Best Ansys Cloud Direct Alternatives in 2025
Find the top alternatives to Ansys Cloud Direct currently available. Compare ratings, reviews, pricing, and features of Ansys Cloud Direct alternatives in 2025. Slashdot lists the best Ansys Cloud Direct alternatives on the market that offer competing products that are similar to Ansys Cloud Direct. Sort through Ansys Cloud Direct alternatives below to make the best choice for your needs
-
1
Ansys Motor-CAD
Ansys
Ansys Motor-CAD serves as a specialized tool for the design of electric machines, facilitating rapid multiphysics simulations throughout the entire torque-speed operating range. It allows design engineers to assess various motor configurations and concepts to create designs that maximize performance, efficiency, and compactness. With its four integrated modules—EMag, Therm, Lab, and Mech—Motor-CAD enables quick and iterative multiphysics calculations, significantly reducing the time from initial concept to finalized design. This efficiency in calculations and streamlined data input processes provides users with the opportunity to investigate a broader array of motor topologies and thoroughly evaluate the effects of advanced loss mechanisms in the early phases of electromechanical design. The latest release boasts enhanced capabilities for design optimization, multiphysics analysis, and system modeling tailored specifically for electric motors, ensuring that engineers have the tools they need for cutting-edge development. Ultimately, Motor-CAD's fast multiphysics simulation capabilities across the full torque-speed range empower engineers to innovate and refine electric motor designs with unprecedented efficiency. -
2
OrCAD® X is a unified PCB design software platform. It offers significant improvements to ease of use, performance and automation. Our product suite includes applications for schematic, PCB layout, simulation and data management. OrCAD X Capture, a schematic design solution for electrical circuit creation and documentation, is one of OrCAD's most popular products. PSpice®, our virtual SPICE simulation engine integrated into Capture, allows you to prototype and verify your designs using industry-leading native analog, mixed signal, and advanced analysis engines. OrCAD X Presto and OrCAD X PCB editor are two PCB layout tools that allow designers to easily collaborate between ECAD/MCAD teams and build better PCBs faster. OrCAD X Presto is our new, simplified interface for novice designers, electrical engineers and PCB designers focused on quick turn PCB designs.
-
3
Ansys Gateway powered with AWS is the solution to developers, designers, engineers, and others who want to manage their Ansys Simulation & CAD/CAE development in the cloud. You can access cloud computing resources anywhere, on any device, via your web browser. Cloud applications can be created, customized, and connected with minimal technical knowledge. You can simply install third-party applications alongside Ansys apps. AWS cloud can help you accelerate innovation by removing the hardware barrier on-premises for High Performance Computing (HPC). Ansys' expertise in the configuration and deployment of Virtual Desktop Interfaces (VDI), and High Performance Computing (HPC) is your advantage Your AWS subscription allows you to manage and control your cloud CAD/CAE consumption and costs.
-
4
Simr (formerly UberCloud) is revolutionizing the world of simulation operations with our flagship solution, Simulation Operations Automation (SimOps). Designed to streamline and automate complex simulation workflows, Simr enhances productivity, collaboration, and efficiency for engineers and scientists across various industries, including automotive, aerospace, biomedical engineering, defense, and consumer electronics. Our cloud-based infrastructure provides scalable and cost-effective solutions, eliminating the need for significant upfront investments in hardware. This ensures that our clients have access to the computational power they need, exactly when they need it, leading to reduced costs and improved operational efficiency. Simr is trusted by some of the world's leading companies, including three of the seven most successful companies globally. One of our notable success stories is BorgWarner, a Tier 1 automotive supplier that leverages Simr to automate its simulation environments, significantly enhancing their efficiency and driving innovation.
