What Integrates with Apache Pinot?

Find out what Apache Pinot integrations exist in 2025. Learn what software and services currently integrate with Apache Pinot, and sort them by reviews, cost, features, and more. Below is a list of products that Apache Pinot currently integrates with:

  • 1
    StarTree Reviews
    See Software
    Learn More
    StarTree Cloud is a fully-managed real-time analytics platform designed for OLAP at massive speed and scale for user-facing applications. Powered by Apache Pinot, StarTree Cloud provides enterprise-grade reliability and advanced capabilities such as tiered storage, scalable upserts, plus additional indexes and connectors. It integrates seamlessly with transactional databases and event streaming platforms, ingesting data at millions of events per second and indexing it for lightning-fast query responses. StarTree Cloud is available on your favorite public cloud or for private SaaS deployment. StarTree Cloud includes StarTree Data Manager, which allows you to ingest data from both real-time sources such as Amazon Kinesis, Apache Kafka, Apache Pulsar, or Redpanda, as well as batch data sources such as data warehouses like Snowflake, Delta Lake or Google BigQuery, or object stores like Amazon S3, Apache Flink, Apache Hadoop, or Apache Spark. StarTree ThirdEye is an add-on anomaly detection system running on top of StarTree Cloud that observes your business-critical metrics, alerting you and allowing you to perform root-cause analysis — all in real-time.
  • 2
    Amazon S3 Reviews
    Amazon Simple Storage Service (Amazon S3) is a versatile object storage solution that provides exceptional scalability, data availability, security, and performance. It accommodates clients from various sectors, enabling them to securely store and manage any volume of data for diverse applications, including data lakes, websites, mobile apps, backups, archiving, enterprise software, IoT devices, and big data analytics. With user-friendly management tools, Amazon S3 allows users to effectively organize their data and set tailored access permissions to satisfy their unique business, organizational, and compliance needs. Offering an impressive durability rate of 99.999999999% (11 nines), it supports millions of applications for businesses globally. Businesses can easily adjust their storage capacity to match changing demands without needing upfront investments or lengthy resource acquisition processes. Furthermore, the high durability ensures that data remains safe and accessible, contributing to operational resilience and peace of mind for organizations.
  • 3
    Apache Kafka Reviews

    Apache Kafka

    The Apache Software Foundation

    1 Rating
    Apache Kafka® is a robust, open-source platform designed for distributed streaming. It can scale production environments to accommodate up to a thousand brokers, handling trillions of messages daily and managing petabytes of data with hundreds of thousands of partitions. The system allows for elastic growth and reduction of both storage and processing capabilities. Furthermore, it enables efficient cluster expansion across availability zones or facilitates the interconnection of distinct clusters across various geographic locations. Users can process event streams through features such as joins, aggregations, filters, transformations, and more, all while utilizing event-time and exactly-once processing guarantees. Kafka's built-in Connect interface seamlessly integrates with a wide range of event sources and sinks, including Postgres, JMS, Elasticsearch, AWS S3, among others. Additionally, developers can read, write, and manipulate event streams using a diverse selection of programming languages, enhancing the platform's versatility and accessibility. This extensive support for various integrations and programming environments makes Kafka a powerful tool for modern data architectures.
  • 4
    Hue Reviews
    Hue delivers an exceptional querying experience through its advanced autocomplete features and sophisticated query editor components. Users can seamlessly navigate tables and storage browsers, utilizing their existing knowledge of data catalogs. This functionality assists in locating the right data within extensive databases while also enabling self-documentation. Furthermore, the platform supports users in crafting SQL queries and provides rich previews for links, allowing for direct sharing in Slack from the editor. There is a variety of applications available, each tailored to specific querying needs, and data sources can be initially explored through the intuitive browsers. The editor excels particularly in SQL queries, equipped with intelligent autocomplete, risk alerts, and self-service troubleshooting capabilities. While dashboards are designed to visualize indexed data, they also possess the ability to query SQL databases effectively. Users can now search for specific cell values in tables, with results highlighted for easy identification. Additionally, Hue's SQL editing capabilities are considered among the finest globally, ensuring a streamlined and efficient experience for all users. This combination of features makes Hue a powerful tool for data exploration and management.
  • 5
    Onehouse Reviews
    Introducing a unique cloud data lakehouse that is entirely managed and capable of ingesting data from all your sources within minutes, while seamlessly accommodating every query engine at scale, all at a significantly reduced cost. This platform enables ingestion from both databases and event streams at terabyte scale in near real-time, offering the ease of fully managed pipelines. Furthermore, you can execute queries using any engine, catering to diverse needs such as business intelligence, real-time analytics, and AI/ML applications. By adopting this solution, you can reduce your expenses by over 50% compared to traditional cloud data warehouses and ETL tools, thanks to straightforward usage-based pricing. Deployment is swift, taking just minutes, without the burden of engineering overhead, thanks to a fully managed and highly optimized cloud service. Consolidate your data into a single source of truth, eliminating the necessity of duplicating data across various warehouses and lakes. Select the appropriate table format for each task, benefitting from seamless interoperability between Apache Hudi, Apache Iceberg, and Delta Lake. Additionally, quickly set up managed pipelines for change data capture (CDC) and streaming ingestion, ensuring that your data architecture is both agile and efficient. This innovative approach not only streamlines your data processes but also enhances decision-making capabilities across your organization.
  • 6
    Astro Reviews
    Astronomer is the driving force behind Apache Airflow, the de facto standard for expressing data flows as code. Airflow is downloaded more than 4 million times each month and is used by hundreds of thousands of teams around the world. For data teams looking to increase the availability of trusted data, Astronomer provides Astro, the modern data orchestration platform, powered by Airflow. Astro enables data engineers, data scientists, and data analysts to build, run, and observe pipelines-as-code. Founded in 2018, Astronomer is a global remote-first company with hubs in Cincinnati, New York, San Francisco, and San Jose. Customers in more than 35 countries trust Astronomer as their partner for data orchestration.
  • 7
    Hadoop Reviews

