Best Ansys Granta Alternatives in 2025
Find the top alternatives to Ansys Granta currently available. Compare ratings, reviews, pricing, and features of Ansys Granta alternatives in 2025. Slashdot lists the best Ansys Granta alternatives on the market that offer competing products that are similar to Ansys Granta. Sort through Ansys Granta alternatives below to make the best choice for your needs
-
1
ExoMatter
ExoMatter
ExoMatter is revolutionizing the traditionally tedious and expensive process of materials research and development by harnessing advanced AI technologies and data-mining capabilities. The platform offers a tailored selection of the most appropriate materials for your specific needs. By integrating data from various scientific repositories and your own datasets, ExoMatter enhances this information through AI, enabling you to evaluate a diverse array of multidimensional physical, chemical, and engineering factors, alongside sustainability concerns and projected costs. Our commitment to using scientific materials data aims to identify superior and more eco-friendly materials. With our innovative materials research platform, you can swiftly navigate through millions of materials, using AI-driven tools that not only enrich the data but also provide you with comprehensive control over your selection criteria. Leverage ExoMatter’s unique scoring and ranking system to compile a refined list of materials that best suit your application, ensuring that you make informed and efficient choices in your materials selection process. This approach not only streamlines your research efforts but also significantly enhances the overall quality and sustainability of your material choices. -
2
Simr (formerly UberCloud) is revolutionizing the world of simulation operations with our flagship solution, Simulation Operations Automation (SimOps). Designed to streamline and automate complex simulation workflows, Simr enhances productivity, collaboration, and efficiency for engineers and scientists across various industries, including automotive, aerospace, biomedical engineering, defense, and consumer electronics. Our cloud-based infrastructure provides scalable and cost-effective solutions, eliminating the need for significant upfront investments in hardware. This ensures that our clients have access to the computational power they need, exactly when they need it, leading to reduced costs and improved operational efficiency. Simr is trusted by some of the world's leading companies, including three of the seven most successful companies globally. One of our notable success stories is BorgWarner, a Tier 1 automotive supplier that leverages Simr to automate its simulation environments, significantly enhancing their efficiency and driving innovation.
-
3
Ansys Lumerical Multiphysics serves as advanced software for simulating photonic components, allowing for the integrated design of these elements by effectively capturing the interplay of various multiphysics phenomena such as optical, thermal, electrical, and quantum well interactions, all within a cohesive design platform. Designed specifically for engineering workflows, this user-friendly product design software enhances the user experience, enabling quick design iterations and delivering in-depth insights into actual product performance. By merging real-time physics with precise high-fidelity simulations in an accessible interface, it promotes a shorter time-to-market for innovative designs. Among its key offerings are a finite element design environment, integrated multiphysics workflows, extensive material models, and robust automation and optimization capabilities. The suite of solvers and streamlined processes in Lumerical Multiphysics effectively reflects the complex interactions of physical effects, facilitating accurate modeling of both passive and active photonic components. This comprehensive approach not only enhances design efficiency but also leads to improved product reliability and performance evaluations.
-
4
Signals Notebook
Revvity Signals
Signals Notebook boasts a contemporary user interface similar to those found in popular personal applications, minimizing the need for extensive training; users can quickly get started. This ease of use is a key factor in why it has become the preferred electronic lab notebook for a wide array of organizations, ranging from small teams of 4-5 research scientists to some of the largest biotech and pharmaceutical companies globally. Its adaptability and capability to accommodate diverse workflows—covering areas such as chemistry, biology, formulations, analytical sciences, and materials sciences—make it a valuable tool now and in the future. With over 1 million scientists across 4,000 organizations relying on Signals Notebook to enhance their workflow efficiency, it is evident that the platform is well-regarded in the scientific community. Additionally, its structured data capture features, coupled with APIs and integration interfaces for instruments, in-house systems, and databases, further enhance its utility. This combination of user-friendliness and advanced functionality is what sets Signals Notebook apart in a competitive market. -
5
Ansys LS-DYNA
Ansys
Ansys LS-DYNA stands out as the leading explicit simulation software widely utilized for various applications, including drop testing, impact analysis, penetration scenarios, collisions, and ensuring occupant safety. Renowned as the most extensively used explicit simulation tool globally, Ansys LS-DYNA excels in modeling the behavior of materials subjected to brief yet intense loading conditions. Its comprehensive suite of elements, contact formulations, and material models enables the simulation of intricate models while allowing precise control over every aspect of the issue at hand. The software offers a broad range of analyses, boasting rapid and effective parallel processing capabilities. Engineers can investigate simulations that involve material failure, examining how such failures evolve through components or entire systems. Additionally, LS-DYNA adeptly manages models with numerous interacting parts or surfaces, ensuring that the interactions and load transfers between complex behaviors are accurately represented. This capability makes LS-DYNA an invaluable tool for engineers facing multifaceted simulation challenges. -
6
Kebotix
Kebotix
