Best Ansys SPEOS Alternatives in 2025
Find the top alternatives to Ansys SPEOS currently available. Compare ratings, reviews, pricing, and features of Ansys SPEOS alternatives in 2025. Slashdot lists the best Ansys SPEOS alternatives on the market that offer competing products that are similar to Ansys SPEOS. Sort through Ansys SPEOS alternatives below to make the best choice for your needs
-
1
Ansys Zemax OpticStudio
Ansys
Ansys Zemax OpticStudio is a sophisticated optical design software that is widely employed by educational institutions and businesses around the world for the creation and evaluation of optical systems, including those used for imaging, illumination, and lasers. The software features an intuitive interface that combines analysis, optimization, and tolerancing capabilities, making it easier to develop intricate optical systems applicable across various fields. It supports both sequential and non-sequential ray tracing, which allows for accurate representation of light behavior as it travels through different optical elements. Additionally, its advanced capabilities include structural and thermal analysis, empowering users to evaluate how environmental conditions might affect optical system performance. With a rich library of materials and optical components, OpticStudio significantly enhances the precision of its simulations. Furthermore, Ansys provides a complimentary version of OpticStudio for students, offering them the opportunity to gain practical experience in optical design and analysis, which is essential for their future endeavors in the optics industry. This initiative not only fosters a deeper understanding of optics but also encourages innovation and creativity among budding engineers. -
2
Ansys Motor-CAD
Ansys
Ansys Motor-CAD serves as a specialized tool for the design of electric machines, facilitating rapid multiphysics simulations throughout the entire torque-speed operating range. It allows design engineers to assess various motor configurations and concepts to create designs that maximize performance, efficiency, and compactness. With its four integrated modules—EMag, Therm, Lab, and Mech—Motor-CAD enables quick and iterative multiphysics calculations, significantly reducing the time from initial concept to finalized design. This efficiency in calculations and streamlined data input processes provides users with the opportunity to investigate a broader array of motor topologies and thoroughly evaluate the effects of advanced loss mechanisms in the early phases of electromechanical design. The latest release boasts enhanced capabilities for design optimization, multiphysics analysis, and system modeling tailored specifically for electric motors, ensuring that engineers have the tools they need for cutting-edge development. Ultimately, Motor-CAD's fast multiphysics simulation capabilities across the full torque-speed range empower engineers to innovate and refine electric motor designs with unprecedented efficiency. -
3
Ansys Lumerical Multiphysics serves as advanced software for simulating photonic components, allowing for the integrated design of these elements by effectively capturing the interplay of various multiphysics phenomena such as optical, thermal, electrical, and quantum well interactions, all within a cohesive design platform. Designed specifically for engineering workflows, this user-friendly product design software enhances the user experience, enabling quick design iterations and delivering in-depth insights into actual product performance. By merging real-time physics with precise high-fidelity simulations in an accessible interface, it promotes a shorter time-to-market for innovative designs. Among its key offerings are a finite element design environment, integrated multiphysics workflows, extensive material models, and robust automation and optimization capabilities. The suite of solvers and streamlined processes in Lumerical Multiphysics effectively reflects the complex interactions of physical effects, facilitating accurate modeling of both passive and active photonic components. This comprehensive approach not only enhances design efficiency but also leads to improved product reliability and performance evaluations.
-
4
LightTools
Synopsys
LightTools is an all-encompassing 3D software designed for optical engineering and design that facilitates virtual prototyping, simulation, optimization, and the creation of photorealistic renderings in illumination applications. By allowing users to swiftly develop illumination designs that function effectively on the first attempt, it minimizes the number of prototype iterations needed and speeds up the time it takes to bring products to market. Among its notable features are advanced solid modeling capabilities with complete optical precision, exceptional ray tracing performance that allows users to control accuracy and resolution, as well as the option to generate light sources from any geometric configuration, providing unparalleled flexibility. The software also includes specialized tools tailored for specific applications, enabling users to efficiently construct comprehensive models, along with an extensive library of sources and materials that encompasses LEDs and BSDF measurements. Furthermore, it boasts strong data exchange capabilities for mechanical CAD information and maintains an interactive, dynamic connection with SOLIDWORKS, enhancing user experience. Additionally, LightTools offers a variety of licensing options for its multiple modules, ensuring that users can select configurations that best suit their unique requirements. -
5
BeamWise
BeamWise
BeamWise comprises a suite of software applications and services tailored for the development of biophotonic and intricate optical systems. Built on the Design++ knowledge-based engineering platform, it effectively captures and utilizes internal engineering knowledge while facilitating the integration of existing systems into automated design and product configuration processes. By bridging the gap between optical and mechanical domains, BeamWise enhances CAD software like AutoCAD and SolidWorks with design guidelines and a comprehensive component library, ensuring consistent beam alignment as design modifications occur throughout the system. This automation solution tackles major issues in optical system development, such as expensive prototype revisions, labor-intensive design documentation, and unpredictable instrument performance, by automating the generation of 3D CAD models and comprehensive design documentation, which includes drawings and parts listings. Ultimately, BeamWise empowers engineers to innovate more efficiently and accurately in the complex realm of optical system design. -
