf, and binary. Furthermore, it supports the export of metrics through the Hadoop metrics system, enabling data to be sent to files or Ganglia, as well as via JMX for enhanced monitoring and management. With these features, HBase stands out as a robust solution for handling big data challenges effectively. -
6
Hadoop
Apache Software Foundation
The Apache Hadoop software library serves as a framework for the distributed processing of extensive data sets across computer clusters, utilizing straightforward programming models. It is built to scale from individual servers to thousands of machines, each providing local computation and storage capabilities. Instead of depending on hardware for high availability, the library is engineered to identify and manage failures within the application layer, ensuring that a highly available service can run on a cluster of machines that may be susceptible to disruptions. Numerous companies and organizations leverage Hadoop for both research initiatives and production environments. Users are invited to join the Hadoop PoweredBy wiki page to showcase their usage. The latest version, Apache Hadoop 3.3.4, introduces several notable improvements compared to the earlier major release, hadoop-3.2, enhancing its overall performance and functionality. This continuous evolution of Hadoop reflects the growing need for efficient data processing solutions in today's data-driven landscape. -
7
Apache Storm
Apache Software Foundation
Apache Storm is a distributed computation system that is both free and open source, designed for real-time data processing. It simplifies the reliable handling of endless data streams, similar to how Hadoop revolutionized batch processing. The platform is user-friendly, compatible with various programming languages, and offers an enjoyable experience for developers. With numerous applications including real-time analytics, online machine learning, continuous computation, distributed RPC, and ETL, Apache Storm proves its versatility. It's remarkably fast, with benchmarks showing it can process over a million tuples per second on a single node. Additionally, it is scalable and fault-tolerant, ensuring that data processing is both reliable and efficient. Setting up and managing Apache Storm is straightforward, and it seamlessly integrates with existing queueing and database technologies. Users can design Apache Storm topologies to consume and process data streams in complex manners, allowing for flexible repartitioning between different stages of computation. For further insights, be sure to explore the detailed tutorial available. -
8
Apache Knox
Apache Software Foundation
The Knox API Gateway functions as a reverse proxy, prioritizing flexibility in policy enforcement and backend service management for the requests it handles. It encompasses various aspects of policy enforcement, including authentication, federation, authorization, auditing, dispatch, host mapping, and content rewriting rules. A chain of providers, specified in the topology deployment descriptor associated with each Apache Hadoop cluster secured by Knox, facilitates this policy enforcement. Additionally, the cluster definition within the descriptor helps the Knox Gateway understand the structure of the cluster, enabling effective routing and translation from user-facing URLs to the internal workings of the cluster. Each secured Apache Hadoop cluster is equipped with its own REST APIs, consolidated under a unique application context path. Consequently, the Knox Gateway can safeguard numerous clusters while offering REST API consumers a unified endpoint for seamless access. This design enhances both security and usability by simplifying interactions with multiple backend services. -
9
Apache Hadoop YARN
Apache Software Foundation
YARN's core concept revolves around the division of resource management and job scheduling/monitoring into distinct daemons, aiming for a centralized ResourceManager (RM) alongside individual ApplicationMasters (AM) for each application. Each application can be defined as either a standalone job or a directed acyclic graph (DAG) of jobs. Together, the ResourceManager and NodeManager create the data-computation framework, with the ResourceManager serving as the primary authority that allocates resources across all applications in the environment. Meanwhile, the NodeManager acts as the local agent on each machine, overseeing containers and tracking their resource consumption, including CPU, memory, disk, and network usage, while also relaying this information back to the ResourceManager or Scheduler. The ApplicationMaster functions as a specialized library specific to its application, responsible for negotiating resources with the ResourceManager and coordinating with the NodeManager(s) to efficiently execute and oversee the execution of tasks, ensuring optimal resource utilization and job performance throughout the process. This separation allows for more scalable and efficient management in complex computing environments.
- Previous
- You're on page 1
- Next