Kebotix is a pioneering technology platform focused on the development of new chemicals and materials, heralding a transformative era of rapid innovation through the integration of artificial intelligence and robotic automation. The company has introduced the world's first autonomous laboratory dedicated to materials discovery, driven by AI and robotics, which revolutionizes traditional research methods. By greatly enhancing the exploration, discovery, utilization, and production of novel molecules and materials, Kebotix aims to address some of the most pressing challenges faced globally. Collaborate with us to expedite the market introduction of your products while leveraging our cutting-edge material design technologies that are enabled by our self-driving lab. Kebotix propels your research and development efforts into the new digital frontier by offering tailored enterprise AI solutions specifically designed for materials discovery. With our automated learning system that improves with each cycle of predict-produce-prove, we empower you to deliver superior products to market more swiftly than ever before. This innovative approach not only saves time but also significantly enhances the efficiency of the research process. -
7
Ansys Autodyn
Ansys
Ansys Autodyn enables the simulation of material responses to various events, including short-duration severe mechanical loadings, high pressures, and explosions. This software combines advanced solution techniques with user-friendly features, making it accessible for quick comprehension and simulation of significant material deformation or failure. It offers a diverse range of models to accurately capture complex physical phenomena, such as the interactions between liquids, solids, and gases, as well as phase transitions in materials and shock wave propagation. With seamless integration into Ansys Workbench and its intuitive user interface, Ansys Autodyn stands out in the industry by facilitating the generation of precise results efficiently. The inclusion of the smooth particle hydrodynamics (SPH) solver enhances its capabilities for explicit analysis, ensuring comprehensive support for various simulation needs. Furthermore, Ansys Autodyn allows users to choose from multiple solver technologies, ensuring that the most suitable solver is applied for different components of the model, thus optimizing performance and accuracy. -
8
BIOVIA Materials Studio
Dassault Systèmes
BIOVIA Materials Studio serves as an all-encompassing platform for modeling and simulation, specifically tailored to assist researchers in the fields of materials science and chemistry in forecasting and comprehending how a material's atomic and molecular configurations correlate with its characteristics and functionalities. By adopting an "in silico first" strategy, researchers can enhance material performance in a budget-friendly virtual environment before moving to physical experimentation. This versatile software accommodates a diverse array of materials, such as catalysts, polymers, composites, metals, alloys, pharmaceuticals, and batteries. With capabilities that span quantum, atomistic, mesoscale, statistical, analytical, and crystallization simulations, it streamlines the development of innovative materials across multiple sectors. Additionally, its features promote rapid innovation, decrease research and development expenditures through virtual screening, and boost productivity by automating established practices within Pipeline Pilot, making it an indispensable tool for modern material research and development. This comprehensive functionality not only enhances research efficiency but also positions users at the forefront of material advancements. -
9
InQuanto
Quantinuum
Quantum computing paves the way for the swift and cost-efficient creation of novel molecules and materials. InQuanto, an advanced platform for quantum computational chemistry, marks a significant advancement towards achieving this objective. The field of quantum chemistry seeks to precisely characterize and forecast the essential properties of matter, making it an invaluable asset for the innovation and formulation of new substances. Nonetheless, the intricacies of industrially relevant molecules and materials present challenges for accurate simulation. Current technologies necessitate a compromise, forcing users to choose between utilizing highly precise methods on minimal systems or resorting to approximations. InQuanto's adaptable workflow allows both computational chemists and quantum algorithm engineers to seamlessly integrate cutting-edge quantum algorithms with sophisticated subroutines and error mitigation techniques, optimizing performance on existing quantum platforms. This flexibility not only enhances research outcomes but also fosters collaboration among experts in the field, driving further innovation. -
10
Simcenter Femap
Siemens Digital Industries
Simcenter Femap is a sophisticated simulation tool designed for the creation, modification, and analysis of finite element models pertaining to intricate products or systems. This software allows users to implement advanced workflows for modeling individual components, assemblies, or entire systems, enabling them to assess how these models react under realistic conditions. Moreover, Simcenter Femap offers robust data-driven capabilities and graphical visualizations for results interpretation, which, when paired with the top-tier Simcenter Nastran, provides a holistic CAE solution aimed at enhancing product performance. As manufacturers strive to develop lighter yet more robust products, there is a growing emphasis on the utilization of composite materials. Simcenter stands at the forefront of composite analysis, continually advancing its material models and element types to meet industry demands. Furthermore, Simcenter accelerates the simulation process for laminate composite materials by providing an integrated connection to composite design, streamlining workflows for engineers in the field. This integration ultimately fosters innovation and efficiency in product development, paving the way for more sustainable manufacturing practices. -
11
Dotmatics
Dotmatics
Dotmatics is the global leader in R&D scientific software that connects science, data, and decision-making. More than 2 million scientists and 10,000 customers trust Dotmatics to accelerate research and help make the world a healthier, cleaner, and safer place to live. -
12
NobleAI
NobleAI