-
5
Ansys Icepak
Ansys
Ansys Icepak serves as a computational fluid dynamics (CFD) solver specifically designed for managing thermal issues in electronic devices. It offers insights into airflow, temperature distributions, and heat transfer phenomena within integrated circuit packages, printed circuit boards (PCBs), electronic assemblies, and power electronics. By leveraging the top-tier Ansys Fluent CFD solver, Ansys Icepak delivers robust cooling solutions tailored for electronic components, allowing for thorough thermal and fluid flow evaluations. The software operates through the Ansys Electronics Desktop (AEDT) graphical user interface (GUI), facilitating comprehensive analyses of heat transfer involving conduction, convection, and radiation. Moreover, it boasts sophisticated features for modeling both laminar and turbulent flow conditions, as well as conducting species analysis that incorporates radiation and convection effects. Ansys’ extensive PCB design platform empowers users to perform simulations on PCBs, ICs, and packages, enabling a precise assessment of complete electronic systems, thereby enhancing design efficiency and performance optimization. Thus, Ansys Icepak stands out as an essential tool for engineers aiming to improve thermal management in their electronic designs. -
6
Ansys Additive Suite
Ansys
The Ansys Additive Suite provides essential insights that help designers, engineers, and analysts prevent build failures while ensuring that parts meet precise design specifications. This all-encompassing solution covers the full spectrum of the workflow, which includes design for additive manufacturing (DfAM), validation, print design, process simulation, and material exploration. Within the Additive Suite, users have access to tools such as Additive Prep, Print, and Science, along with Ansys Workbench Additive. Many features in Ansys Workbench allow for the creation of parametric analysis systems, enabling the examination and optimization of various parameters like part orientation and positioning. This suite is offered as an additional module for those holding an Ansys Mechanical Enterprise license. The integration of these tools facilitates a more streamlined approach to additive manufacturing, enhancing the overall efficiency and reliability of the production process. -
7
Ansys PathFinder
Ansys
Ansys PathFinder-SC serves as a robust and scalable solution designed to facilitate the planning, verification, and approval of IP and full-chip SoC designs, ensuring their integrity and resilience against electrostatic discharge (ESD). This innovative tool effectively identifies and isolates the underlying sources of design problems that could lead to chip failures due to charged-device model (CDM), human body model (HBM), or various ESD incidents. With its cloud-native architecture capable of harnessing thousands of compute cores, PathFinder-SC significantly accelerates full-chip turnaround times. Endorsed by leading foundries for current density assessments and ESD approval, it stands out as a reliable choice in the industry. The platform's comprehensive data modeling, extraction, and transient simulation engine provides an all-encompassing solution for ESD verification. Utilizing a single-pass model, it seamlessly reads industry-standard design formats, establishes ESD rules, extracts RCs for the power network, and conducts ESD simulations to pinpoint root causes while offering repair and optimization suggestions, all consolidated within one powerful tool. This streamlined process not only enhances efficiency but also reduces the time-to-market for critical design projects. -
8
Ansys Lumerical FDTD
Ansys
Ansys Lumerical FDTD stands as the premier choice for simulating nanophotonic devices, processes, and materials. Its integrated design environment features robust scripting capabilities, sophisticated post-processing options, and optimization routines. This meticulously refined application of the FDTD method ensures exceptional solver performance across a wide range of applications. With these tools at your disposal, you can concentrate on the creative aspects of your design while relying on the software to handle the technical complexities. The platform offers a variety of advantages that facilitate flexible and customizable modeling and simulation. By leveraging Ansys Lumerical FDTD, you can effectively model nanophotonic devices, processes, and materials, thus empowering your innovative pursuits. Ultimately, Lumerical FDTD exemplifies excellence in the field, delivering dependable, powerful, and scalable solver performance tailored to meet diverse application needs. -
9
Solid Edge is a collection of software tools that are affordable, easy-to-use, maintain, and easy to use. It advances all aspects of product development, including mechanical and electrical design, simulation, production, technical documentation, data management and cloud-based collaboration. Solid Edge is based on Siemens industry-leading technologies and offers the most comprehensive and innovative approach to product development for mainstream markets.
-
10
ETAP Software
ETAP
ETAP®, a full-strength analytical engineering software company, specializes in the analysis, simulation monitoring, control, optimization and automation of electrical power system. ETAP's electrical engineering software is the most complete and comprehensive integrated power system enterprise solution. -
11
Ansys Lumerical Multiphysics serves as advanced software for simulating photonic components, allowing for the integrated design of these elements by effectively capturing the interplay of various multiphysics phenomena such as optical, thermal, electrical, and quantum well interactions, all within a cohesive design platform. Designed specifically for engineering workflows, this user-friendly product design software enhances the user experience, enabling quick design iterations and delivering in-depth insights into actual product performance. By merging real-time physics with precise high-fidelity simulations in an accessible interface, it promotes a shorter time-to-market for innovative designs. Among its key offerings are a finite element design environment, integrated multiphysics workflows, extensive material models, and robust automation and optimization capabilities. The suite of solvers and streamlined processes in Lumerical Multiphysics effectively reflects the complex interactions of physical effects, facilitating accurate modeling of both passive and active photonic components. This comprehensive approach not only enhances design efficiency but also leads to improved product reliability and performance evaluations.
