Best Apache NiFi Alternatives in 2025

Find the top alternatives to Apache NiFi currently available. Compare ratings, reviews, pricing, and features of Apache NiFi alternatives in 2025. Slashdot lists the best Apache NiFi alternatives on the market that offer competing products that are similar to Apache NiFi. Sort through Apache NiFi alternatives below to make the best choice for your needs

  • 1
    StarTree Reviews
    See Software
    Learn More
    Compare Both
    StarTree Cloud is a fully-managed real-time analytics platform designed for OLAP at massive speed and scale for user-facing applications. Powered by Apache Pinot, StarTree Cloud provides enterprise-grade reliability and advanced capabilities such as tiered storage, scalable upserts, plus additional indexes and connectors. It integrates seamlessly with transactional databases and event streaming platforms, ingesting data at millions of events per second and indexing it for lightning-fast query responses. StarTree Cloud is available on your favorite public cloud or for private SaaS deployment. StarTree Cloud includes StarTree Data Manager, which allows you to ingest data from both real-time sources such as Amazon Kinesis, Apache Kafka, Apache Pulsar, or Redpanda, as well as batch data sources such as data warehouses like Snowflake, Delta Lake or Google BigQuery, or object stores like Amazon S3, Apache Flink, Apache Hadoop, or Apache Spark. StarTree ThirdEye is an add-on anomaly detection system running on top of StarTree Cloud that observes your business-critical metrics, alerting you and allowing you to perform root-cause analysis — all in real-time.
  • 2
    Striim Reviews
    Data integration for hybrid clouds Modern, reliable data integration across both your private cloud and public cloud. All this in real-time, with change data capture and streams. Striim was developed by the executive and technical team at GoldenGate Software. They have decades of experience in mission critical enterprise workloads. Striim can be deployed in your environment as a distributed platform or in the cloud. Your team can easily adjust the scaleability of Striim. Striim is fully secured with HIPAA compliance and GDPR compliance. Built from the ground up to support modern enterprise workloads, whether they are hosted in the cloud or on-premise. Drag and drop to create data flows among your sources and targets. Real-time SQL queries allow you to process, enrich, and analyze streaming data.
  • 3
    IRI Voracity Reviews
    IRI Voracity is an end-to-end software platform for fast, affordable, and ergonomic data lifecycle management. Voracity speeds, consolidates, and often combines the key activities of data discovery, integration, migration, governance, and analytics in a single pane of glass, built on Eclipse™. Through its revolutionary convergence of capability and its wide range of job design and runtime options, Voracity bends the multi-tool cost, difficulty, and risk curves away from megavendor ETL packages, disjointed Apache projects, and specialized software. Voracity uniquely delivers the ability to perform data: * profiling and classification * searching and risk-scoring * integration and federation * migration and replication * cleansing and enrichment * validation and unification * masking and encryption * reporting and wrangling * subsetting and testing Voracity runs on-premise, or in the cloud, on physical or virtual machines, and its runtimes can also be containerized or called from real-time applications or batch jobs.
  • 4
    Apache Airflow Reviews

    Apache Airflow

    The Apache Software Foundation

    Airflow is a community-driven platform designed for the programmatic creation, scheduling, and monitoring of workflows. With its modular architecture, Airflow employs a message queue to manage an unlimited number of workers, making it highly scalable. The system is capable of handling complex operations through its ability to define pipelines using Python, facilitating dynamic pipeline generation. This flexibility enables developers to write code that can create pipelines on the fly. Users can easily create custom operators and expand existing libraries, tailoring the abstraction level to meet their specific needs. The pipelines in Airflow are both concise and clear, with built-in parametrization supported by the robust Jinja templating engine. Eliminate the need for complex command-line operations or obscure XML configurations! Instead, leverage standard Python functionalities to construct workflows, incorporating date-time formats for scheduling and utilizing loops for the dynamic generation of tasks. This approach ensures that you retain complete freedom and adaptability when designing your workflows, allowing you to efficiently respond to changing requirements. Additionally, Airflow's user-friendly interface empowers teams to collaboratively refine and optimize their workflow processes.
  • 5
    Apache Flink Reviews

    Apache Flink

    Apache Software Foundation

    Apache Flink serves as a powerful framework and distributed processing engine tailored for executing stateful computations on both unbounded and bounded data streams. It has been engineered to operate seamlessly across various cluster environments, delivering computations with impressive in-memory speed and scalability. Data of all types is generated as a continuous stream of events, encompassing credit card transactions, sensor data, machine logs, and user actions on websites or mobile apps. The capabilities of Apache Flink shine particularly when handling both unbounded and bounded data sets. Its precise management of time and state allows Flink’s runtime to support a wide range of applications operating on unbounded streams. For bounded streams, Flink employs specialized algorithms and data structures optimized for fixed-size data sets, ensuring remarkable performance. Furthermore, Flink is adept at integrating with all previously mentioned resource managers, enhancing its versatility in various computing environments. This makes Flink a valuable tool for developers seeking efficient and reliable stream processing solutions.
  • 6
    Apache Gobblin Reviews

