What Integrates with Anyscale?
Find out what Anyscale integrations exist in 2025. Learn what software and services currently integrate with Anyscale, and sort them by reviews, cost, features, and more. Below is a list of products that Anyscale currently integrates with:
-
1
Google Cloud Platform
Google
Free ($300 in free credits) 60,421 RatingsGoogle Cloud is an online service that lets you create everything from simple websites to complex apps for businesses of any size. Customers who are new to the system will receive $300 in credits for testing, deploying, and running workloads. Customers can use up to 25+ products free of charge. Use Google's core data analytics and machine learning. All enterprises can use it. It is secure and fully featured. Use big data to build better products and find answers faster. You can grow from prototypes to production and even to planet-scale without worrying about reliability, capacity or performance. Virtual machines with proven performance/price advantages, to a fully-managed app development platform. High performance, scalable, resilient object storage and databases. Google's private fibre network offers the latest software-defined networking solutions. Fully managed data warehousing and data exploration, Hadoop/Spark and messaging. -
2
AWS is the leading provider of cloud computing, delivering over 200 fully featured services to organizations worldwide. Its offerings cover everything from infrastructure—such as compute, storage, and networking—to advanced technologies like artificial intelligence, machine learning, and agentic AI. Businesses use AWS to modernize legacy systems, run high-performance workloads, and build scalable, secure applications. Core services like Amazon EC2, Amazon S3, and Amazon DynamoDB provide foundational capabilities, while advanced solutions like SageMaker and AWS Transform enable AI-driven transformation. The platform is supported by a global infrastructure that includes 38 regions, 120 availability zones, and 400+ edge locations, ensuring low latency and high reliability. AWS integrates with leading enterprise tools, developer SDKs, and partner ecosystems, giving teams the flexibility to adopt cloud at their own pace. Its training and certification programs help individuals and companies grow cloud expertise with industry-recognized credentials. With its unmatched breadth, depth, and proven track record, AWS empowers organizations to innovate and compete in the digital-first economy.
-
3
Kubernetes
Kubernetes
Free 1 RatingKubernetes (K8s) is a powerful open-source platform designed to automate the deployment, scaling, and management of applications that are containerized. By organizing containers into manageable groups, it simplifies the processes of application management and discovery. Drawing from over 15 years of experience in handling production workloads at Google, Kubernetes also incorporates the best practices and innovative ideas from the wider community. Built on the same foundational principles that enable Google to efficiently manage billions of containers weekly, it allows for scaling without necessitating an increase in operational personnel. Whether you are developing locally or operating a large-scale enterprise, Kubernetes adapts to your needs, providing reliable and seamless application delivery regardless of complexity. Moreover, being open-source, Kubernetes offers the flexibility to leverage on-premises, hybrid, or public cloud environments, facilitating easy migration of workloads to the most suitable infrastructure. This adaptability not only enhances operational efficiency but also empowers organizations to respond swiftly to changing demands in their environments. -
4
Microsoft Azure
Microsoft
21 RatingsMicrosoft Azure serves as a versatile cloud computing platform that facilitates swift and secure development, testing, and management of applications. With Azure, you can innovate purposefully, transforming your concepts into actionable solutions through access to over 100 services that enable you to build, deploy, and manage applications in various environments—be it in the cloud, on-premises, or at the edge—utilizing your preferred tools and frameworks. The continuous advancements from Microsoft empower your current development needs while also aligning with your future product aspirations. Committed to open-source principles and accommodating all programming languages and frameworks, Azure allows you the freedom to build in your desired manner and deploy wherever it suits you best. Whether you're operating on-premises, in the cloud, or at the edge, Azure is ready to adapt to your current setup. Additionally, it offers services tailored for hybrid cloud environments, enabling seamless integration and management. Security is a foundational aspect, reinforced by a team of experts and proactive compliance measures that are trusted by enterprises, governments, and startups alike. Ultimately, Azure represents a reliable cloud solution, backed by impressive performance metrics that validate its trustworthiness. This platform not only meets your needs today but also equips you for the evolving challenges of tomorrow. -
5
Ray
Anyscale