-
12
Constellant dpEngine
Constellant
Ecosystem Management-as-a-Service (EMaaS) solutions do more than just ensure smooth information sharing and communication. Their primary goal is to enhance and simplify each phase of the lifecycle for developers, partners, customers, and employees alike. This cloud-based software platform offers the essential Ecosystem-in-a-Box features necessary for EMaaS, complemented by robust data collection, reporting, and analytical tools. dpEngine presents an extensive suite of functionalities through its four core software modules: publisher, partner, developer, and marketplace. These offerings are specifically crafted to assist you as your digital business ecosystem expands. Take a moment to explore the accompanying graphic to discover which product modules can elevate your EMaaS experience, catering to your current requirements while also paving the way for future growth. Additionally, this user-friendly tool enables internal stakeholders to effortlessly automate the publication of technical documentation through continuous integration features. -
13
Ansys Discovery
Ansys
Ansys Discovery introduces an innovative simulation-driven design tool that integrates instant physics simulation, high-fidelity simulation, and interactive geometry modeling into a singular, user-friendly platform. This groundbreaking product merges interactive modeling with various simulation features, empowering users to tackle essential design inquiries at the early stages of the design process. By adopting this proactive approach to simulation, teams can significantly reduce time and resources spent on prototyping as they concurrently examine numerous design ideas without delays for simulation feedback. Ansys Discovery effectively addresses vital design questions swiftly and accurately, enhancing overall productivity and performance by removing prolonged waits for simulation outputs. This capability allows engineers to prioritize innovation and optimize product performance, ultimately leading to a reduction in labor costs and physical prototyping expenses. Additionally, by facilitating the early resolution of design challenges, Ansys Discovery contributes to a notable increase in return on investment (ROI) throughout your organization, making it an invaluable asset for engineering teams. -
14
Ansys Optics
Ansys
Understanding how light travels and influences both product efficacy and human experience is essential for assessing performance and ensuring comfort, perception, and safety. Ansys Optics stands out by effectively simulating the optical characteristics of a system, assessing the ultimate lighting effects, and forecasting the repercussions of variations in lighting and materials on appearance and perceived quality, all within realistic scenarios. With this advanced visualization tool, you can conceptualize your product prior to its creation, thereby enhancing the virtual experience for customers. Allow Ansys Optics and its optical simulation capabilities to guide you towards optimal solutions for any project style. The software adeptly addresses intricate optical challenges while enhancing visual aesthetic quality. By integrating design and engineering into a seamless workflow, you can significantly boost the final quality of your product, creating true-to-life visualizations that resonate with users. Additionally, you can develop and evaluate virtual prototypes of a cockpit HMI within an immersive, real-time setting, providing a comprehensive understanding of user interaction. This process not only improves design outcomes but also fosters innovation in product development. -
15
Ansys Exalto
Ansys
Ansys Exalto serves as an advanced post-LVS RLCk extraction software that empowers integrated circuit (IC) designers to effectively address unknown crosstalk between various components within the design hierarchy by extracting lumped-element parasitics and creating precise models for electrical, magnetic, and substrate coupling. This tool seamlessly integrates with a wide range of LVS software and can enhance the performance of any RC extraction tool you prefer. With Ansys Exalto's post-LVS RLCk extraction capabilities, IC designers are equipped to make accurate predictions regarding electromagnetic and substrate coupling effects, allowing for signoff on circuits that may have previously been deemed "too complex to analyze." The models that are extracted can be back-annotated to the schematic or netlist, ensuring compatibility with all circuit simulators. As the prevalence of RF and high-speed circuits continues to rise in contemporary silicon systems, electromagnetic coupling has become a primary factor that necessitates precise modeling to ensure the successful fabrication of silicon. Overall, Ansys Exalto represents a crucial advancement in circuit design, helping engineers navigate the complexities associated with modern electronic systems. -