NobleAI empowers businesses to hasten the creation of high-performance, eco-friendly, and responsibly sourced chemical and material products. We at NobleAI hold the conviction that advancements in materials science and chemistry are crucial for fostering a sustainable future, with AI playing a pivotal role in realising this vision. Our science-driven AI represents a robust integration of innovative artificial intelligence methods and comprehensive scientific knowledge, tailored specifically for product development. By merging data-informed insights with scientifically validated design, we achieve significantly enhanced accuracy while requiring considerably less data and shorter training durations. This approach not only uncovers deeper insights but also promotes greater transparency, interpretability, and adherence to scientific principles, ultimately leading to more informed decision-making in material innovation. As we continue to refine our methods, our commitment to sustainability remains at the forefront of our mission. -
13
Thermo-Calc
Thermo-Calc
Thermo-Calc is an advanced thermodynamic modeling tool utilized by materials scientists and engineers to derive data on material properties, deepen their understanding of materials, clarify specific phenomena, and address targeted inquiries regarding certain materials and their processing techniques. This software comes equipped with a variety of standard calculators included in all licenses, such as the Equilibrium Calculator, Scheil Solidification Simulations, Property Model Calculator, General Model Library, Material to Material Calculator, Pourbaix Diagram Module, and the Data Optimization Module (PARROT). Additionally, users can enhance Thermo-Calc's capabilities with multiple Add-on Modules and access over 40 databases, all seamlessly integrated into a single platform, creating a cohesive working environment. The software allows for the calculation of the state of a specified thermodynamic system, yielding valuable insights into phase quantities and compositions, transformation temperatures, solubility thresholds, and the driving forces behind phase formation, among other important metrics. Furthermore, this powerful modeling tool facilitates innovative research and development in materials science by enabling users to simulate various scenarios and predict outcomes effectively. -
14
Materials Zone
Materials Zone
Transforming materials data into superior products at an accelerated pace enhances research and development, streamlines scaling processes, and optimizes quality control and supply chain decisions. This approach enables the discovery of innovative materials while utilizing machine learning guidance to predict outcomes, leading to swifter and more effective results. As you progress towards production, you can construct a model that tests the boundaries of your products, facilitating the design of cost-effective and resilient production lines. Furthermore, these models can forecast potential failures by analyzing the supplied materials informatics alongside production line parameters. The Materials Zone platform compiles data from various independent sources, including materials suppliers and manufacturing facilities, ensuring secure communication between them. By leveraging machine learning algorithms on your experimental data, you can identify new materials with tailored properties, create ‘recipes’ for their synthesis, develop tools for automatic analysis of unique measurements, and gain valuable insights. This holistic approach not only enhances the efficiency of R&D but also fosters collaboration across the materials ecosystem, ultimately driving innovation forward. -
15
CrowdChem
CrowdChem
The CrowdChem Data Platform serves as an innovative knowledge hub tailored for the chemistry sector, utilizing data gathered through independent means. This platform empowers users to efficiently choose raw materials and identify potential customers via its advanced data analysis capabilities and text mining techniques. For instance, it facilitates the exploration of novel raw material combinations, enhances the precision of chemical product usage research, and generates lists of prospective customers for various companies. Users benefit from the ability to navigate a vast repository of information sourced from patents, academic papers, catalogs, and news articles, thus streamlining the process of data retrieval. By leveraging machine learning and natural language processing technologies, the platform allows for seamless raw material selection and customer identification, while also supporting competitive analysis and additional functionalities. Ultimately, this integration of cutting-edge technology enhances overall efficiency and decision-making in the chemistry domain. -
16
Osium AI
Osium AI
Osium AI is an advanced software platform that harnesses artificial intelligence to assist industry leaders in speeding up the creation of sustainable, high-performance materials and chemicals. Utilizing an innovative technology founded on over ten years of expertise and numerous AI patents, Osium AI provides a comprehensive solution that addresses all phases of the materials and chemicals development process, including formulation, characterization, scale-up, and manufacturing. This platform empowers users to swiftly predict any material or chemical property within seconds, create optimal research and development experiment plans, and quickly analyze material characteristics and flaws. Additionally, it allows for the optimization of current processes, leading to reduced costs, improved material properties, and lower CO₂ emissions. With its adaptable software, Osium AI is equipped to support a wide range of R&D projects while accommodating the ever-changing demands of the industry. Overall, the platform stands out as a crucial tool for enhancing innovation in materials science. -
17
SIMHEAT
TRANSVALOR
Induction heat treatment simulation offers detailed insights into the temperature variations from the outer surface to the core and identifies specific regions where phase changes take place. With SIMHEAT®, users can assess how factors like current frequency, coil design, and the positioning of concentrators influence the heat-affected zone. The material modeling aspect accounts for the electrical and magnetic characteristics that vary with temperature. Moreover, SIMHEAT® can operate independently or work in conjunction with Transvalor software, ensuring a flawless transfer of results between the two platforms. This high level of interoperability guarantees that users can rely on consistent and accurate outcomes. Furthermore, all the features and functionalities available in SIMHEAT® are also incorporated into our FORGE® software, which is tailored for simulating hot, semi-hot, and cold forming processes, thereby expanding its utility in various manufacturing applications. -