6
COMSOL Multiphysics
Comsol Group
1 RatingUtilize COMSOL's multiphysics software to replicate real-world designs, devices, and processes effectively. This versatile simulation tool is grounded in sophisticated numerical techniques. It boasts comprehensive capabilities for both fully coupled multiphysics and single-physics modeling. Users can navigate a complete modeling workflow, starting from geometry creation all the way to postprocessing. The software provides intuitive tools for the development and deployment of simulation applications. COMSOL Multiphysics® ensures a consistent user interface and experience across various engineering applications and physical phenomena. Additionally, specialized functionality is available through add-on modules that cater to fields such as electromagnetics, structural mechanics, acoustics, fluid dynamics, thermal transfer, and chemical engineering. Users can select from a range of LiveLink™ products to seamlessly connect with CAD systems and other third-party software. Furthermore, applications can be deployed using COMSOL Compiler™ and COMSOL Server™, enabling the creation of physics-driven models and simulation applications within this robust software ecosystem. With such extensive capabilities, it empowers engineers to innovate and enhance their projects effectively. -
7
FRED
Photon Engineering
FRED is an all-encompassing software solution designed to model the behavior of light in optomechanical systems through ray tracing techniques. It accommodates both coherent and incoherent light paths and enables users to apply realistic surface characteristics to each system component. Among its notable features are the rapid and precise simulation of a variety of light sources, including lasers, arc lamps, LEDs, ideal emitters, bulbs, and custom ray sets defined by users. The software also includes sophisticated geometry handling, scattering capabilities, optimization tools, scripting options, and graphical utilities, allowing for meticulous control over ray tracing parameters during the simulations. Additionally, it offers extensive post-tracing analysis tools and reports, facilitates real-time visualization and modification of intricate optical and mechanical configurations, and boasts high extensibility through user-generated scripts. Ultimately, FRED serves as a fundamental resource for the effective propagation of light within optomechanical frameworks, making it invaluable for researchers and engineers in the field. -
8
CODE V Optical Design
Synopsys
CODE V, developed by Synopsys, is an advanced optical design software that empowers engineers to create, evaluate, enhance, and assist in the production of imaging optical systems. It includes sophisticated functionalities for the design of intricate optical elements, such as freeform surfaces, and integrates essential tools like global synthesis for overall optimization, glass expert for smart glass selection, and beam synthesis propagation for precise diffraction assessments. The software's extensive tolerancing features are instrumental in minimizing manufacturing expenses by forecasting and addressing potential fabrication and assembly discrepancies. Additionally, CODE V supports seamless integration with other Synopsys applications, like LightTools, to provide a holistic approach to optical and illumination system design. Furthermore, it boasts extensive graphical capabilities, encompassing images, data plots, shaded displays, and even 3D visualizations alongside diffraction-based image simulations, ensuring users can effectively visualize and analyze their designs. This comprehensive suite of tools makes CODE V an invaluable asset for optical engineers worldwide. -
9
Ansys Meshing
Ansys
The mesh significantly impacts the precision, convergence, and speed of a simulation. Ansys offers a suite of tools designed to create the most suitable mesh for delivering precise and efficient solutions. Their general-purpose, high-performance, automated, and intelligent meshing software is capable of generating the optimal mesh for accurate multiphysics solutions, ranging from straightforward automatic meshing to meticulously crafted mesh designs. The software incorporates smart defaults that simplify the meshing process, making it intuitive and effortless, while ensuring the necessary resolution to effectively capture solution gradients for reliable outcomes. Ansys’s meshing solutions cater to a wide variety of needs, from basic automated meshing techniques to advanced, custom meshing options. The available methods encompass a broad range of meshing techniques, including high-order and linear elements, as well as rapid tetrahedral and polyhedral meshes, alongside high-quality hexahedral and mosaic configurations. By leveraging Ansys's meshing capabilities, users can significantly minimize the time and resources required to achieve accurate simulation results, ultimately enhancing productivity and efficiency in their projects. Thus, the integration of Ansys meshing tools can transform the simulation process, leading to a more streamlined workflow and improved outcomes. -
10
3DOptix
3DOptix
$2,000 per year3DOptix is an innovative platform for optical design and simulation that operates in the cloud, allowing users to efficiently create, analyze, and enhance optical systems. By utilizing cloud technology and GPU acceleration, it provides users with fast analysis capabilities without requiring any local software installations. The platform hosts a vast library of readily available optical and optomechanical components, which aids in accurately producing digital twins of optical prototypes. Featuring an easy-to-use 3D graphical interface with drag-and-drop functionality and real-time visualization, it streamlines the design workflow significantly. With support for both sequential and non-sequential ray tracing, 3DOptix enables detailed modeling of intricate optical systems. Moreover, it includes real-time collaboration tools, allowing multiple users to concurrently contribute to the same project, making sharing effortless through cloud links. Accessible from any web browser, the platform alleviates the need for specific hardware or software, promoting widespread usability. This flexibility encourages creativity and innovation among its users, fostering a collaborative environment for optical design experimentation. -
11
Fidelity CFD
Cadence Design Systems