16
Ansys Totem
Ansys
Ansys Totem-SC stands out as the established and reliable leader in the realm of power noise and reliability validation for both analog and mixed-signal designs, utilizing a cloud-native elastic compute framework. Recognized as the benchmark solution for voltage drop and electromigration multiphysics sign-off at the transistor level, Ansys Totem-SC has proven its effectiveness across numerous tapeouts, leveraging a cloud-based infrastructure to provide the necessary speed and capacity for comprehensive full-chip assessments. Its accuracy in signoff has been validated by all major foundries, supporting advanced finFET technologies down to 3nm. This platform excels in power noise and reliability analysis specifically for analog mixed-signal intellectual property and fully custom designs. Moreover, it generates IP models that facilitate SOC-level power integrity signoff in conjunction with RedHawk-SC and develops compact chip models for power delivery networks applicable at both chip and system levels. The solution is not only industry-proven but also certified by foundries, making it a highly regarded choice for analog and mixed-signal electromigration and IR analysis. With Ansys Totem-SC, designers can confidently ensure the integrity and reliability of their power delivery systems throughout the design process. -
17
Ansys RaptorH
Ansys
Ansys RaptorH is a sophisticated electromagnetic modeling tool that excels in simulating power grids, entirely custom blocks, spiral inductors, and clock tree structures. It employs high-speed distributed processing to generate precise, silicon-validated S-parameter and RLCk models. One of its standout features is the ability to analyze partial or incomplete layouts during the design process, offering users the flexibility to utilize either the versatile HFSS engine or the specialized RaptorX engine optimized for silicon applications. Additionally, Ansys RaptorH extracts electromagnetic models even at the pre-LVS stage for various routing and layout designs, including solid or perforated planes, circular shapes, spiral inductors, and MiM/MoM capacitors, all while automatically configuring boundary conditions. Its user-friendly graphical interface facilitates point-and-click net selection and enables what-if scenarios for better design insights. Moreover, RaptorH is fully compatible with all leading silicon foundries and supports encrypted technology files, ensuring seamless setup for analyses using either the HFSS or Raptor engines. This comprehensive integration not only streamlines the design workflow but also enhances the accuracy of electromagnetic simulations significantly. -
18
Ansys RedHawk-SC
Ansys
Ansys RedHawk-SC stands as the industry's premier solution for voltage drop and electromigration multiphysics sign-off in digital designs, recognized for its reliability. Its advanced analytics swiftly uncover vulnerabilities and facilitate what-if scenarios to enhance both power efficiency and performance. The cloud-based framework of RedHawk-SC ensures it can efficiently manage full-chip analyses with remarkable speed and capacity. The signoff precision is validated by all leading foundries across all finFET nodes, including those down to 3nm. Through its sophisticated power analytics, Ansys RedHawk-SC supports the creation of robust, low-power digital designs without sacrificing performance, offering designers extensive methods to identify and rectify dynamic voltage drop issues. The trusted multiphysics signoff analysis provided by Ansys RedHawk-SC significantly mitigates project and technology risks. Additionally, its algorithms have been rigorously validated by major foundries for all finFET processes and have demonstrated success in countless tapeouts, further solidifying its reputation in the industry. As technology continues to evolve, the capabilities of Ansys RedHawk-SC will adapt to meet future challenges in digital design. -
19
HeadSpin's global cloud of devices enables mobile and web testing on thousands upon thousands of SIM-enabled phones. These devices are located in more than 100 locations across the globe on real WiFi and carrier networks. No simulation or emulation. No SDK is required. The HeadSpin Appliance provides a secure, portable, temperature-controlled enclosure for a wide variety of compatible devices, and allows RF access to the local WiFi or carrier network. You can deploy on-prem, in a cloud or anywhere else. HeadSpin provides the data and AI-powered insights that you need to ensure flawless digital experiences for your customers. This includes code and packet analysis, machine learning, computer vision techniques, and machine learning. To troubleshoot errors, crashes, SDK bloat and system resource issues, you can dive into the client-side performance.