    Apache Gobblin

    Apache Software Foundation

    A framework for distributed data integration that streamlines essential functions of Big Data integration, including data ingestion, replication, organization, and lifecycle management, is designed for both streaming and batch data environments. It operates as a standalone application on a single machine and can also function in an embedded mode. Additionally, it is capable of executing as a MapReduce application across various Hadoop versions and offers compatibility with Azkaban for initiating MapReduce jobs. In standalone cluster mode, it features primary and worker nodes, providing high availability and the flexibility to run on bare metal systems. Furthermore, it can function as an elastic cluster in the public cloud, maintaining high availability in this setup. Currently, Gobblin serves as a versatile framework for creating various data integration applications, such as ingestion and replication. Each application is usually set up as an independent job and managed through a scheduler like Azkaban, allowing for organized execution and management of data workflows. This adaptability makes Gobblin an appealing choice for organizations looking to enhance their data integration processes.
  • 7
    Apache Beam Reviews

    Apache Beam

    Apache Software Foundation

    Batch and streaming data processing can be streamlined effortlessly. With the capability to write once and run anywhere, it is ideal for mission-critical production tasks. Beam allows you to read data from a wide variety of sources, whether they are on-premises or cloud-based. It seamlessly executes your business logic across both batch and streaming scenarios. The outcomes of your data processing efforts can be written to the leading data sinks available in the market. This unified programming model simplifies operations for all members of your data and application teams. Apache Beam is designed for extensibility, with frameworks like TensorFlow Extended and Apache Hop leveraging its capabilities. You can run pipelines on various execution environments (runners), which provides flexibility and prevents vendor lock-in. The open and community-driven development model ensures that your applications can evolve and adapt to meet specific requirements. This adaptability makes Beam a powerful choice for organizations aiming to optimize their data processing strategies.
  • 8
    Apache Storm Reviews

    Apache Storm

    Apache Software Foundation

    Apache Storm is a distributed computation system that is both free and open source, designed for real-time data processing. It simplifies the reliable handling of endless data streams, similar to how Hadoop revolutionized batch processing. The platform is user-friendly, compatible with various programming languages, and offers an enjoyable experience for developers. With numerous applications including real-time analytics, online machine learning, continuous computation, distributed RPC, and ETL, Apache Storm proves its versatility. It's remarkably fast, with benchmarks showing it can process over a million tuples per second on a single node. Additionally, it is scalable and fault-tolerant, ensuring that data processing is both reliable and efficient. Setting up and managing Apache Storm is straightforward, and it seamlessly integrates with existing queueing and database technologies. Users can design Apache Storm topologies to consume and process data streams in complex manners, allowing for flexible repartitioning between different stages of computation. For further insights, be sure to explore the detailed tutorial available.
  • 9
    Apache Kafka Reviews