Enhance engineering processes with the only comprehensive and user-friendly CFD platform designed for multidisciplinary design and optimization. Computational fluid dynamics (CFD) plays a crucial role in multiphysics system analysis, allowing for the simulation of fluid behavior and thermodynamic characteristics through advanced numerical models. Engineers leverage the Cadence Fidelity CFD platform for various design tasks, including propulsion, aerodynamics, hydrodynamics, and combustion, to enhance product efficiency while minimizing the need for costly and time-intensive physical testing. This robust Fidelity CFD platform offers a seamless end-to-end solution tailored for applications across aerospace, automotive, turbomachinery, and marine sectors. With its efficient workflows, massively parallel architecture, and cutting-edge solver technology, the platform delivers remarkable performance and accuracy, significantly boosting engineering productivity in addressing contemporary design challenges. Ultimately, Fidelity stands out by not only simplifying complex processes but also enabling engineers to innovate rapidly and effectively. -
12
LucidShape
Synopsys
Easily and swiftly design reflector or lens geometries using LucidShape FunGeo, which utilizes innovative algorithms to automatically generate optical shapes tailored to specified illuminance and intensity patterns. This distinctive and practical method allows you to prioritize overall design goals instead of getting bogged down by the complexities of intricate optical elements. By utilizing GPUTrace, you can significantly speed up LucidShape illumination simulations, achieving remarkable enhancements in processing speed. As the pioneering optical simulation software harnessing the power of graphics processing units, LucidShape offers speed improvements that far exceed traditional multithreading methods. Additionally, LucidShape's visualization tool provides a platform to showcase luminance effects when various light sources interact within a model, allowing for a comprehensive depiction of the interplay between system geometry and illumination. This combination of powerful features makes LucidShape an invaluable asset for designers and engineers in the optical field. -
13
SOLIDWORKS Simulation
SolidWorks
Subjecting your designs to real-world scenarios can significantly enhance product quality while simultaneously minimizing the costs associated with prototyping and physical testing. The SOLIDWORKS® Simulation suite offers a user-friendly collection of structural analysis tools that employ Finite Element Analysis (FEA) to forecast how a product will behave in actual physical conditions by virtually evaluating CAD models. This comprehensive portfolio is equipped with capabilities for both linear and non-linear static and dynamic analyses. With SOLIDWORKS Simulation Professional, you can refine your designs by assessing mechanical resistance, durability, topology, natural frequencies, as well as examining heat transfer and potential buckling issues. Additionally, it facilitates sequential multi-physics simulations to enhance design accuracy. On the other hand, SOLIDWORKS Simulation Premium allows for an in-depth assessment of designs concerning nonlinear and dynamic responses, dynamic loading conditions, and composite materials. This advanced tier also features three specialized studies: Non-Linear Static, Non-Linear Dynamic, and Linear Dynamics, ensuring a thorough evaluation of your engineering projects. By leveraging these powerful tools, engineers can achieve greater design confidence and innovation. -
14
BeamXpertDESIGNER
BeamXpert
BeamXpertDESIGNER is an advanced laser simulation tool that allows for the instantaneous modeling of laser radiation as it travels through various optical systems. With its user-friendly interface that resembles CAD software, it ensures that users can obtain quick and accurate outcomes. Designed with accessibility in mind, individuals can become proficient in its use within just an hour of instruction, leading to dependable results. Its interactive design allows for the straightforward adjustment of optical elements via a drag-and-drop method, ensuring that any changes to the beam path are reflected in real-time. The software provides essential parameters, including beam diameter, waist position, and Rayleigh length, all in compliance with the ISO 11145 and 11146 standards. Featuring an extensive database of over 20,000 optical components from numerous manufacturers, BeamXpertDESIGNER facilitates the incorporation of widely accepted market components into user projects. Furthermore, it includes tools for the analysis and enhancement of optical systems, making it a versatile solution for professionals in the field. Overall, BeamXpertDESIGNER stands out as a powerful resource for anyone involved in laser optics. -
15
DC-AM DigitalClone for Additive Manufacturing
Sentient Science
Upon requestDigitalClone for Additive Manufacturing (DCAM) is a comprehensive suite of metal additive manufacturing simulation and modeling capabilities that allows for seamless design and analysis support. DC-AM uses a multiscale, multi-physics analysis approach to link the process - microstructure and fatigue relationship of additively produced parts to enable computational assessment for quality and performance. DC-AM encourages the adoption of AM in safety-critical sectors by providing unprecedented insight into build conditions and the characteristics and final parts. This allows for a reduction in time and cost, as well as allowing for a reduction in the time and costs required to qualify parts. -
16
FLOW-3D
Flow Science
Enhance product development and accelerate the launch process with FLOW-3D, an exceptionally precise CFD software adept at addressing transient, free-surface challenges. Accompanied by our cutting-edge postprocessor, FlowSight, FLOW-3D offers a comprehensive multiphysics suite. This versatile CFD simulation platform empowers engineers to explore the dynamic interactions of liquids and gases across a diverse array of industrial sectors and physical phenomena. With a strong emphasis on multi-phase and free surface applications, FLOW-3D caters to various industries, including microfluidics, biomedical technology, civil water infrastructure, aerospace, consumer goods, additive manufacturing, inkjet printing, laser welding, automotive, offshore enterprises, and energy sectors. As a remarkably effective multiphysics resource, FLOW-3D combines functionality, user-friendliness, and robust capabilities to support engineers in achieving their modeling goals, ultimately driving innovation and efficiency in their projects. By leveraging FLOW-3D, organizations can overcome complex challenges and ensure that their designs are optimized for success in competitive markets. -
17
SwiftComp
AnalySwift