-
20
Ansys Mechanical
Ansys
1 RatingAnsys Mechanical stands out as an exceptional finite element solver, featuring capabilities in structural, thermal, acoustics, transient, and nonlinear analyses to enhance your modeling processes. This powerful tool allows you to tackle intricate structural engineering challenges, facilitating quicker and more informed design choices. The suite's finite element analysis (FEA) solvers permit the customization and automation of solutions for structural mechanics issues, enabling the examination of various design scenarios through parameterization. With its extensive array of analysis tools, Ansys Mechanical provides a versatile environment, guiding users from geometry preparation to integrating additional physics for enhanced accuracy. Its user-friendly and adaptable interface ensures that engineers at any experience level can swiftly obtain reliable results. Overall, Ansys Mechanical fosters an integrated platform that leverages finite element analysis (FEA) for comprehensive structural evaluations, proving invaluable for modern engineering projects. -
21
Ansys Maxwell
Ansys
Ansys Maxwell serves as a powerful electromagnetic field solver tailored for electric machines, transformers, wireless charging systems, permanent magnet latches, actuators, and various electromechanical devices. It adeptly addresses the challenges of static, frequency-domain, and time-varying electric and magnetic fields. Additionally, Maxwell comes equipped with specialized design interfaces specifically for electric machines and power converters. With the capabilities of Maxwell, users can accurately analyze the nonlinear and transient behaviors of electromechanical components, as well as their impact on drive circuits and control system designs. By utilizing Maxwell’s state-of-the-art electromagnetic field solvers in conjunction with integrated circuit and systems simulation technologies, engineers can gain insights into the performance of electromechanical systems well before any physical prototypes are created. Moreover, Maxwell is recognized for delivering reliable simulations of low-frequency electromagnetic fields pertinent to industrial components, making it a valuable tool in the design and analysis process. This comprehensive approach not only enhances design efficiency but also aids in minimizing potential issues during the development stage. -
22
Ansys Granta
Ansys
Ansys Granta products, cultivated over a quarter-century, empower organizations to harness, protect, and leverage their Material Intelligence effectively. By facilitating the digitalization of materials knowledge, Ansys assists businesses in selecting appropriate materials for their products and provides educational resources related to materials. The suite of materials information management software offered by Ansys Granta enables companies to fully utilize their internal Material Intelligence. Ansys Granta MI™ serves as a flexible solution, allowing for the creation, management, and storage of crucial material data, while ensuring smooth integration with top CAD, CAE, and PLM systems to maintain consistency across the enterprise. With Ansys Granta Selector, users can make informed material selections by evaluating various properties from an extensive database, ensuring optimal material choices for their specific applications. Additionally, access to an unparalleled materials data library significantly enhances the accuracy of simulations conducted by engineers. -
23
OnScale Solve
OnScale
$4OnScale stands out as the pioneering platform for Cloud Engineering Simulation, merging advanced multiphysics solver technology with the boundless computational capabilities of cloud supercomputers. This innovative solution empowers engineers to execute a vast array of full 3D multiphysics simulations concurrently, enabling the creation of authentic Digital Prototypes that represent the complete operational behavior of intricate high-tech devices. With the aim of delivering an exceptional Cloud Engineering Simulation experience, OnScale Solve is designed to be intuitive, robust, and effective. It operates seamlessly on both public and private cloud supercomputers and features a user-friendly web interface, an API for smooth integration into existing design processes, customizable scripting options for tailored engineering simulations, and plugins that expand its modeling functionalities. Furthermore, OnScale Solve equips engineers with the capability to synthetically generate data crucial for training advanced AI/ML algorithms, thereby enhancing innovation in technology development. This comprehensive platform ensures that engineers have the tools they need to push the boundaries of simulation and design. -
24
Ansys Twin Builder
Ansys
A digital twin that is driven by analytics and based on simulations serves as a virtual counterpart to a physical asset currently in use, functioning as a comprehensive multidomain system simulation that reflects the asset's lifecycle and performance. These hybrid digital twins facilitate the design and optimization of systems, as well as predictive maintenance strategies, which in turn enhance the management of industrial assets. By utilizing Ansys Twin Builder, organizations can boost their revenue, control expenses, and gain a significant edge over competitors. This tool allows for the rapid development of a digital twin, which acts as an interconnected representation of an operational asset, leading to improved management throughout its lifecycle and enabling effective predictive maintenance. Such capabilities not only help reduce costs but also play a crucial role in sustaining a lasting competitive advantage in the marketplace. -