    Apache Kafka

    The Apache Software Foundation

    1 Rating
    Apache Kafka® is a robust, open-source platform designed for distributed streaming. It can scale production environments to accommodate up to a thousand brokers, handling trillions of messages daily and managing petabytes of data with hundreds of thousands of partitions. The system allows for elastic growth and reduction of both storage and processing capabilities. Furthermore, it enables efficient cluster expansion across availability zones or facilitates the interconnection of distinct clusters across various geographic locations. Users can process event streams through features such as joins, aggregations, filters, transformations, and more, all while utilizing event-time and exactly-once processing guarantees. Kafka's built-in Connect interface seamlessly integrates with a wide range of event sources and sinks, including Postgres, JMS, Elasticsearch, AWS S3, among others. Additionally, developers can read, write, and manipulate event streams using a diverse selection of programming languages, enhancing the platform's versatility and accessibility. This extensive support for various integrations and programming environments makes Kafka a powerful tool for modern data architectures.
  • 10
    Kestra Reviews
    Kestra is a free, open-source orchestrator based on events that simplifies data operations while improving collaboration between engineers and users. Kestra brings Infrastructure as Code to data pipelines. This allows you to build reliable workflows with confidence. The declarative YAML interface allows anyone who wants to benefit from analytics to participate in the creation of the data pipeline. The UI automatically updates the YAML definition whenever you make changes to a work flow via the UI or an API call. The orchestration logic can be defined in code declaratively, even if certain workflow components are modified.
  • 11
    Cribl AppScope Reviews
    AppScope introduces a revolutionary method for black-box instrumentation, providing comprehensive and consistent telemetry from any Linux executable simply by adding scope before the command. When you engage with customers who utilize Application Performance Management, they often express their satisfaction with the solution but lament the limited extension to additional applications. Typically, only a small fraction—10% or less—of their applications are equipped with APM, while they rely on basic metrics for the remainder. This raises the question: what happens to the other 80%? This is where AppScope comes into play. It eliminates the need for language-specific instrumentation and does not require input from application developers. As a language-agnostic tool that operates entirely in userland, AppScope can be utilized with any application and seamlessly scales from command-line interfaces to production environments. Users can channel AppScope data into any pre-existing monitoring tool, time-series database, or logging solution. Furthermore, AppScope empowers Site Reliability Engineers and Operations teams to closely analyze live applications, providing insights into their functionality and performance across various deployment environments, whether on-premises, in the cloud, or within containerized systems. This capability not only enhances monitoring but also fosters a deeper understanding of application behavior, paving the way for improved performance management.
  • 12
    Cloudera DataFlow Reviews
    Cloudera DataFlow for the Public Cloud (CDF-PC) is a versatile, cloud-based data distribution solution that utilizes Apache NiFi, enabling developers to seamlessly connect to diverse data sources with varying structures, process that data, and deliver it to a wide array of destinations. This platform features a flow-oriented low-code development approach that closely matches the preferences of developers when creating, developing, and testing their data distribution pipelines. CDF-PC boasts an extensive library of over 400 connectors and processors that cater to a broad spectrum of hybrid cloud services, including data lakes, lakehouses, cloud warehouses, and on-premises sources, ensuring efficient and flexible data distribution. Furthermore, the data flows created can be version-controlled within a catalog, allowing operators to easily manage deployments across different runtimes, thereby enhancing operational efficiency and simplifying the deployment process. Ultimately, CDF-PC empowers organizations to harness their data effectively, promoting innovation and agility in data management.
  • 13
    IBM StreamSets Reviews
    IBM® StreamSets allows users to create and maintain smart streaming data pipelines using an intuitive graphical user interface. This facilitates seamless data integration in hybrid and multicloud environments. IBM StreamSets is used by leading global companies to support millions data pipelines, for modern analytics and intelligent applications. Reduce data staleness, and enable real-time information at scale. Handle millions of records across thousands of pipelines in seconds. Drag-and-drop processors that automatically detect and adapt to data drift will protect your data pipelines against unexpected changes and shifts. Create streaming pipelines for ingesting structured, semistructured, or unstructured data to deliver it to multiple destinations.
  • 14
    3forge Reviews
    Navigating the challenges of your organization may seem daunting, but creating a solution doesn't have to be complicated. 3forge offers a highly adaptable, low-code platform designed to accelerate enterprise application development like never before. Need reliability? Absolutely. Looking for scalability? You got it. What about rapid deliverability? That's also guaranteed, even with intricate workflows and extensive data sets. With 3forge, you can seamlessly unify data integration, virtualization, processing, visualization, and workflows in a single solution, effectively tackling some of the most intricate real-time streaming data challenges faced today. This award-winning technology from 3forge empowers developers to launch mission-critical applications swiftly and efficiently. Discover the transformative power of real-time data coupled with zero latency, as 3forge prioritizes seamless data integration, virtualization, processing, and visualization for optimal performance. As a result, you can focus on innovation rather than getting bogged down in technical difficulties.
  • 15
    Confluent Reviews
    Achieve limitless data retention for Apache Kafka® with Confluent, empowering you to be infrastructure-enabled rather than constrained by outdated systems. Traditional technologies often force a choice between real-time processing and scalability, but event streaming allows you to harness both advantages simultaneously, paving the way for innovation and success. Have you ever considered how your rideshare application effortlessly analyzes vast datasets from various sources to provide real-time estimated arrival times? Or how your credit card provider monitors millions of transactions worldwide, promptly alerting users to potential fraud? The key to these capabilities lies in event streaming. Transition to microservices and facilitate your hybrid approach with a reliable connection to the cloud. Eliminate silos to ensure compliance and enjoy continuous, real-time event delivery. The possibilities truly are limitless, and the potential for growth is unprecedented.
  • 16
    HarperDB Reviews
    HarperDB is an innovative platform that integrates database management, caching, application development, and streaming capabilities into a cohesive system. This allows businesses to efficiently implement global-scale back-end services with significantly reduced effort, enhanced performance, and cost savings compared to traditional methods. Users can deploy custom applications along with pre-existing add-ons, ensuring a high-throughput and ultra-low latency environment for their data needs. Its exceptionally fast distributed database offers vastly superior throughput rates than commonly used NoSQL solutions while maintaining unlimited horizontal scalability. Additionally, HarperDB supports real-time pub/sub communication and data processing through protocols like MQTT, WebSocket, and HTTP. This means organizations can leverage powerful data-in-motion functionalities without the necessity of adding extra services, such as Kafka, to their architecture. By prioritizing features that drive business growth, companies can avoid the complexities of managing intricate infrastructures. While you can’t alter the speed of light, you can certainly minimize the distance between your users and their data, enhancing overall efficiency and responsiveness. In doing so, HarperDB empowers businesses to focus on innovation and progress rather than getting bogged down by technical challenges.
  • 17
    Samza Reviews