18
QSimulate
QSimulate
QSimulate presents an array of quantum simulation platforms that harness the principles of quantum mechanics to address intricate, large-scale challenges in life sciences and materials science. The QSP Life platform introduces innovative quantum-enhanced techniques for drug discovery and optimization, facilitating pioneering quantum simulations of ligand-protein interactions that are relevant throughout the entire computational drug discovery journey. Meanwhile, the QUELO platform enables hybrid quantum/classical free energy calculations, empowering users to conduct relative free energy assessments via the free energy perturbation (FEP) method. Furthermore, QSimulate's advancements enable significant progress in quantum mechanics/molecular mechanics (QM/MM) simulations tailored for extensive protein modeling. In the realm of materials science, the QSP Materials platform opens up quantum mechanical simulations to a broader audience, allowing experimentalists to streamline complex workflows without requiring specialized expertise, ultimately fostering greater innovation in the field. This democratization of technology marks a pivotal shift in how researchers can approach and solve scientific problems. -
19
Albert
Albert Invent
Introducing Albert, the comprehensive platform transforming materials science for the AI era. From the initial stages of molecular design to the final steps of industrial production, we understand the hurdles that come with chemical advancement. Developed by seasoned professionals in the industry, Albert addresses the genuine requirements of chemists to tackle current challenges and foster future innovations. Eliminate barriers within your research and development processes using Albert’s all-inclusive platform. By integrating ELN, LIMS, AI/ML, automated SDS generation, and more, Albert delivers a cohesive knowledge stream throughout R&D, facilitating innovation like never before. Empower every scientist in your organization with AI capabilities that enhance their work. Albert’s tailored AI functions similarly to a chemist, optimizing formulations and speeding up experiments, allowing you to bring new products to market over 50% faster. With a user-friendly interface and collaborative deployment, based on our extensive lab expertise, we guarantee a smooth integration into your existing workflows, ensuring you maximize productivity. Ultimately, Albert is not just a tool; it's a partner in your journey toward groundbreaking discoveries. -
20
ScienceDesk
ScienceDesk
ScienceDesk's data automation simplifies the integration of artificial intelligence within the field of materials science. This tool serves as a practical solution for teams to consistently implement and utilize the latest AI algorithms in their daily workflows. It features customizable attributes, universal identifiers, QR codes, and a robust search engine that connects sample data with experimental results. As a groundbreaking platform, ScienceDesk facilitates collaboration among scientists and engineers, allowing them to engage with and glean insights from their experimental findings. However, the full potential of this resource remains untapped due to the diverse data formats and a reliance on specialists to manually retrieve targeted information. The ScienceDesk research data management system addresses this challenge by merging documentation with data analysis within a thoughtfully designed data structure. Our algorithms empower researchers and scientists, granting them comprehensive command over their data. They can not only exchange datasets but also share their analytical expertise, fostering a more collaborative research environment. Overall, ScienceDesk enhances data accessibility and encourages innovative approaches in scientific investigation. -
21
Digimat
e-Xstream engineering
e-Xstream engineering specializes in the development and commercialization of the Digimat software suite, which features advanced multi-scale material modeling technology that accelerates the creation of composite materials and structures. Serving as a fundamental component of the 10xICME Solution, Digimat enables in-depth analyses of materials at the microscopic level and facilitates the creation of micromechanical models that are essential for integrating micro- and macroscopic interactions. The material models provided by Digimat allow for the combination of processing simulations with structural finite element analysis (FEA), paving the way for more accurate predictions by considering how processing conditions affect the final product's performance. Utilizing Digimat as an efficient and predictive tool significantly aids users in the design and manufacturing of cutting-edge composite materials and components, leading to substantial savings in time and costs. Ultimately, this capability empowers engineers to push the boundaries of innovation in composite material applications. -
22
Grantu EduPack
Ansys
Ansys Granta EduPack, previously known as CES EduPack, is an exceptional collection of educational materials aimed at assisting educators in enriching courses focused on materials in engineering, design, science, and sustainable development. This resource serves to bolster undergraduate education in materials science, offering a comprehensive database of materials and processes, selection tools, and various supplementary resources. The program is structured into three distinct levels, allowing students to engage with the appropriate depth of information as they advance through their academic journey. Furthermore, Granta EduPack accommodates a diverse range of teaching methodologies, catering to both design-oriented and science-driven approaches, as well as problem-based learning environments. As students progress from pre-university to postgraduate studies, they can utilize the database and tools tailored to their educational stage, ensuring effective learning at every level. This thoughtful organization makes Granta EduPack an invaluable asset for educators and students alike. -