SwiftComp is an innovative composite simulation software that combines multiscale and multiphysics capabilities to provide the precision of 3D finite element analysis (FEA) with the simplicity of basic engineering models. This groundbreaking tool simplifies the modeling process for engineers, allowing them to treat composites with the same ease as metals while maintaining accuracy and capturing intricate microstructural details. It offers cohesive modeling for structures that are one-dimensional (like beams), two-dimensional (such as plates or shells), and three-dimensional, effectively calculating the material properties required. Users can utilize SwiftComp independently for virtual composite testing or as an enhancement to existing structural analysis tools, thereby integrating high-fidelity composite modeling into their workflows. Additionally, SwiftComp excels in determining the optimal structural model for macroscopic analysis and includes capabilities for dehomogenization, which enables the calculation of pointwise stresses within the microstructure. It seamlessly connects with established software such as ABAQUS and ANSYS, further broadening its applicability in engineering projects. As a result, SwiftComp significantly enhances the efficiency and effectiveness of composite material modeling in various engineering applications. -
18
OpTaliX
Optenso
€1,600 one-time paymentOpTaliX is an all-encompassing software suite designed for the computer-aided design of optical systems, including thin film multilayer coatings and illumination setups. It boasts a robust array of features that allow users to visualize, design, optimize, analyze, tolerate, and document nearly any optical configuration. The program offers capabilities such as geometrical and diffraction analysis, optimization processes, thin film multilayer analysis and enhancement, non-sequential ray tracing, physical optics propagation, polarization studies, ghost imaging, tolerance assessments, extensive manufacturing support, customizable graphics, illumination solutions, macros, and much more. Users have successfully employed OpTaliX for the development of a wide range of optical devices, including photographic and video lenses, industrial optics like beam expanders and laser scanners, space optics, zoom optics, medical instrumentation, lighting solutions, fiber optic telecommunications, infrared optics, X-ray optics, telescopes, eyepieces, and various other applications. This versatility makes OpTaliX an invaluable tool in the field of optics design. -
19
RayViz
Lambda Research Corporation
RayViz is an add-in for SOLIDWORKS created by Lambda Research Corporation that allows users to integrate and save optical properties seamlessly within the SOLIDWORKS CAD interface. This feature enables users to assign optical traits from the TracePro property database, ensuring that these properties are embedded within the SOLIDWORKS model itself. Users have the capability to define light sources and execute ray tracing directly in SOLIDWORKS, which aids in visualizing light rays and their trajectories, thereby supporting tasks like verifying beam paths, spotting vignetting caused by mechanical elements, and detecting light leakage in light guides. Additionally, RayViz comes equipped with catalogs of LED sources and those featuring Gaussian and Lambertian beam profiles. A notable benefit of using RayViz is its functionality to save SOLIDWORKS models in the TracePro file format, which allows for thorough optical analysis within TracePro. Moreover, should any changes be made to the SOLIDWORKS model, users can easily synchronize these updates using the "update from RayViz" feature in TracePro, enhancing workflow efficiency. This integration ultimately streamlines the design process for optical engineers by combining powerful tools in a unified platform. -
20
TRANSWELD
TRANSVALOR
In industries where the integrity of welded structures is critical, TRANSWELD® provides a cutting-edge and comprehensive solution for predicting potential welding imperfections. This advanced simulation software employs multi-physical models to accurately reflect the actual behavior of metal in both liquid and mushy phases, enabling an in-depth analysis of material transformations. Furthermore, TRANSWELD® facilitates the examination of the microstructure in solid-state assemblies. With this tool, you can ensure that your welded components meet required standards without the need for physical prototypes. Our software is entirely predictive, allowing users to digitally observe welding processes under realistic conditions. For instance, it enables the visualization of the heat source movement during simulations of techniques such as laser welding or arc welding, enhancing understanding and efficiency in the welding process. Such capabilities not only streamline production but also significantly reduce the risk of defects in the final product. -
21
VSim
Tech-X
VSim is a sophisticated Multiphysics Simulation Software tailored for design engineers and research scientists who seek accurate solutions for complex challenges. Its exceptional integration of Finite-Difference Time-Domain (FDTD), Particle-in-Cell (PIC), and Charged Fluid (Finite Volume) methodologies ensures reliable outcomes across various applications, including plasma modeling. As a parallel software tool, VSim adeptly tackles large-scale problems, with simulations that execute rapidly thanks to algorithms optimized for high-performance computing environments. Renowned by researchers in over 30 countries and utilized by professionals across fields such as aerospace and semiconductor manufacturing, VSim guarantees results with verified accuracy that users can depend on. Developed by a dedicated group of computational scientists, Tech-X’s software has garnered thousands of citations in scientific literature, and VSim is prominently featured in many leading research institutions worldwide. Furthermore, its continued evolution reflects the commitment to meeting the ever-growing demands of modern scientific inquiry. -
22
Ansys Lumerical FDTD
Ansys
Ansys Lumerical FDTD stands as the premier choice for simulating nanophotonic devices, processes, and materials. Its integrated design environment features robust scripting capabilities, sophisticated post-processing options, and optimization routines. This meticulously refined application of the FDTD method ensures exceptional solver performance across a wide range of applications. With these tools at your disposal, you can concentrate on the creative aspects of your design while relying on the software to handle the technical complexities. The platform offers a variety of advantages that facilitate flexible and customizable modeling and simulation. By leveraging Ansys Lumerical FDTD, you can effectively model nanophotonic devices, processes, and materials, thus empowering your innovative pursuits. Ultimately, Lumerical FDTD exemplifies excellence in the field, delivering dependable, powerful, and scalable solver performance tailored to meet diverse application needs. -