    Samza

    Apache Software Foundation

    Samza enables the development of stateful applications that can handle real-time data processing from various origins, such as Apache Kafka. Proven to perform effectively at scale, it offers versatile deployment choices, allowing execution on YARN or as an independent library. With the capability to deliver remarkably low latencies and high throughput, Samza provides instantaneous data analysis. It can manage multiple terabytes of state through features like incremental checkpoints and host-affinity, ensuring efficient data handling. Additionally, Samza's operational simplicity is enhanced by its deployment flexibility—whether on YARN, Kubernetes, or in standalone mode. Users can leverage the same codebase to seamlessly process both batch and streaming data, which streamlines development efforts. Furthermore, Samza integrates with a wide range of data sources, including Kafka, HDFS, AWS Kinesis, Azure Event Hubs, key-value stores, and ElasticSearch, making it a highly adaptable tool for modern data processing needs.
  • 18
    CloverDX Reviews
    In a developer-friendly visual editor, you can design, debug, run, and troubleshoot data jobflows and data transformations. You can orchestrate data tasks that require a specific sequence and organize multiple systems using the transparency of visual workflows. Easy deployment of data workloads into an enterprise runtime environment. Cloud or on-premise. Data can be made available to applications, people, and storage through a single platform. You can manage all your data workloads and related processes from one platform. No task is too difficult. CloverDX was built on years of experience in large enterprise projects. Open architecture that is user-friendly and flexible allows you to package and hide complexity for developers. You can manage the entire lifecycle for a data pipeline, from design, deployment, evolution, and testing. Our in-house customer success teams will help you get things done quickly.
  • 19
    Google Cloud Dataflow Reviews
    Data processing that integrates both streaming and batch operations while being serverless, efficient, and budget-friendly. It offers a fully managed service for data processing, ensuring seamless automation in the provisioning and administration of resources. With horizontal autoscaling capabilities, worker resources can be adjusted dynamically to enhance overall resource efficiency. The innovation is driven by the open-source community, particularly through the Apache Beam SDK. This platform guarantees reliable and consistent processing with exactly-once semantics. Dataflow accelerates the development of streaming data pipelines, significantly reducing data latency in the process. By adopting a serverless model, teams can devote their efforts to programming rather than the complexities of managing server clusters, effectively eliminating the operational burdens typically associated with data engineering tasks. Additionally, Dataflow’s automated resource management not only minimizes latency but also optimizes utilization, ensuring that teams can operate with maximum efficiency. Furthermore, this approach promotes a collaborative environment where developers can focus on building robust applications without the distraction of underlying infrastructure concerns.
  • 20
    Qlik Replicate Reviews
    Qlik Replicate is an advanced data replication solution that provides efficient data ingestion from a wide range of sources and platforms, ensuring smooth integration with key big data analytics tools. It offers both bulk replication and real-time incremental replication through change data capture (CDC) technology. Featuring a unique zero-footprint architecture, it minimizes unnecessary strain on critical systems while enabling seamless data migrations and database upgrades without downtime. This replication capability allows for the transfer or consolidation of data from a production database to an updated version, a different computing environment, or an alternative database management system, such as migrating data from SQL Server to Oracle. Additionally, data replication is effective for relieving production databases by transferring data to operational data stores or data warehouses, facilitating improved reporting and analytics. By harnessing these capabilities, organizations can enhance their data management strategy, ensuring better performance and reliability across their systems.
  • 21
    Talend Open Studio Reviews
    Talend Open Studio allows you to quickly create fundamental data pipelines with ease. You can perform straightforward ETL and data integration operations, visualize your data graphically, and handle files—all from a locally installed, open-source platform that you fully control. When your project is ready for launch, you can seamlessly transition to Talend Cloud. This platform maintains the user-friendly interface of Open Studio while offering essential tools for collaboration, monitoring, and scheduling, which are vital for ongoing projects. Moreover, you can incorporate data quality features, big data integration capabilities, and leverage processing resources, while also accessing cutting-edge data sources, analytics solutions, and scalable capacity from AWS or Azure whenever necessary. To enhance your data integration experience, consider joining the Talend Community, where you can embark on your journey with valuable resources. The Talend Community is not just for beginners; it serves as a hub for both novices and seasoned professionals to exchange best practices and discover innovative techniques that could enhance their projects.
  • 22
    Apache Doris Reviews