23
Citrine
Citrine Informatics
The Citrine Platform integrates state-of-the-art AI technologies with advanced data management systems, offering user-friendly interfaces and robust security measures that comply with industry standards, all while being securely hosted in the cloud. It effectively captures, organizes, and retains comprehensive information regarding the development of materials and chemicals, spanning from procurement to processing and characterization. By minimizing unnecessary experiments, users can swiftly access pertinent data sets. With its powerful AI features, the Citrine Platform accelerates the identification of high-performing materials. Its predictive models analyze materials' performance based on processing, composition, and synthesis details, guiding users on the next experiments to undertake in order to meet their objectives. Furthermore, the Citrine Platform ensures the integrity and confidentiality of your data, domain expertise, and models through stringent protective measures. The platform is backed by ISO27001 certification and comprehensive documentation, providing additional assurance of its commitment to security and best practices. This attention to detail and dedication to user needs makes the Citrine Platform a valuable tool for the materials science community. -
24
Avogadro
Avogadro
Avogadro serves as a sophisticated molecular editor and visualizer that operates across multiple platforms, catering to fields such as computational chemistry, molecular modeling, bioinformatics, and materials science. With its ability to provide flexible, high-quality rendering alongside a robust plugin architecture, it enhances user experience significantly. This free, open-source tool is compatible with Mac, Windows, and Linux, making it accessible to a wide range of users in scientific disciplines. Its design emphasizes not only functionality but also adaptability to various research needs. -
25
DIGIMU
TRANSVALOR
DIGIMU® creates digital polycrystalline microstructures that accurately reflect the material's heterogeneities, ensuring compliance with the intricate topological features of the microstructure. The boundary conditions applied to the Representative Elementary Volume (REV) mimic the experiences of a material point at the macroscopic level, particularly during the thermomechanical cycles relevant to that specific point. Utilizing a Finite Element formulation, the software simulates the various physical phenomena occurring in metal forming processes, such as recrystallization, grain growth, and Zener pinning caused by second phase particles. To enhance digital accuracy and minimize computation times, DIGIMU® employs advanced automated anisotropic meshing and remeshing adaptation technology, which allows for a detailed representation of grain boundaries while optimizing the number of elements used. This innovative approach not only streamlines the computational process but also improves the reliability of the simulations, making it a powerful tool for material scientists. -
26
GENOA 3DP
AlphaSTAR
GENOA 3DP is a comprehensive software suite and design tool tailored for additive manufacturing across polymers, metals, and ceramics. Its simulate-to-print capabilities highlight strong performance and user-friendly interaction, making it an effective choice for diverse applications. With the ability to deliver precision at the micro-scale and significantly minimize material waste and engineering time, GENOA 3DP can be swiftly incorporated into any manufacturing process to ensure optimal additive manufacturing outcomes. Rooted in advanced failure analysis techniques and enhanced by multi-scale material modeling, this tool empowers engineers to reliably forecast issues like voids, net shapes, residual stress, and crack propagation in as-built additive manufacturing components. By offering a consistent approach to enhance part quality, decrease scrap rates, and adhere to specifications, GENOA 3DP effectively connects the fields of material science and finite element analysis, ultimately driving innovation in the manufacturing sector. This integration fosters a deeper understanding of material behaviors, paving the way for more efficient production methodologies. -
27
Schrödinger
Schrödinger
Revolutionize the fields of drug discovery and materials research through cutting-edge molecular modeling techniques. Our computational platform, grounded in physics, combines unique solutions for predictive modeling, data analysis, and collaboration, facilitating swift navigation of chemical space. This innovative platform is employed by leading industries globally, serving both drug discovery initiatives and materials science applications across various sectors including aerospace, energy, semiconductors, and electronic displays. It drives our internal drug discovery projects, overseeing processes from target identification through hit discovery and lead optimization. Additionally, it enhances our collaborative research efforts aimed at creating groundbreaking medicines to address significant public health challenges. With a dedicated team of over 150 Ph.D. scientists, we commit substantial resources to research and development. Our contributions to the scientific community include more than 400 peer-reviewed publications that validate the efficacy of our physics-based methodologies, and we remain at the forefront of advancing computational modeling techniques. We are steadfast in our mission to innovate and expand the possibilities within our field. -
28
AQChemSim
SandboxAQ
AQChemSim is an innovative cloud-based platform created by SandboxAQ that utilizes Large Quantitative Models (LQMs) based on principles of physics and chemistry to transform the landscape of materials discovery and enhancement. By incorporating techniques such as Density Functional Theory (DFT), Iterative Full Configuration Interaction (iFCI), Generative AI, Bayesian Optimization, and Chemical Foundation Models, AQChemSim facilitates precise simulations of molecular and material dynamics in real-world scenarios. The platform's features allow it to forecast performance under diverse stress conditions, expedite formulation via in silico testing, and investigate eco-friendly chemical processes. Remarkably, AQChemSim has achieved notable progress in battery technology, cutting the prediction time for lithium-ion battery end-of-life by 95%, while also attaining 35 times greater accuracy with a mere fraction of the data previously required. This advancement not only streamlines research but also paves the way for more efficient and sustainable energy solutions in the future. -