23
ELEOptics
ELEOptics
Founded in 2019, ELEOptics is a forward-thinking company that focuses on the progression of optical engineering by offering innovative software solutions that enhance both the design and collaborative efforts of engineers. Their diverse range of products features Ember, a desktop application that supports dynamic first-order layouts and third-order design analyses; Spark, a cloud-based tool that simplifies teamwork through version control and tracking of project requirements; ARC, an integrated application with Onshape, which bridges the gap between optical and mechanical design teams to facilitate the development of opto-mechanical systems; and Aurora, an advanced optical physics library designed for large-scale simulations with an intuitive API that accelerates the process of iteration. In addition to their software offerings, ELEOptics is dedicated to nurturing a vibrant optical community, providing a platform for professionals to connect and share insights, ultimately fueling innovation within the industry. Their commitment to collaboration and advancement continues to set them apart as leaders in the optical engineering sector. -
24
VirtualLab Fusion
LightTrans
VirtualLab Fusion is a cutting-edge optical design software that streamlines fast physical optics modeling by linking different field solvers via a distinctive operator and channel approach. This integration allows for effective simulations that achieve a harmonious balance between precision and speed. The software comes equipped with an array of packages customized for particular optical design requirements, offering an assortment of tools and features to cater to various applications. With its user-friendly interface, VirtualLab Fusion makes the design process more accessible, enabling users to prioritize innovation and optimization in their projects. Additionally, the platform includes resources such as tips, tricks, training sessions, and webinars to further boost user expertise and proficiency in utilizing the software. This comprehensive support ensures that users can fully leverage the capabilities of the software for their optical design endeavors. -
25
Ansys Optics
Ansys
Understanding how light travels and influences both product efficacy and human experience is essential for assessing performance and ensuring comfort, perception, and safety. Ansys Optics stands out by effectively simulating the optical characteristics of a system, assessing the ultimate lighting effects, and forecasting the repercussions of variations in lighting and materials on appearance and perceived quality, all within realistic scenarios. With this advanced visualization tool, you can conceptualize your product prior to its creation, thereby enhancing the virtual experience for customers. Allow Ansys Optics and its optical simulation capabilities to guide you towards optimal solutions for any project style. The software adeptly addresses intricate optical challenges while enhancing visual aesthetic quality. By integrating design and engineering into a seamless workflow, you can significantly boost the final quality of your product, creating true-to-life visualizations that resonate with users. Additionally, you can develop and evaluate virtual prototypes of a cockpit HMI within an immersive, real-time setting, providing a comprehensive understanding of user interaction. This process not only improves design outcomes but also fosters innovation in product development. -
26
TracePro
Lambda Research Corporation
Integrating Monte Carlo ray tracing, analytical methods, CAD import/export capabilities, and optimization techniques, this system employs a comprehensive macro language to tackle various challenges in illumination design and optical analysis effectively. With TracePro’s intuitive 3D CAD interface, users can build models by either importing lens design or CAD files or by directly generating solid geometries. The software leverages a true solid modeling engine to deliver reliable and consistent models for various applications. Moreover, TracePro features a swift and precise ray tracing engine that accurately traces rays to all surfaces, including imported splines, ensuring that no intersections are overlooked and preventing the occurrence of “leaky” rays. One of the standout features of TracePro is its Analysis Mode, which provides a highly interactive environment for in-depth examination. In this mode, users can evaluate every surface and object both visually and quantitatively, enhancing the overall analytical experience. This blend of capabilities makes TracePro a powerful tool for professionals in the field. -
27
OSLO
Lambda Research Corporation
OSLO, which stands for Optics Software for Layout and Optimization, is a sophisticated optical design software created by Lambda Research Corporation. This program combines cutting-edge ray tracing capabilities with analytical and optimization techniques, all powered by a high-speed internal compiled language, which allows users to tackle a diverse range of optical design challenges. With an open architecture, OSLO offers substantial flexibility for designers to set and manage system parameters based on their unique needs. The software proficiently models a variety of optical elements, such as refractive, reflective, diffractive, gradient index, aspheric, and freeform optics. Its advanced ray tracing algorithms, complemented by robust analytical tools, serve as a reliable foundation for optimizing and assessing various optical systems, including lenses and telescopes. Additionally, OSLO has been utilized in the creation of a wide array of optical systems, ranging from space telescopes and camera lenses to more specialized applications like zoom lenses and microscopy. This versatility makes OSLO a valuable asset for professionals in the optical design field. -
28
OnScale Solve
OnScale