    Apache Doris

    The Apache Software Foundation

    Free
    Apache Doris serves as a cutting-edge data warehouse tailored for real-time analytics, enabling exceptionally rapid analysis of data at scale. It features both push-based micro-batch and pull-based streaming data ingestion that occurs within a second, alongside a storage engine capable of real-time upserts, appends, and pre-aggregation. With its columnar storage architecture, MPP design, cost-based query optimization, and vectorized execution engine, it is optimized for handling high-concurrency and high-throughput queries efficiently. Moreover, it allows for federated querying across various data lakes, including Hive, Iceberg, and Hudi, as well as relational databases such as MySQL and PostgreSQL. Doris supports complex data types like Array, Map, and JSON, and includes a Variant data type that facilitates automatic inference for JSON structures, along with advanced text search capabilities through NGram bloomfilters and inverted indexes. Its distributed architecture ensures linear scalability and incorporates workload isolation and tiered storage to enhance resource management. Additionally, it accommodates both shared-nothing clusters and the separation of storage from compute resources, providing flexibility in deployment and management.
  • 23
    Data Flow Manager Reviews
    Data Flow Manager is an on-premise tool designed to deploy & promote Apache NiFi data flows within minutes - no need for NiFi UI & controller services. Run unlimited NiFi data flows with pay-per-node pricing—no cloud, no CPU limits. Automate everything from NiFi flow deployment to promotion and scheduling. Monitor performance, enforce RBAC, and log every action. DFM even helps you build better NiFi flows with an AI-powered NiFi data flow creation assistant. Backed by 24x7 expert NiFi support and 99.99% uptime, DFM delivers total control and security.
  • 24
    TapData Reviews
    A live data platform based on Change Data Capture (CDC) facilitates the replication of diverse databases, supports real-time data integration, and assists in constructing a real-time data warehouse. By implementing CDC to synchronize production line information stored in DB2 and Oracle with a modern database, TapData has empowered an AI-enhanced real-time dispatch application that streamlines the semiconductor manufacturing process. The availability of real-time data has enabled prompt decision-making within the RTD application, resulting in quicker turnaround times and increased production yield. As a major telecommunications provider, the client operates numerous regional systems designed to serve local users effectively. By consolidating and integrating data from multiple sources and locations into a single centralized data repository, the client successfully established an order center that aggregates orders from various applications. Additionally, TapData integrates inventory data from over 500 stores, delivering real-time insights into stock availability and customer preferences, thereby significantly boosting supply chain efficiency. This innovative approach not only enhances operational performance but also positions the client to respond swiftly to market demands.
  • 25
    Estuary Flow Reviews
    Estuary Flow, a new DataOps platform, empowers engineering teams with the ability to build data-intensive real-time applications at scale and with minimal friction. This platform allows teams to unify their databases, pub/sub and SaaS systems around their data without having to invest in new infrastructure or development.
  • 26
    Amazon Managed Service for Apache Flink Reviews
    A vast number of users leverage Amazon Managed Service for Apache Flink to execute their stream processing applications. This service allows you to analyze and transform streaming data in real-time through Apache Flink while seamlessly integrating with other AWS offerings. There is no need to manage servers or clusters, nor is there a requirement to establish computing and storage infrastructure. You are billed solely for the resources you consume. You can create and operate Apache Flink applications without the hassle of infrastructure setup and resource management. Experience the capability to process vast amounts of data at incredible speeds with subsecond latencies, enabling immediate responses to events. With Multi-AZ deployments and APIs for application lifecycle management, you can deploy applications that are both highly available and durable. Furthermore, you can develop solutions that efficiently transform and route data to services like Amazon Simple Storage Service (Amazon S3) and Amazon OpenSearch Service, among others, enhancing your application's functionality and reach. This service simplifies the complexities of stream processing, allowing developers to focus on building innovative solutions.
  • 27
    Datavolo Reviews

    Datavolo

    Datavolo

    $36,000 per year
    Gather all your unstructured data to meet your LLM requirements effectively. Datavolo transforms single-use, point-to-point coding into rapid, adaptable, reusable pipelines, allowing you to concentrate on what truly matters—producing exceptional results. As a dataflow infrastructure, Datavolo provides you with a significant competitive advantage. Enjoy swift, unrestricted access to all your data, including the unstructured files essential for LLMs, thereby enhancing your generative AI capabilities. Experience pipelines that expand alongside you, set up in minutes instead of days, without the need for custom coding. You can easily configure sources and destinations at any time, while trust in your data is ensured, as lineage is incorporated into each pipeline. Move beyond single-use pipelines and costly configurations. Leverage your unstructured data to drive AI innovation with Datavolo, which is supported by Apache NiFi and specifically designed for handling unstructured data. With a lifetime of experience, our founders are dedicated to helping organizations maximize their data's potential. This commitment not only empowers businesses but also fosters a culture of data-driven decision-making.
  • 28
    Precisely Connect Reviews
    Effortlessly merge information from older systems into modern cloud and data platforms using a single solution. Connect empowers you to manage your data transition from mainframe to cloud environments. It facilitates data integration through both batch processing and real-time ingestion, enabling sophisticated analytics, extensive machine learning applications, and smooth data migration processes. Drawing on years of experience, Connect harnesses Precisely's leadership in mainframe sorting and IBM i data security to excel in the complex realm of data access and integration. The solution guarantees access to all essential enterprise data for crucial business initiatives by providing comprehensive support for a variety of data sources and targets tailored to meet all your ELT and CDC requirements. This ensures that organizations can adapt and evolve their data strategies in a rapidly changing digital landscape.
  • 29
    Apache Flume Reviews

