Azore CFD
Azore is software for computational fluid dynamics. It analyzes fluid flow and heat transfers. CFD allows engineers and scientists to analyze a wide range of fluid mechanics problems, thermal and chemical problems numerically using a computer. Azore can simulate a wide range of fluid dynamics situations, including air, liquids, gases, and particulate-laden flow. Azore is commonly used to model the flow of liquids through a piping or evaluate water velocity profiles around submerged items. Azore can also analyze the flow of gases or air, such as simulating ambient air velocity profiles as they pass around buildings, or investigating the flow, heat transfer, and mechanical equipment inside a room. Azore CFD is able to simulate virtually any incompressible fluid flow model. This includes problems involving conjugate heat transfer, species transport, and steady-state or transient fluid flows.
Learn more
Dragonfly
Dragonfly serves as a seamless substitute for Redis, offering enhanced performance while reducing costs. It is specifically engineered to harness the capabilities of contemporary cloud infrastructure, catering to the data requirements of today’s applications, thereby liberating developers from the constraints posed by conventional in-memory data solutions. Legacy software cannot fully exploit the advantages of modern cloud technology. With its optimization for cloud environments, Dragonfly achieves an impressive 25 times more throughput and reduces snapshotting latency by 12 times compared to older in-memory data solutions like Redis, making it easier to provide the immediate responses that users demand. The traditional single-threaded architecture of Redis leads to high expenses when scaling workloads. In contrast, Dragonfly is significantly more efficient in both computation and memory usage, potentially reducing infrastructure expenses by up to 80%. Initially, Dragonfly scales vertically, only transitioning to clustering when absolutely necessary at a very high scale, which simplifies the operational framework and enhances system reliability. Consequently, developers can focus more on innovation rather than infrastructure management.
Learn more
IBM Cloud SQL Query
Experience serverless and interactive data querying with IBM Cloud Object Storage, enabling you to analyze your data directly at its source without the need for ETL processes, databases, or infrastructure management. IBM Cloud SQL Query leverages Apache Spark, a high-performance, open-source data processing engine designed for quick and flexible analysis, allowing SQL queries without requiring ETL or schema definitions. You can easily perform data analysis on your IBM Cloud Object Storage via our intuitive query editor and REST API. With a pay-per-query pricing model, you only incur costs for the data that is scanned, providing a cost-effective solution that allows for unlimited queries. To enhance both savings and performance, consider compressing or partitioning your data. Furthermore, IBM Cloud SQL Query ensures high availability by executing queries across compute resources located in various facilities. Supporting multiple data formats, including CSV, JSON, and Parquet, it also accommodates standard ANSI SQL for your querying needs, making it a versatile tool for data analysis. This capability empowers organizations to make data-driven decisions more efficiently than ever before.
Learn more
Tenzir
Tenzir is a specialized data pipeline engine tailored for security teams, streamlining the processes of collecting, transforming, enriching, and routing security data throughout its entire lifecycle. It allows users to efficiently aggregate information from multiple sources, convert unstructured data into structured formats, and adjust it as necessary. By optimizing data volume and lowering costs, Tenzir also supports alignment with standardized schemas such as OCSF, ASIM, and ECS. Additionally, it guarantees compliance through features like data anonymization and enhances data by incorporating context from threats, assets, and vulnerabilities. With capabilities for real-time detection, it stores data in an efficient Parquet format within object storage systems. Users are empowered to quickly search for and retrieve essential data, as well as to reactivate dormant data into operational status. The design of Tenzir emphasizes flexibility, enabling deployment as code and seamless integration into pre-existing workflows, ultimately seeking to cut SIEM expenses while providing comprehensive control over data management. This approach not only enhances the effectiveness of security operations but also fosters a more streamlined workflow for teams dealing with complex security data.
Learn more