$4OnScale stands out as the pioneering platform for Cloud Engineering Simulation, merging advanced multiphysics solver technology with the boundless computational capabilities of cloud supercomputers. This innovative solution empowers engineers to execute a vast array of full 3D multiphysics simulations concurrently, enabling the creation of authentic Digital Prototypes that represent the complete operational behavior of intricate high-tech devices. With the aim of delivering an exceptional Cloud Engineering Simulation experience, OnScale Solve is designed to be intuitive, robust, and effective. It operates seamlessly on both public and private cloud supercomputers and features a user-friendly web interface, an API for smooth integration into existing design processes, customizable scripting options for tailored engineering simulations, and plugins that expand its modeling functionalities. Furthermore, OnScale Solve equips engineers with the capability to synthetically generate data crucial for training advanced AI/ML algorithms, thereby enhancing innovation in technology development. This comprehensive platform ensures that engineers have the tools they need to push the boundaries of simulation and design. -
29
Energy2D
The Concord Consortium
FreeEnergy2D is an interactive multiphysics simulation program grounded in computational physics, designed to model the three primary modes of heat transfer: conduction, convection, and radiation, while also integrating particle dynamics. This software operates efficiently on a wide range of computers, simplifying the process by removing the need for switches between preprocessors, solvers, and postprocessors that are usually necessary for computational fluid dynamics simulations. Users can create "computational experiments" to explore scientific hypotheses or address engineering challenges without the need for intricate mathematical formulations. Additionally, development is ongoing to introduce various energy transformation types and to enhance support for different fluid types. While Energy2D excels in accurately modeling conduction, its representations of convection and radiation are not entirely precise, which means results involving these elements should be regarded as qualitative. Over 40 scientific papers have utilized Energy2D as a valuable research instrument, showcasing its adoption in the academic community. As the program evolves, its capabilities are expected to expand further, potentially offering more comprehensive insights into complex physical interactions. -
30
NVIDIA Modulus
NVIDIA
NVIDIA Modulus is an advanced neural network framework that integrates the principles of physics, represented through governing partial differential equations (PDEs), with data to create accurate, parameterized surrogate models that operate with near-instantaneous latency. This framework is ideal for those venturing into AI-enhanced physics challenges or for those crafting digital twin models to navigate intricate non-linear, multi-physics systems, offering robust support throughout the process. It provides essential components for constructing physics-based machine learning surrogate models that effectively merge physics principles with data insights. Its versatility ensures applicability across various fields, including engineering simulations and life sciences, while accommodating both forward simulations and inverse/data assimilation tasks. Furthermore, NVIDIA Modulus enables parameterized representations of systems that can tackle multiple scenarios in real time, allowing users to train offline once and subsequently perform real-time inference repeatedly. As such, it empowers researchers and engineers to explore innovative solutions across a spectrum of complex problems with unprecedented efficiency. -
31
Ansys RedHawk-SC
Ansys
Ansys RedHawk-SC stands as the industry's premier solution for voltage drop and electromigration multiphysics sign-off in digital designs, recognized for its reliability. Its advanced analytics swiftly uncover vulnerabilities and facilitate what-if scenarios to enhance both power efficiency and performance. The cloud-based framework of RedHawk-SC ensures it can efficiently manage full-chip analyses with remarkable speed and capacity. The signoff precision is validated by all leading foundries across all finFET nodes, including those down to 3nm. Through its sophisticated power analytics, Ansys RedHawk-SC supports the creation of robust, low-power digital designs without sacrificing performance, offering designers extensive methods to identify and rectify dynamic voltage drop issues. The trusted multiphysics signoff analysis provided by Ansys RedHawk-SC significantly mitigates project and technology risks. Additionally, its algorithms have been rigorously validated by major foundries for all finFET processes and have demonstrated success in countless tapeouts, further solidifying its reputation in the industry. As technology continues to evolve, the capabilities of Ansys RedHawk-SC will adapt to meet future challenges in digital design. -
32
OptSim
Synopsys
Synopsys OptSim stands out as a highly acclaimed simulator for photonic integrated circuits (PICs) and fiber-optic systems, empowering engineers to effectively design and refine photonic circuits and associated systems. With its cutting-edge algorithms for both time and frequency domains, it provides a dedicated photonic environment that ensures precise simulation results. OptSim can operate independently, complete with its own graphical user interface, or be integrated within the OptoCompiler Photonic IC design platform for enhanced functionality. When combined with OptoCompiler, it allows for electro-optic co-simulation alongside Synopsys PrimeSim HSPICE and PrimeSim SPICE electrical circuit simulators, offering a seamless experience with the PrimeWave Design Environment that facilitates advanced simulations, analyses, and visualizations, including parametric scans and Monte Carlo methods. Additionally, the software is equipped with a comprehensive array of libraries containing photonic and electronic components, as well as various analysis tools, and is compatible with a wide range of foundry process design kits (PDKs), making it an invaluable resource for engineers in the field. Its versatility and depth of features make Synopsys OptSim a crucial tool for anyone involved in photonic design. -
33
OptoCompiler
Synopsys
Synopsys OptoCompiler stands out as the first comprehensive design platform in the industry that seamlessly integrates electronic and photonic design capabilities. This innovative solution merges advanced photonic technology with Synopsys' proven electronic design tools, allowing engineers to efficiently and accurately create and validate intricate designs for photonic integrated circuits. By offering a schematic-driven layout alongside sophisticated photonic layout synthesis within a single interface, OptoCompiler effectively connects photonic specialists with integrated circuit designers, thereby enhancing the accessibility, speed, and flexibility of photonic design processes. The platform's support for electronic-photonic co-design ensures scalable methodologies, while its robust features for hierarchical design facilitate collaboration among multiple designers, significantly reducing product development timelines. Additionally, OptoCompiler is equipped with specialized native photonic simulators that work in tandem with widely recognized electrical simulators, delivering precise simulation results that account for variations in statistical data. This combination of features makes OptoCompiler a pivotal tool for advancing the field of integrated photonic design. -