29
COMSOL Multiphysics
Comsol Group
1 RatingUtilize COMSOL's multiphysics software to replicate real-world designs, devices, and processes effectively. This versatile simulation tool is grounded in sophisticated numerical techniques. It boasts comprehensive capabilities for both fully coupled multiphysics and single-physics modeling. Users can navigate a complete modeling workflow, starting from geometry creation all the way to postprocessing. The software provides intuitive tools for the development and deployment of simulation applications. COMSOL Multiphysics® ensures a consistent user interface and experience across various engineering applications and physical phenomena. Additionally, specialized functionality is available through add-on modules that cater to fields such as electromagnetics, structural mechanics, acoustics, fluid dynamics, thermal transfer, and chemical engineering. Users can select from a range of LiveLink™ products to seamlessly connect with CAD systems and other third-party software. Furthermore, applications can be deployed using COMSOL Compiler™ and COMSOL Server™, enabling the creation of physics-driven models and simulation applications within this robust software ecosystem. With such extensive capabilities, it empowers engineers to innovate and enhance their projects effectively. -
30
BIOVIA ONE Lab
Dassault Systèmes
BIOVIA ONE Lab serves as a robust laboratory informatics platform aimed at optimizing workflows, fostering collaboration, and expediting research efforts in diverse scientific fields. This solution offers a cohesive environment for the management of laboratory data and processes, allowing researchers to make informed decisions more swiftly. It is utilized by organizations in various sectors such as Life Sciences, Consumer Packaged Goods, and Energy & Materials, among others. ONE Lab is adaptable for use in Research, Development, and Quality Assurance/Quality Control, catering to the unique requirements of scientists within each discipline. It effectively oversees samples, experiments, data, inventory, and equipment, as well as workflows, by integrating seamlessly with a variety of laboratory instruments and software. By utilizing a singular data model across all functional areas, ONE Lab eliminates artificial barriers that typically exist between Electronic Lab Notebooks (ELN), Laboratory Information Management Systems (LIMS), Laboratory Execution Systems (LES), and inventory management. This cohesive integration promotes efficiency and enhances the overall productivity of laboratory operations. Ultimately, BIOVIA ONE Lab empowers scientists to focus on innovation and discovery without the hindrances of fragmented systems. -
31
ProSteel
Bentley
$4,193 per yearProSteel software enables the efficient creation of precise 3D models for structural steel, metal projects, and steel assemblies. It allows users to swiftly generate design drawings, fabrication details, and schedules that automatically update in response to any modifications made to the 3D model. Furthermore, the software provides detailed outputs for CNC machines, streamlining the steel fabrication process. ProSteel is designed to support your construction and planning efforts for structural steel and metal work within a 3D modeling environment. When used alongside AutoCAD or MicroStation, it offers an intuitive and integrated multi-material modeler that is ideal for designing complex structures, producing shop drawings, assembling connections, and managing bills of materials. You can quickly extract 2D drawings that will adjust automatically when the 3D model is altered. Additionally, ProSteel's interoperability with other Bentley and third-party applications facilitates seamless information exchange across different disciplines, improving collaboration and efficiency throughout the project lifecycle. This capability enhances the overall workflow, making it easier to coordinate tasks among various teams involved in the construction process. -
32
Microsoft Discovery
Microsoft
Microsoft Discovery is an advanced AI-powered platform designed to accelerate scientific discovery by enabling researchers to collaborate with a team of specialized AI agents. This platform leverages a graph-based knowledge engine that connects diverse scientific data, allowing for deep, contextual reasoning over complex and often contradictory theories. Researchers can customize AI agents to align with their specific domains and tasks, making it easier to manage and orchestrate research efforts. Built on Microsoft Azure, Discovery ensures a high level of trust, transparency, and compliance, offering an enterprise-ready solution. The platform has already been used to accelerate the development of a novel coolant for data centers, cutting the discovery time from months to just 200 hours. This demonstrates the transformative potential of AI in R&D, providing researchers with the tools to unlock new possibilities and innovations at scale. -
33
Ansys VRXPERIENCE Perceived Quality delivers a cutting-edge, physics-driven solution for assessing designs that encompass variations in lighting, colors, and materials. This platform enables you to test and validate your product designs within a relevant context. With VRXPERIENCE Perceived Quality, you can swiftly evaluate different design options for both materials and lighting. This method empowers you to confirm your selections against established design specifications, allowing for the identification of optimal lighting and material pairings under realistic conditions. You can produce a virtual prototype from a 3D model with ease, facilitating early decision-making in the design phase through real-time optical simulations. By utilizing Ansys VRXPERIENCE Perceived Quality's immersive virtual reality visualizations, you can incorporate physics-based lighting scenarios to accurately assess how your chosen lighting and material options will manifest in the real world. This comprehensive approach not only enhances design accuracy but also streamlines collaboration among team members throughout the development process.