FreeYou can develop on your laptop, then scale the same Python code elastically across hundreds or GPUs on any cloud. Ray converts existing Python concepts into the distributed setting, so any serial application can be easily parallelized with little code changes. With a strong ecosystem distributed libraries, scale compute-heavy machine learning workloads such as model serving, deep learning, and hyperparameter tuning. Scale existing workloads (e.g. Pytorch on Ray is easy to scale by using integrations. Ray Tune and Ray Serve native Ray libraries make it easier to scale the most complex machine learning workloads like hyperparameter tuning, deep learning models training, reinforcement learning, and training deep learning models. In just 10 lines of code, you can get started with distributed hyperparameter tune. Creating distributed apps is hard. Ray is an expert in distributed execution. -
6
Unify AI
Unify AI
$1 per creditUnlock the potential of selecting the ideal LLM tailored to your specific requirements while enhancing quality, speed, and cost-effectiveness. With a single API key, you can seamlessly access every LLM from various providers through a standardized interface. You have the flexibility to set your own parameters for cost, latency, and output speed, along with the ability to establish a personalized quality metric. Customize your router to align with your individual needs, allowing for systematic query distribution to the quickest provider based on the latest benchmark data, which is refreshed every 10 minutes to ensure accuracy. Begin your journey with Unify by following our comprehensive walkthrough that introduces you to the functionalities currently at your disposal as well as our future plans. By simply creating a Unify account, you can effortlessly connect to all models from our supported providers using one API key. Our router intelligently balances output quality, speed, and cost according to your preferences, while employing a neural scoring function to anticipate the effectiveness of each model in addressing your specific prompts. This meticulous approach ensures that you receive the best possible outcomes tailored to your unique needs and expectations. -
7
MindMac
MindMac
$29 one-time paymentMindMac is an innovative macOS application aimed at boosting productivity by providing seamless integration with ChatGPT and various AI models. It supports a range of AI providers such as OpenAI, Azure OpenAI, Google AI with Gemini, Google Cloud Vertex AI with Gemini, Anthropic Claude, OpenRouter, Mistral AI, Cohere, Perplexity, OctoAI, and local LLMs through LMStudio, LocalAI, GPT4All, Ollama, and llama.cpp. The application is equipped with over 150 pre-designed prompt templates to enhance user engagement and allows significant customization of OpenAI settings, visual themes, context modes, and keyboard shortcuts. One of its standout features is a robust inline mode that empowers users to generate content or pose inquiries directly within any application, eliminating the need to switch between windows. MindMac prioritizes user privacy by securely storing API keys in the Mac's Keychain and transmitting data straight to the AI provider, bypassing intermediary servers. Users can access basic features of the app for free, with no account setup required. Additionally, the user-friendly interface ensures that even those unfamiliar with AI tools can navigate it with ease. -
8
LiteLLM
LiteLLM
FreeLiteLLM serves as a comprehensive platform that simplifies engagement with more than 100 Large Language Models (LLMs) via a single, cohesive interface. It includes both a Proxy Server (LLM Gateway) and a Python SDK, which allow developers to effectively incorporate a variety of LLMs into their applications without hassle. The Proxy Server provides a centralized approach to management, enabling load balancing, monitoring costs across different projects, and ensuring that input/output formats align with OpenAI standards. Supporting a wide range of providers, this system enhances operational oversight by creating distinct call IDs for each request, which is essential for accurate tracking and logging within various systems. Additionally, developers can utilize pre-configured callbacks to log information with different tools, further enhancing functionality. For enterprise clients, LiteLLM presents a suite of sophisticated features, including Single Sign-On (SSO), comprehensive user management, and dedicated support channels such as Discord and Slack, ensuring that businesses have the resources they need to thrive. This holistic approach not only improves efficiency but also fosters a collaborative environment where innovation can flourish. -
9
Pinecone Rerank v0
Pinecone
$25 per monthPinecone Rerank V0 is a cross-encoder model specifically designed to enhance precision in reranking tasks, thereby improving enterprise search and retrieval-augmented generation (RAG) systems. This model processes both queries and documents simultaneously, enabling it to assess fine-grained relevance and assign a relevance score ranging from 0 to 1 for each query-document pair. With a maximum context length of 512 tokens, it ensures that the quality of ranking is maintained. In evaluations based on the BEIR benchmark, Pinecone Rerank V0 stood out by achieving the highest average NDCG@10, surpassing other competing models in 6 out of 12 datasets. Notably, it achieved an impressive 60% increase in performance on the Fever dataset when compared to Google Semantic Ranker, along with over 40% improvement on the Climate-Fever dataset against alternatives like cohere-v3-multilingual and voyageai-rerank-2. Accessible via Pinecone Inference, this model is currently available to all users in a public preview, allowing for broader experimentation and feedback. Its design reflects an ongoing commitment to innovation in search technology, making it a valuable tool for organizations seeking to enhance their information retrieval capabilities. -