25
Ansys HFSS
Ansys
Ansys HFSS is a versatile 3D electromagnetic (EM) simulation tool used for the design and analysis of high-frequency electronic devices such as antennas, interconnects, connectors, integrated circuits (ICs), and printed circuit boards (PCBs). This powerful software allows engineers to create and evaluate a wide range of high-frequency electronic products, including antenna arrays, RF and microwave components, and filters. Renowned among engineers globally, Ansys HFSS is essential for developing high-speed electronics utilized in various applications like communication systems, advanced driver assistance systems (ADAS), satellites, and Internet of Things (IoT) devices. The software's exceptional performance and precision empower engineers to tackle complex challenges related to RF, microwave, IC, PCB, and electromagnetic interference (EMI) issues. With a robust suite of solvers, Ansys HFSS effectively addresses a myriad of electromagnetic challenges, making it an indispensable resource in the field of electronic design. As technology progresses, the relevance of such simulation tools becomes increasingly critical in ensuring optimal performance in modern electronic systems. -
26
Luminary Cloud
Luminary Cloud
$5 per creditLuminary Cloud represents the cutting-edge of computer-aided engineering as the first SaaS platform designed to deliver rapid insights to engineers, enabling them to conduct simulations, analyses, and iterations that were previously unattainable. Experience the remarkable ability to perform simulations in mere minutes using some of the most powerful GPUs available in the cloud. Your raw simulation data can be securely stored, accessed, and analyzed, leading to valuable insights that enhance engineering design optimization. By expediting experiments, you can improve product design quality while minimizing defects. This platform significantly accelerates time to market by enhancing engineering efficiency and reducing costs associated with hardware, prototyping, and physical testing. Empower your team to achieve their most innovative designs through quicker insights and outcomes, all facilitated by the most user-friendly simulation platform. With the capability to run rapid simulations at any scale, collaborate globally through project sharing, and begin analyzing results without delay, your engineering process will be transformed for the better. The future of engineering design is here, making it easier than ever to bring innovative products to life. -
27
Collimator
Collimator
Collimator is a simulation and modeling platform for hybrid dynamical system. Engineers can design and test complex, mission-critical systems in a reliable, secure, fast, and intuitive way with Collimator. Our customers are control system engineers from the electrical, mechanical, and control sectors. They use Collimator to improve productivity, performance, and collaborate more effectively. Our out-of-the-box features include an intuitive block diagram editor, Python blocks for developing custom algorithms, Jupyter notebooks for optimizing their systems, high performance computing in cloud, and role-based access controls. -
28
Ansys optiSLang
Ansys
Streamline your simulation toolchain and link it to advanced algorithms for robust design optimization. Prepare for your future requirements in parametric and simulation-driven virtual product development by utilizing Ansys optiSLang. This innovative platform continuously evolves to meet the demands of CAE-based Robust Design Optimization (RDO). Its cutting-edge algorithms are designed to efficiently and automatically identify the most robust design configurations, thus replacing the tedious, manual methods previously employed in RDO. By incorporating optiSLang as your solution for process integration and design optimization, you will be empowered to make informed decisions more quickly. Enhance the search for optimal and robust design configurations by leveraging the automation of the search process, complemented by interactive visualization and AI technologies. With its advanced algorithms for design exploration, optimization, robustness, and reliability analysis, you can achieve superior decision-making with reduced effort, ultimately leading to a more efficient design optimization process. Embrace this transformative approach to elevate your product development and stay ahead in a competitive landscape. -
29
Capital Electra X
Siemens