-
34
FactSage
FactSage
FactSage is an extensive software and database suite for thermochemical analysis, created in collaboration by Thermfact/CRCT based in Montreal, Canada, and GTT-Technologies located in Aachen, Germany. Launched in 2001, it combines the capabilities of the FACT-Win/FAC*T and ChemSage/SOLGASMIX thermochemical tools, which stem from over two decades of joint research. This software features a collection of modules for information retrieval, database access, calculations, and data manipulation that cater to a wide range of pure substances and solution data. It serves a diverse array of users, including those in industry, government, and academia, across disciplines such as materials science, pyrometallurgy, hydrometallurgy, electrometallurgy, corrosion science, glass technology, combustion, ceramics, and geology. Users can tap into thermodynamic data for numerous compounds and have access to evaluated databases for hundreds of solutions, which encompass metals, oxides, slags, mattes, salts, and various aqueous solutions. Overall, FactSage stands as a vital tool for professionals seeking reliable thermochemical information and analysis. -
35
Atinary SDLabs Platform
Atinary
Atinary's Self-Driving Labs (SDLabs) platform offers a no-code solution for AI and machine learning, aimed at transforming research and development workflows by allowing conventional laboratories to move from hands-on experiments to fully autonomous experimentation. This platform enhances the design and refinement of experiments through a comprehensive closed-loop system that incorporates AI-generated hypotheses, forecasts, and decisions. Among its notable features are multi-objective optimization, efficient database management, streamlined workflow orchestration, and real-time data analysis. Users have the capability to set experimental parameters with specific constraints, enabling machine learning algorithms to determine the next steps in the process, conduct experiments either manually or with robotic aid, analyze outcomes, and update models with the latest data, thus expediting the pursuit of improved, cost-effective, and environmentally friendly products. Additionally, Atinary offers proprietary algorithms, including Emmental for tackling non-linear constrained optimization, SeMOpt for implementing transfer learning in Bayesian optimization, and Falcon, which collectively enhance the platform's functionality and effectiveness. By leveraging these advanced tools, researchers can achieve greater efficiency and innovation in their experimental processes. -
36
3DEXPERIENCE
Dassault Systèmes
Integrate the digital and physical realms through the Dassault Systèmes 3DEXPERIENCE® platform to enable collaboration, modeling, optimization, and operational performance. Establish the layout of the plant, including the flow, assets, and resources required for effective and safe product manufacturing. Enhance the definitions of products and resources; outline and confirm a process plan while developing work instructions that align with production targets. Optimize supply chain planning across all time frames; improve visibility with scheduling and planning to reduce interruptions. Revolutionize international production processes to attain and maintain operational excellence through Manufacturing Operations Management. Additionally, oversee and regulate operational processes on a worldwide scale to ensure consistency and efficiency. -
37
Ansys Zemax OpticStudio
Ansys
Ansys Zemax OpticStudio is a sophisticated optical design software that is widely employed by educational institutions and businesses around the world for the creation and evaluation of optical systems, including those used for imaging, illumination, and lasers. The software features an intuitive interface that combines analysis, optimization, and tolerancing capabilities, making it easier to develop intricate optical systems applicable across various fields. It supports both sequential and non-sequential ray tracing, which allows for accurate representation of light behavior as it travels through different optical elements. Additionally, its advanced capabilities include structural and thermal analysis, empowering users to evaluate how environmental conditions might affect optical system performance. With a rich library of materials and optical components, OpticStudio significantly enhances the precision of its simulations. Furthermore, Ansys provides a complimentary version of OpticStudio for students, offering them the opportunity to gain practical experience in optical design and analysis, which is essential for their future endeavors in the optics industry. This initiative not only fosters a deeper understanding of optics but also encourages innovation and creativity among budding engineers. -
38
Ansys Optics
Ansys
Understanding how light travels and influences both product efficacy and human experience is essential for assessing performance and ensuring comfort, perception, and safety. Ansys Optics stands out by effectively simulating the optical characteristics of a system, assessing the ultimate lighting effects, and forecasting the repercussions of variations in lighting and materials on appearance and perceived quality, all within realistic scenarios. With this advanced visualization tool, you can conceptualize your product prior to its creation, thereby enhancing the virtual experience for customers. Allow Ansys Optics and its optical simulation capabilities to guide you towards optimal solutions for any project style. The software adeptly addresses intricate optical challenges while enhancing visual aesthetic quality. By integrating design and engineering into a seamless workflow, you can significantly boost the final quality of your product, creating true-to-life visualizations that resonate with users. Additionally, you can develop and evaluate virtual prototypes of a cockpit HMI within an immersive, real-time setting, providing a comprehensive understanding of user interaction. This process not only improves design outcomes but also fosters innovation in product development. -
39
Ansys Fluent
Ansys