10
Llama 2
Meta
FreeIntroducing the next iteration of our open-source large language model, this version features model weights along with initial code for the pretrained and fine-tuned Llama language models, which span from 7 billion to 70 billion parameters. The Llama 2 pretrained models have been developed using an impressive 2 trillion tokens and offer double the context length compared to their predecessor, Llama 1. Furthermore, the fine-tuned models have been enhanced through the analysis of over 1 million human annotations. Llama 2 demonstrates superior performance against various other open-source language models across multiple external benchmarks, excelling in areas such as reasoning, coding capabilities, proficiency, and knowledge assessments. For its training, Llama 2 utilized publicly accessible online data sources, while the fine-tuned variant, Llama-2-chat, incorporates publicly available instruction datasets along with the aforementioned extensive human annotations. Our initiative enjoys strong support from a diverse array of global stakeholders who are enthusiastic about our open approach to AI, including companies that have provided valuable early feedback and are eager to collaborate using Llama 2. The excitement surrounding Llama 2 signifies a pivotal shift in how AI can be developed and utilized collectively. -
11
Nurix
Nurix
Nurix AI, located in Bengaluru, focuses on creating customized AI agents that aim to streamline and improve enterprise workflows across a range of industries, such as sales and customer support. Their platform is designed to integrate effortlessly with current enterprise systems, allowing AI agents to perform sophisticated tasks independently, deliver immediate responses, and make smart decisions without ongoing human intervention. One of the most remarkable aspects of their offering is a unique voice-to-voice model, which facilitates fast and natural conversations in various languages, thus enhancing customer engagement. Furthermore, Nurix AI provides specialized AI services for startups, delivering comprehensive solutions to develop and expand AI products while minimizing the need for large internal teams. Their wide-ranging expertise includes large language models, cloud integration, inference, and model training, guaranteeing that clients receive dependable and enterprise-ready AI solutions tailored to their specific needs. By committing to innovation and quality, Nurix AI positions itself as a key player in the AI landscape, supporting businesses in leveraging technology for greater efficiency and success. -
12
RouteLLM
LMSYS
Created by LM-SYS, RouteLLM is a publicly available toolkit that enables users to direct tasks among various large language models to enhance resource management and efficiency. It features strategy-driven routing, which assists developers in optimizing speed, precision, and expenses by dynamically choosing the most suitable model for each specific input. This innovative approach not only streamlines workflows but also enhances the overall performance of language model applications. -
13
AWS Inferentia
Amazon
AWS Inferentia accelerators, engineered by AWS, aim to provide exceptional performance while minimizing costs for deep learning (DL) inference tasks. The initial generation of AWS Inferentia accelerators supports Amazon Elastic Compute Cloud (Amazon EC2) Inf1 instances, boasting up to 2.3 times greater throughput and a 70% reduction in cost per inference compared to similar GPU-based Amazon EC2 instances. Numerous companies, such as Airbnb, Snap, Sprinklr, Money Forward, and Amazon Alexa, have embraced Inf1 instances and experienced significant advantages in both performance and cost. Each first-generation Inferentia accelerator is equipped with 8 GB of DDR4 memory along with a substantial amount of on-chip memory. The subsequent Inferentia2 model enhances capabilities by providing 32 GB of HBM2e memory per accelerator, quadrupling the total memory and decoupling the memory bandwidth, which is ten times greater than its predecessor. This evolution in technology not only optimizes the processing power but also significantly improves the efficiency of deep learning applications across various sectors. -
14
AWS Trainium
Amazon Web Services
AWS Trainium represents a next-generation machine learning accelerator specifically designed for the training of deep learning models with over 100 billion parameters. Each Amazon Elastic Compute Cloud (EC2) Trn1 instance can utilize as many as 16 AWS Trainium accelerators, providing an efficient and cost-effective solution for deep learning training in a cloud environment. As the demand for deep learning continues to rise, many development teams often find themselves constrained by limited budgets, which restricts the extent and frequency of necessary training to enhance their models and applications. The EC2 Trn1 instances equipped with Trainium address this issue by enabling faster training times while also offering up to 50% savings in training costs compared to similar Amazon EC2 instances. This innovation allows teams to maximize their resources and improve their machine learning capabilities without the financial burden typically associated with extensive training.
- Previous
- You're on page 1
- Next