Capital Electra X, developed by Siemens, is an innovative cloud-based electrical design software that simplifies processes and boosts the efficiency of engineers. Users can dive right into designing without any installation, training, or setup, thanks to the secure access provided via a web browser. Its user-friendly drag-and-drop interface, along with advanced schematic automation tools, allows for the rapid creation of circuits at a pace up to five times quicker than traditional methods. Features like tagging for symbols and wires, automated wiring, circuit reuse, and real-time cross-referencing all serve to accelerate the design workflow even further. As a collaborative tool, Capital Electra X facilitates access to and sharing of essential electrical CAD schematics from any device and location, while offering customizable permissions for users. The software includes robust version control, allowing individuals to monitor modifications and revert to earlier versions when necessary. Furthermore, automated daily backups enhance security and ease the burden on IT resources, ensuring that the data remains safe and accessible. Overall, Capital Electra X represents a significant advancement in the field of electrical design. -
30
Ansys Fluent
Ansys
Ansys Fluent stands out as the premier fluid simulation software, distinguished by its cutting-edge physics modeling features and unmatched precision. By utilizing Ansys Fluent, you can dedicate more time to innovation and enhancing product efficiency. This software is backed by extensive validation across diverse applications, ensuring you can rely on its simulation outcomes. With Ansys Fluent, creating sophisticated physics models and evaluating various fluid dynamics phenomena is seamless within a user-friendly and customizable interface. This robust simulation tool significantly expedites your design process, allowing for quicker iterations and improvements. Boasting top-tier physics models, Ansys Fluent can effectively and accurately tackle intricate, large-scale simulations. The software unveils new possibilities for computational fluid dynamics (CFD) analysis. Additionally, its rapid pre-processing capabilities and swift solving times empower you to be the quickest in bringing your products to market. Fluent's unmatched features foster boundless innovation while maintaining a steadfast commitment to precision and reliability. Ultimately, Ansys Fluent not only enhances your design capabilities but also positions you ahead of the competition in a fast-paced industry. -
31
SwiftComp
AnalySwift
SwiftComp is an innovative composite simulation software that combines multiscale and multiphysics capabilities to provide the precision of 3D finite element analysis (FEA) with the simplicity of basic engineering models. This groundbreaking tool simplifies the modeling process for engineers, allowing them to treat composites with the same ease as metals while maintaining accuracy and capturing intricate microstructural details. It offers cohesive modeling for structures that are one-dimensional (like beams), two-dimensional (such as plates or shells), and three-dimensional, effectively calculating the material properties required. Users can utilize SwiftComp independently for virtual composite testing or as an enhancement to existing structural analysis tools, thereby integrating high-fidelity composite modeling into their workflows. Additionally, SwiftComp excels in determining the optimal structural model for macroscopic analysis and includes capabilities for dehomogenization, which enables the calculation of pointwise stresses within the microstructure. It seamlessly connects with established software such as ABAQUS and ANSYS, further broadening its applicability in engineering projects. As a result, SwiftComp significantly enhances the efficiency and effectiveness of composite material modeling in various engineering applications. -
32
Ansys Motion
Ansys
Ansys Motion, now incorporated within the Mechanical interface, represents a cutting-edge engineering solution built upon a sophisticated multibody dynamics solver. This innovative tool facilitates rapid and precise assessments of both rigid and flexible entities, allowing for a comprehensive evaluation of physical phenomena through a holistic approach to mechanical systems. Ansys Motion employs four closely linked solving methodologies: rigid body, flexible body, modal, and meshfree EasyFlex, providing unmatched capabilities for analyzing various systems and mechanisms in any desired combination. It can effectively handle large assemblies with millions of degrees of freedom while accounting for both flexibility and contact effects. Standardized connections and joints enable seamless integration and loading of these systems. Moreover, the ability to conduct simulations within Ansys Motion using the same interface as traditional structural analysis promotes the reusability of a single model for multiple applications, resulting in significant reductions in time and effort required for complex projects. This streamlined workflow enhances productivity and fosters innovation in engineering design. -
33
Ansys LS-DYNA
Ansys
Ansys LS-DYNA stands out as the leading explicit simulation software widely utilized for various applications, including drop testing, impact analysis, penetration scenarios, collisions, and ensuring occupant safety. Renowned as the most extensively used explicit simulation tool globally, Ansys LS-DYNA excels in modeling the behavior of materials subjected to brief yet intense loading conditions. Its comprehensive suite of elements, contact formulations, and material models enables the simulation of intricate models while allowing precise control over every aspect of the issue at hand. The software offers a broad range of analyses, boasting rapid and effective parallel processing capabilities. Engineers can investigate simulations that involve material failure, examining how such failures evolve through components or entire systems. Additionally, LS-DYNA adeptly manages models with numerous interacting parts or surfaces, ensuring that the interactions and load transfers between complex behaviors are accurately represented. This capability makes LS-DYNA an invaluable tool for engineers facing multifaceted simulation challenges. -