    Apache Flume

    Apache Software Foundation

    Flume is a dependable and distributed service designed to efficiently gather, aggregate, and transport significant volumes of log data. Its architecture is straightforward and adaptable, centered on streaming data flows, which enhances its usability. The system is built to withstand faults and includes various mechanisms for recovery and adjustable reliability features. Additionally, it employs a simple yet extensible data model that supports online analytic applications effectively. The Apache Flume team is excited to announce the launch of Flume version 1.8.0, which continues to enhance its capabilities. This version further solidifies Flume's role as a reliable tool for managing large-scale streaming event data efficiently.
  • 30
    Adoki Reviews
    Adoki optimizes the movement of data across various platforms and systems, including data warehouses, databases, cloud services, Hadoop environments, and streaming applications, catering to both one-time and scheduled transfers. It intelligently adjusts to the demands of your IT infrastructure, ensuring that transfer or replication tasks occur during the most efficient times. By providing centralized oversight and management of data transfers, Adoki empowers organizations to manage their data operations with a leaner and more effective team, ultimately enhancing productivity and reducing overhead.
  • 31
    WhereScape Reviews
    WhereScape is a tool that helps IT organizations of any size to use automation to build, deploy, manage, and maintain data infrastructure faster. WhereScape automation is trusted by more than 700 customers around the world to eliminate repetitive, time-consuming tasks such as hand-coding and other tedious aspects of data infrastructure projects. This allows data warehouses, vaults and lakes to be delivered in days or weeks, rather than months or years.
  • 32
    Sesame Software Reviews
    When you have the expertise of an enterprise partner combined with a scalable, easy-to-use data management suite, you can take back control of your data, access it from anywhere, ensure security and compliance, and unlock its power to grow your business. Why Use Sesame Software? Relational Junction builds, populates, and incrementally refreshes your data automatically. Enhance Data Quality - Convert data from multiple sources into a consistent format – leading to more accurate data, which provides the basis for solid decisions. Gain Insights - Automate the update of information into a central location, you can use your in-house BI tools to build useful reports to avoid costly mistakes. Fixed Price - Avoid high consumption costs with yearly fixed prices and multi-year discounts no matter your data volume.
  • 33
    Flatfile Reviews
    Flatfile is an advanced data exchange platform that simplifies the process of importing, cleaning, transforming, and managing data for businesses. It provides a robust suite of APIs, allowing seamless integration into existing systems for efficient file-based data workflows. With an intuitive interface, the platform supports easy data management through features like search, sorting, and automated transformations. Built with strict compliance to SOC 2, HIPAA, and GDPR standards, Flatfile ensures data security and privacy while leveraging a scalable cloud infrastructure. By reducing manual effort and improving data quality, Flatfile accelerates data onboarding and supports businesses in achieving better operational efficiency.
  • 34
    SelectDB Reviews