    Hadoop

    Apache Software Foundation

    The Apache Hadoop software library serves as a framework for the distributed processing of extensive data sets across computer clusters, utilizing straightforward programming models. It is built to scale from individual servers to thousands of machines, each providing local computation and storage capabilities. Instead of depending on hardware for high availability, the library is engineered to identify and manage failures within the application layer, ensuring that a highly available service can run on a cluster of machines that may be susceptible to disruptions. Numerous companies and organizations leverage Hadoop for both research initiatives and production environments. Users are invited to join the Hadoop PoweredBy wiki page to showcase their usage. The latest version, Apache Hadoop 3.3.4, introduces several notable improvements compared to the earlier major release, hadoop-3.2, enhancing its overall performance and functionality. This continuous evolution of Hadoop reflects the growing need for efficient data processing solutions in today's data-driven landscape.
  • 8
    Azure Data Lake Reviews
    Azure Data Lake offers a comprehensive set of features designed to facilitate the storage of data in any form, size, and speed for developers, data scientists, and analysts alike, enabling a wide range of processing and analytics across various platforms and programming languages. By simplifying the ingestion and storage of data, it accelerates the process of launching batch, streaming, and interactive analytics. Additionally, Azure Data Lake is compatible with existing IT frameworks for identity, management, and security, which streamlines data management and governance. Its seamless integration with operational stores and data warehouses allows for the extension of current data applications without disruption. Leveraging insights gained from working with enterprise clients and managing some of the world's largest processing and analytics tasks for services such as Office 365, Xbox Live, Azure, Windows, Bing, and Skype, Azure Data Lake addresses many of the scalability and productivity hurdles that hinder your ability to fully utilize data. Ultimately, it empowers organizations to harness their data's potential more effectively and efficiently than ever before.
  • 9
    Kestra Reviews
    Kestra is a free, open-source orchestrator based on events that simplifies data operations while improving collaboration between engineers and users. Kestra brings Infrastructure as Code to data pipelines. This allows you to build reliable workflows with confidence. The declarative YAML interface allows anyone who wants to benefit from analytics to participate in the creation of the data pipeline. The UI automatically updates the YAML definition whenever you make changes to a work flow via the UI or an API call. The orchestration logic can be defined in code declaratively, even if certain workflow components are modified.
  • Previous
  • You're on page 1
  • Next