Ansys Fluent stands out as the premier fluid simulation software, distinguished by its cutting-edge physics modeling features and unmatched precision. By utilizing Ansys Fluent, you can dedicate more time to innovation and enhancing product efficiency. This software is backed by extensive validation across diverse applications, ensuring you can rely on its simulation outcomes. With Ansys Fluent, creating sophisticated physics models and evaluating various fluid dynamics phenomena is seamless within a user-friendly and customizable interface. This robust simulation tool significantly expedites your design process, allowing for quicker iterations and improvements. Boasting top-tier physics models, Ansys Fluent can effectively and accurately tackle intricate, large-scale simulations. The software unveils new possibilities for computational fluid dynamics (CFD) analysis. Additionally, its rapid pre-processing capabilities and swift solving times empower you to be the quickest in bringing your products to market. Fluent's unmatched features foster boundless innovation while maintaining a steadfast commitment to precision and reliability. Ultimately, Ansys Fluent not only enhances your design capabilities but also positions you ahead of the competition in a fast-paced industry. -
40
Ansys Cloud Direct
Ansys
Ansys Cloud Direct’s powerful, easy-to-access HPC cloud solution will change the way you think about simulation. Unlike other simulation cloud solutions, Ansys Cloud Direct is simple to set up and navigate, will not break your workflow and does not require cloud experts to operate. Ansys Cloud Direct is all about Workflow, Performance, Support. -
41
Ansys Additive Suite
Ansys
The Ansys Additive Suite provides essential insights that help designers, engineers, and analysts prevent build failures while ensuring that parts meet precise design specifications. This all-encompassing solution covers the full spectrum of the workflow, which includes design for additive manufacturing (DfAM), validation, print design, process simulation, and material exploration. Within the Additive Suite, users have access to tools such as Additive Prep, Print, and Science, along with Ansys Workbench Additive. Many features in Ansys Workbench allow for the creation of parametric analysis systems, enabling the examination and optimization of various parameters like part orientation and positioning. This suite is offered as an additional module for those holding an Ansys Mechanical Enterprise license. The integration of these tools facilitates a more streamlined approach to additive manufacturing, enhancing the overall efficiency and reliability of the production process. -
42
Ansys HPC
Ansys
The Ansys HPC software suite allows users to leverage modern multicore processors to conduct a greater number of simulations in a shorter timeframe. These simulations can achieve unprecedented levels of complexity, size, and accuracy thanks to high-performance computing (HPC) capabilities. Ansys provides a range of HPC licensing options that enable scalability, accommodating everything from single-user setups for basic parallel processing to extensive configurations that support nearly limitless parallel processing power. For larger teams, Ansys ensures the ability to execute highly scalable, multiple parallel processing simulations to tackle the most demanding projects. In addition to its parallel computing capabilities, Ansys also delivers parametric computing solutions, allowing for a deeper exploration of various design parameters—including dimensions, weight, shape, materials, and mechanical properties—during the early stages of product development. This comprehensive approach not only enhances simulation efficiency but also significantly optimizes the design process. -
43
Ansys Icepak
Ansys
Ansys Icepak serves as a computational fluid dynamics (CFD) solver specifically designed for managing thermal issues in electronic devices. It offers insights into airflow, temperature distributions, and heat transfer phenomena within integrated circuit packages, printed circuit boards (PCBs), electronic assemblies, and power electronics. By leveraging the top-tier Ansys Fluent CFD solver, Ansys Icepak delivers robust cooling solutions tailored for electronic components, allowing for thorough thermal and fluid flow evaluations. The software operates through the Ansys Electronics Desktop (AEDT) graphical user interface (GUI), facilitating comprehensive analyses of heat transfer involving conduction, convection, and radiation. Moreover, it boasts sophisticated features for modeling both laminar and turbulent flow conditions, as well as conducting species analysis that incorporates radiation and convection effects. Ansys’ extensive PCB design platform empowers users to perform simulations on PCBs, ICs, and packages, enabling a precise assessment of complete electronic systems, thereby enhancing design efficiency and performance optimization. Thus, Ansys Icepak stands out as an essential tool for engineers aiming to improve thermal management in their electronic designs. -
44
Ansys Discovery
Ansys
Ansys Discovery introduces an innovative simulation-driven design tool that integrates instant physics simulation, high-fidelity simulation, and interactive geometry modeling into a singular, user-friendly platform. This groundbreaking product merges interactive modeling with various simulation features, empowering users to tackle essential design inquiries at the early stages of the design process. By adopting this proactive approach to simulation, teams can significantly reduce time and resources spent on prototyping as they concurrently examine numerous design ideas without delays for simulation feedback. Ansys Discovery effectively addresses vital design questions swiftly and accurately, enhancing overall productivity and performance by removing prolonged waits for simulation outputs. This capability allows engineers to prioritize innovation and optimize product performance, ultimately leading to a reduction in labor costs and physical prototyping expenses. Additionally, by facilitating the early resolution of design challenges, Ansys Discovery contributes to a notable increase in return on investment (ROI) throughout your organization, making it an invaluable asset for engineering teams. -
45
Ansys Lumerical FDTD
Ansys
Ansys Lumerical FDTD stands as the premier choice for simulating nanophotonic devices, processes, and materials. Its integrated design environment features robust scripting capabilities, sophisticated post-processing options, and optimization routines. This meticulously refined application of the FDTD method ensures exceptional solver performance across a wide range of applications. With these tools at your disposal, you can concentrate on the creative aspects of your design while relying on the software to handle the technical complexities. The platform offers a variety of advantages that facilitate flexible and customizable modeling and simulation. By leveraging Ansys Lumerical FDTD, you can effectively model nanophotonic devices, processes, and materials, thus empowering your innovative pursuits. Ultimately, Lumerical FDTD exemplifies excellence in the field, delivering dependable, powerful, and scalable solver performance tailored to meet diverse application needs.