34
Ansys Totem
Ansys
Ansys Totem-SC stands out as the established and reliable leader in the realm of power noise and reliability validation for both analog and mixed-signal designs, utilizing a cloud-native elastic compute framework. Recognized as the benchmark solution for voltage drop and electromigration multiphysics sign-off at the transistor level, Ansys Totem-SC has proven its effectiveness across numerous tapeouts, leveraging a cloud-based infrastructure to provide the necessary speed and capacity for comprehensive full-chip assessments. Its accuracy in signoff has been validated by all major foundries, supporting advanced finFET technologies down to 3nm. This platform excels in power noise and reliability analysis specifically for analog mixed-signal intellectual property and fully custom designs. Moreover, it generates IP models that facilitate SOC-level power integrity signoff in conjunction with RedHawk-SC and develops compact chip models for power delivery networks applicable at both chip and system levels. The solution is not only industry-proven but also certified by foundries, making it a highly regarded choice for analog and mixed-signal electromigration and IR analysis. With Ansys Totem-SC, designers can confidently ensure the integrity and reliability of their power delivery systems throughout the design process. -
35
CAESIM
Adaptive Research
$1295/annual standard Adaptive Research is excited to unveil the CAESIM 2024 simulation platform, which is now available for immediate use, featuring enhanced computational fluid dynamics modeling along with multi-physics functionalities. This latest software version introduces innovative tools and features designed to streamline the modeling process, enabling CFD engineers to achieve rapid simulation results with greater efficiency. Additionally, the platform aims to enhance user experience through improved interfaces and capabilities. -
36
FEATool Multiphysics
Precise Simulation
1 RatingFEATool Multiphysics – "Physics Simulator Made Easy" – a fully integrated physics simulation, FEA and CFD toolbox. FEATool Multiphysics provides a fully integrated simulation platform that includes a unified user interface for several multi-physics solvers such as OpenFOAM and Computational fluid dynamics (CFD), including SU2 Code and FEniCS. This allows users to model coupled physics phenomena, such as those found in fluid flow and heat transfer, structural, electromagnetics acoustics and chemical engineering applications. FEATool multiphysics is a trusted tool for engineers and researchers in the energy, automotive and semi-conductor industries. -
37
samadii/em
Metariver Technology Co.,Ltd
samadii/em oftware that analyzes and calculates the electromagnetic field in 3d space using the Maxwell equation using vector FEM ad GPU computing. it provides electrostatics, magnetostatics as well and induction electronics, including the low-frequency and high-frequency ranges. samadii/em provides a multi-physics approach and high-performance electromagnetics simulation, with Samadii you can quickly address problems from semiconductors and displays to wireless communications, etc. -
38
LiveLink for MATLAB
Comsol Group
Effortlessly combine COMSOL Multiphysics® with MATLAB® to broaden your modeling capabilities through scripting within the MATLAB framework. The LiveLink™ for MATLAB® feature empowers you to access the comprehensive functionalities of MATLAB and its various toolboxes for tasks such as preprocessing, model adjustments, and postprocessing. Elevate your custom MATLAB scripts by integrating robust multiphysics simulations. You can base your geometric modeling on either probabilistic elements or image data. Furthermore, leverage multiphysics models alongside Monte Carlo simulations and genetic algorithms for enhanced analysis. Exporting COMSOL models in a state-space matrix format allows for their integration into control systems seamlessly. The COMSOL Desktop® interface facilitates the utilization of MATLAB® functions during your modeling processes. You can also manipulate your models via command line or scripts, enabling you to parameterize aspects such as geometry, physics, and the solution approach, thus boosting the efficiency and flexibility of your simulations. This integration ultimately provides a powerful platform for conducting complex analyses and generating insightful results. -
39
EMWorks
EMWorks
EMWorks offers top-tier electromagnetic simulation software designed for electrical and electronics engineering, incorporating multiphysics features. Their solutions are fully integrated into SOLIDWORKS and Autodesk Inventor®, catering to a wide range of applications such as electromechanical systems, power electronics, antennas, RF and microwave components, as well as ensuring power and signal integrity in high-speed interconnects. One of their flagship products, EMS, serves as a powerful tool for simulating and optimizing electromagnetic and electromechanical devices like transformers, electric motors, actuators, and sensors within the SOLIDWORKS® and Autodesk® Inventor® environments. Additionally, EMWorks2D is a specialized 2D electromagnetic simulation software that focuses on planar and axis-symmetric geometries, also fully embedded in SOLIDWORKS, allowing users to perform quick simulations prior to transitioning to 3D models. This functionality not only enhances the design process but also accelerates overall product development, making it easier for engineers to refine their designs efficiently. By leveraging these advanced tools, users can achieve optimal performance in their electronic designs while saving valuable time in the engineering workflow. -
40
Simcenter STAR-CCM+
Siemens Digital Industries