    SelectDB

    SelectDB

    $0.22 per hour
    SelectDB is an innovative data warehouse built on Apache Doris, designed for swift query analysis on extensive real-time datasets. Transitioning from Clickhouse to Apache Doris facilitates the separation of the data lake and promotes an upgrade to a more efficient lake warehouse structure. This high-speed OLAP system handles nearly a billion query requests daily, catering to various data service needs across multiple scenarios. To address issues such as storage redundancy, resource contention, and the complexities of data governance and querying, the original lake warehouse architecture was restructured with Apache Doris. By leveraging Doris's capabilities for materialized view rewriting and automated services, it achieves both high-performance data querying and adaptable data governance strategies. The system allows for real-time data writing within seconds and enables the synchronization of streaming data from databases. With a storage engine that supports immediate updates and enhancements, it also facilitates real-time pre-polymerization of data for improved processing efficiency. This integration marks a significant advancement in the management and utilization of large-scale real-time data.
  • 35
    Jitterbit Reviews
    Connect SaaS, cloud, and on-premises applications easily. Instantly integrate intelligence into any business process. Rapidly create new APIs using any existing enterprise data or application. Combining them with external APIs can lead to innovative new solutions. Imagine being able to connect your SaaS, cloud and on-premises applications in days instead of months. Imagine how powerful it would be to reuse trusted apps and extend them easily via APIs in order to create new solutions. Consider if all this could be combined with artificial intelligence. You would be able to accelerate innovation, provide richer customer experiences, and take advantage of new business opportunities. Learn how Jitterbit Harmony combines APIs, integration, and artificial intelligence into a seamless API integration platform.
  • 36
    IBM Event Streams Reviews
    IBM Event Streams is a comprehensive event streaming service based on Apache Kafka, aimed at assisting businesses in managing and reacting to real-time data flows. It offers features such as machine learning integration, high availability, and secure deployment in the cloud, empowering organizations to develop smart applications that respond to events in real time. The platform is designed to accommodate multi-cloud infrastructures, disaster recovery options, and geo-replication, making it particularly suitable for critical operational tasks. By facilitating the construction and scaling of real-time, event-driven solutions, IBM Event Streams ensures that data is processed with speed and efficiency, ultimately enhancing business agility and responsiveness. As a result, organizations can harness the power of real-time data to drive innovation and improve decision-making processes.
  • 37
    Google Cloud Datastream Reviews
    A user-friendly, serverless service for change data capture and replication that provides access to streaming data from a variety of databases including MySQL, PostgreSQL, AlloyDB, SQL Server, and Oracle. This solution enables near real-time analytics in BigQuery, allowing for quick insights and decision-making. With a straightforward setup that includes built-in secure connectivity, organizations can achieve faster time-to-value. The platform is designed to scale automatically, eliminating the need for resource provisioning or management. Utilizing a log-based mechanism, it minimizes the load and potential disruptions on source databases, ensuring smooth operation. This service allows for reliable data synchronization across diverse databases, storage systems, and applications, while keeping latency low and reducing any negative impact on source performance. Organizations can quickly activate the service, enjoying the benefits of a scalable solution with no infrastructure overhead. Additionally, it facilitates seamless data integration across the organization, leveraging the power of Google Cloud services such as BigQuery, Spanner, Dataflow, and Data Fusion, thus enhancing overall operational efficiency and data accessibility. This comprehensive approach not only streamlines data processes but also empowers teams to make informed decisions based on timely data insights.
  • 38
    Memgraph Reviews
    Memgraph offers a light and powerful graph platform comprising the Memgraph Graph Database, MAGE Library, and Memgraph Lab Visualization. Memgraph is a dynamic, lightweight graph database optimized for analyzing data, relationships, and dependencies quickly and efficiently. It comes with a rich suite of pre-built deep path traversal algorithms and a library of traditional, dynamic, and ML algorithms tailored for advanced graph analysis, making Memgraph an excellent choice in critical decision-making scenarios such as risk assessment (fraud detection, cybersecurity threat analysis, and criminal risk assessment), 360-degree data and network exploration (Identity and Access Management (IAM), Master Data Management (MDM), Bill of Materials (BOM)), and logistics and network optimization. Memgraph's vibrant open-source community brings together over 150,000 developers in more than 100 countries to exchange ideas and optimize the next generation of in-memory data-driven applications across GenAI/ LLMs and real-time analytics performed with streaming data.
  • 39
    Spark Streaming Reviews