Simcenter STAR-CCM+ is an advanced multiphysics computational fluid dynamics (CFD) software that enables the simulation of products in conditions that mimic real-life scenarios. This software stands out by incorporating automated design exploration and optimization into the CFD toolkit accessible to engineers. With a unified platform that encompasses CAD, automated meshing, multiphysics CFD capabilities, and advanced postprocessing, it empowers engineers to thoroughly investigate the entire design landscape, facilitating quicker and more informed design choices. By leveraging the insights offered by Simcenter STAR-CCM+, the design process becomes more strategic, ultimately resulting in innovative products that surpass customer expectations. Enhancing a battery's performance across its complete operating spectrum is a complex endeavor that necessitates the concurrent optimization of various parameters. In this context, Simcenter delivers a comprehensive simulation environment tailored for the analysis and design of electrochemical systems, fostering a deeper understanding of their behavior. This holistic approach allows engineers to tackle intricate challenges with confidence and precision. -
41
Polaris-M
Airy Optics
Polaris-M is an advanced software for optical design and polarization analysis, created by Airy Optics, Inc., that seamlessly merges ray tracing techniques with polarization mathematics, enabling 3D simulations, handling of anisotropic materials, and diffractive optics. This software, which has its roots in over ten years of research at the University of Arizona's Polarization Laboratory before being licensed to Airy Optics in 2016, boasts a vast library of more than 500 functions tailored for various optical tasks, including ray tracing, aberration evaluation, and the manipulation of polarizing elements and diffractive optics. To run Polaris-M, users must have Mathematica, which provides an extensive macro language and robust algorithms for tasks such as graphics rendering, computer algebra, interpolation, neural network functions, and numerical analysis. Comprehensive documentation accompanies the software, featuring accessible help pages that can be activated with the F1 key, guiding users through explanations, inputs, outputs, and practical examples. The user experience is further enhanced by this rich repository of resources, ensuring that users can effectively navigate and utilize the software's extensive capabilities. -
42
Sigrity X Platform
Cadence Design Systems
Embrace the future with the Sigrity X Platform, where cutting-edge innovation harmonizes with peak optimization. Gain access to unparalleled signal and power integrity for your PCB and IC package designs, propelling you far past the existing boundaries of signal integrity (SI) and power integrity (PI) technology. Picture yourself skillfully navigating the intricate challenges of electronic design, achieving not just your targets but exceeding them with remarkable efficiency and accuracy. With Sigrity X, you’re engaging with a transformative tool that fosters a seamless integration of in-design analysis within the Allegro X PCB and IC Package platforms. Immerse yourself in an extensive array of SI/PI analysis, in-design interconnect modeling, and PDN analysis tools that are specifically engineered to elevate your performance, ensuring that your projects consistently surpass expectations and stay within timeframes and budgets. Leverage the capabilities of the Sigrity X Platform to guarantee exceptional performance and reliability in your upcoming designs, setting a new standard for success. This is your opportunity to redefine what is possible in electronic design and lead the way in innovation. -
43
Samadii Multiphysics
Metariver Technology Co.,Ltd
2 RatingsMetariver Technology Co., Ltd. develops innovative and creative computer-aided engineering (CAE) analysis S/W based upon the most recent HPC technology and S/W technologies including CUDA technology. We are changing the paradigm in CAE technology by using particle-based CAE technology, high-speed computation technology with GPUs, and CAE analysis software. Here is an introduction to our products. 1. Samadii-DEM: works with discrete element method and solid particles. 2. Samadii-SCIV (Statistical Contact In Vacuum): working with high vacuum system gas-flow simulation. 3. Samadii-EM (Electromagnetics) : For full-field interpretation 4. Samadii-Plasma: For Analysis of ion and electron behavior in an electromagnetic field. 5. Vampire (Virtual Additive Manufacturing System): Specializes in transient heat transfer analysis. -
44
Ansys VRXPERIENCE Perceived Quality delivers a cutting-edge, physics-driven solution for assessing designs that encompass variations in lighting, colors, and materials. This platform enables you to test and validate your product designs within a relevant context. With VRXPERIENCE Perceived Quality, you can swiftly evaluate different design options for both materials and lighting. This method empowers you to confirm your selections against established design specifications, allowing for the identification of optimal lighting and material pairings under realistic conditions. You can produce a virtual prototype from a 3D model with ease, facilitating early decision-making in the design phase through real-time optical simulations. By utilizing Ansys VRXPERIENCE Perceived Quality's immersive virtual reality visualizations, you can incorporate physics-based lighting scenarios to accurately assess how your chosen lighting and material options will manifest in the real world. This comprehensive approach not only enhances design accuracy but also streamlines collaboration among team members throughout the development process.
-
45
Ansys Fluent
Ansys
Ansys Fluent stands out as the premier fluid simulation software, distinguished by its cutting-edge physics modeling features and unmatched precision. By utilizing Ansys Fluent, you can dedicate more time to innovation and enhancing product efficiency. This software is backed by extensive validation across diverse applications, ensuring you can rely on its simulation outcomes. With Ansys Fluent, creating sophisticated physics models and evaluating various fluid dynamics phenomena is seamless within a user-friendly and customizable interface. This robust simulation tool significantly expedites your design process, allowing for quicker iterations and improvements. Boasting top-tier physics models, Ansys Fluent can effectively and accurately tackle intricate, large-scale simulations. The software unveils new possibilities for computational fluid dynamics (CFD) analysis. Additionally, its rapid pre-processing capabilities and swift solving times empower you to be the quickest in bringing your products to market. Fluent's unmatched features foster boundless innovation while maintaining a steadfast commitment to precision and reliability. Ultimately, Ansys Fluent not only enhances your design capabilities but also positions you ahead of the competition in a fast-paced industry.