    Spark Streaming

    Apache Software Foundation

    Spark Streaming extends the capabilities of Apache Spark by integrating its language-based API for stream processing, allowing you to create streaming applications in the same manner as batch applications. This powerful tool is compatible with Java, Scala, and Python. One of its key features is the automatic recovery of lost work and operator state, such as sliding windows, without requiring additional code from the user. By leveraging the Spark framework, Spark Streaming enables the reuse of the same code for batch processes, facilitates the joining of streams with historical data, and supports ad-hoc queries on the stream's state. This makes it possible to develop robust interactive applications rather than merely focusing on analytics. Spark Streaming is an integral component of Apache Spark, benefiting from regular testing and updates with each new release of Spark. Users can deploy Spark Streaming in various environments, including Spark's standalone cluster mode and other compatible cluster resource managers, and it even offers a local mode for development purposes. For production environments, Spark Streaming ensures high availability by utilizing ZooKeeper and HDFS, providing a reliable framework for real-time data processing. This combination of features makes Spark Streaming an essential tool for developers looking to harness the power of real-time analytics efficiently.
  • 40
    Baidu AI Cloud Stream Computing Reviews
    Baidu Stream Computing (BSC) offers the ability to process real-time streaming data with minimal latency, impressive throughput, and high precision. It seamlessly integrates with Spark SQL, allowing for complex business logic to be executed via SQL statements, which enhances usability. Users benefit from comprehensive lifecycle management of their streaming computing tasks. Additionally, BSC deeply integrates with various Baidu AI Cloud storage solutions, such as Baidu Kafka, RDS, BOS, IOT Hub, Baidu ElasticSearch, TSDB, and SCS, serving as both upstream and downstream components in the stream computing ecosystem. Moreover, it provides robust job monitoring capabilities, enabling users to track performance indicators and establish alarm rules to ensure job security, thereby enhancing the overall reliability of the system. This level of integration and monitoring makes BSC a powerful tool for businesses looking to leverage real-time data processing effectively.
  • 41
    Hitachi Streaming Data Platform Reviews
    The Hitachi Streaming Data Platform (SDP) is engineered for real-time processing of extensive time-series data as it is produced. Utilizing in-memory and incremental computation techniques, SDP allows for rapid analysis that circumvents the typical delays experienced with conventional stored data processing methods. Users have the capability to outline summary analysis scenarios through Continuous Query Language (CQL), which resembles SQL, thus enabling adaptable and programmable data examination without requiring bespoke applications. The platform's architecture includes various components such as development servers, data-transfer servers, data-analysis servers, and dashboard servers, which together create a scalable and efficient data processing ecosystem. Additionally, SDP’s modular framework accommodates multiple data input and output formats, including text files and HTTP packets, and seamlessly integrates with visualization tools like RTView for real-time performance monitoring. This comprehensive design ensures that users can effectively manage and analyze data streams as they occur.
  • 42
    VMware HCX Reviews
    Effortlessly integrate your on-premises infrastructure with cloud solutions. VMware HCX facilitates the smooth transition of applications, workload redistribution, and ensures business continuity across various data centers and cloud environments. It enables the large-scale transfer of workloads between any VMware platform, allowing for migrations from vSphere 5.0+ to the latest vSphere versions in either cloud settings or modern data centers. Additionally, it supports conversions from KVM and Hyper-V to the latest vSphere versions. The platform is compatible with VMware Cloud Foundation, VMware Cloud on AWS, Azure VMware Services, and additional offerings. Users benefit from a variety of migration strategies tailored to their specific workload requirements. With the capability for live large-scale HCX vMotion migration of thousands of virtual machines, it promises zero downtime, significantly minimizing business interruptions. The solution includes a secure proxy for both vMotion and replication traffic, along with a migration planning and visibility dashboard that provides valuable insights. Automated migration-aware routing via NSX ensures seamless network connectivity, while WAN-optimized links facilitate migrations over the Internet or WAN. Featuring high-throughput Layer 2 extension and advanced traffic engineering, VMware HCX significantly enhances application migration efficiency and speed. This robust framework ultimately empowers organizations to make cloud transitions with confidence and ease.
  • 43
    DataOps DataFlow Reviews
    Apache Spark provides a holistic component-based platform to automate Data Reconciliation tests for modern Data Lake and Cloud Data Migration Projects. DataOps DataFlow provides a modern web-based solution to automate the testing of ETL projects, Data Warehouses, and Data Migrations. Use Dataflow to load data from a variety of data sources, compare the data, and load differences into S3 or a Database. Create and run dataflow quickly and easily. A top-of-the-class testing tool for Big Data Testing DataOps DataFlow integrates with all modern and advanced sources of data, including RDBMS and NoSQL databases, Cloud and file-based.
  • 44
    WarpStream Reviews

    WarpStream

    WarpStream

    $2,987 per month
    WarpStream serves as a data streaming platform that is fully compatible with Apache Kafka, leveraging object storage to eliminate inter-AZ networking expenses and disk management, while offering infinite scalability within your VPC. The deployment of WarpStream occurs through a stateless, auto-scaling agent binary, which operates without the need for local disk management. This innovative approach allows agents to stream data directly to and from object storage, bypassing local disk buffering and avoiding any data tiering challenges. Users can instantly create new “virtual clusters” through our control plane, accommodating various environments, teams, or projects without the hassle of dedicated infrastructure. With its seamless protocol compatibility with Apache Kafka, WarpStream allows you to continue using your preferred tools and software without any need for application rewrites or proprietary SDKs. By simply updating the URL in your Kafka client library, you can begin streaming immediately, ensuring that you never have to compromise between reliability and cost-effectiveness again. Additionally, this flexibility fosters an environment where innovation can thrive without the constraints of traditional infrastructure.
  • 45
    Astra Streaming Reviews
    Engaging applications captivate users while motivating developers to innovate. To meet the growing demands of the digital landscape, consider utilizing the DataStax Astra Streaming service platform. This cloud-native platform for messaging and event streaming is built on the robust foundation of Apache Pulsar. With Astra Streaming, developers can create streaming applications that leverage a multi-cloud, elastically scalable architecture. Powered by the advanced capabilities of Apache Pulsar, this platform offers a comprehensive solution that encompasses streaming, queuing, pub/sub, and stream processing. Astra Streaming serves as an ideal partner for Astra DB, enabling current users to construct real-time data pipelines seamlessly connected to their Astra DB instances. Additionally, the platform's flexibility allows for deployment across major public cloud providers, including AWS, GCP, and Azure, thereby preventing vendor lock-in. Ultimately, Astra Streaming empowers developers to harness the full potential of their data in real-time environments.