34
Ansys Autodyn
Ansys
Ansys Autodyn enables the simulation of material responses to various events, including short-duration severe mechanical loadings, high pressures, and explosions. This software combines advanced solution techniques with user-friendly features, making it accessible for quick comprehension and simulation of significant material deformation or failure. It offers a diverse range of models to accurately capture complex physical phenomena, such as the interactions between liquids, solids, and gases, as well as phase transitions in materials and shock wave propagation. With seamless integration into Ansys Workbench and its intuitive user interface, Ansys Autodyn stands out in the industry by facilitating the generation of precise results efficiently. The inclusion of the smooth particle hydrodynamics (SPH) solver enhances its capabilities for explicit analysis, ensuring comprehensive support for various simulation needs. Furthermore, Ansys Autodyn allows users to choose from multiple solver technologies, ensuring that the most suitable solver is applied for different components of the model, thus optimizing performance and accuracy. -
35
MapleSim
Waterloo Maple
MapleSim serves as a sophisticated modeling solution that spans from the use of digital twins for virtual commissioning to creating system-level models for intricate engineering design endeavors, enabling significant reductions in development time and costs while effectively addressing real-world performance challenges. By enhancing control code rather than relying on hardware modifications, you can eliminate vibrations and pinpoint the underlying causes of performance issues through in-depth simulation insights. This powerful tool allows for the validation of design performance prior to moving on to physical prototypes. Leveraging cutting-edge methods, MapleSim not only drastically shortens model development time but also enhances understanding of system behavior and facilitates rapid, high-fidelity simulations. As your simulation requirements evolve, you can easily scale and connect your models. With its adaptable modeling language, you can extend your designs further by integrating components across various domains within a virtual prototype, tackling even the most difficult machine performance challenges with confidence. Overall, MapleSim empowers engineers to innovate with efficiency and precision, ensuring that their designs meet the rigorous demands of modern engineering projects. -
36
Abaqus
Dassault Systèmes
Currently, engineering teams frequently rely on specialized simulation tools from various vendors to assess different design characteristics, which can lead to inefficiencies and higher costs due to the use of multiple software solutions. To address these challenges, SIMULIA offers a comprehensive suite of cohesive analysis products that enable users with varying levels of simulation knowledge and expertise to collaborate effectively while sharing simulation data and approved methodologies without compromising information integrity. The Abaqus Unified FEA product suite provides robust and comprehensive solutions for both standard and advanced engineering challenges, catering to a wide range of industrial applications. In the automotive sector, engineering teams can analyze complete vehicle loads, dynamic vibrations, multibody systems, impact and crash scenarios, nonlinear static situations, thermal interactions, and acoustic-structural relationships, all while utilizing a unified model data structure and integrated solver technology. This seamless integration enhances collaboration and improves the overall efficiency of the engineering process, allowing teams to innovate more rapidly. -
37
AVEVA PRO/II Simulation
AVEVA
AVEVA PRO/II™ Simulation serves as a steady-state simulator that enhances plant efficiency by refining process design, conducting operational analyses, and executing engineering studies. By offering a comprehensive approach to optimization, AVEVA PRO/II Simulation focuses on enhancing plant performance through the improvement of process design and operational analysis while also conducting in-depth engineering studies. Capable of performing complex heat and material balance calculations for an extensive array of chemical processes, this simulation tool presents a diverse selection of thermodynamic models applicable across multiple industries. It allows users to devise new processes and assess alternative plant configurations to achieve the most economical operations. Now accessible via the cloud, AVEVA PRO/II Simulation provides on-demand availability, straightforward maintenance, and adaptable usage options. Additionally, users can benefit from a highly experienced support team with over 15 years in the field, ensuring assistance whenever needed. Overall, AVEVA PRO/II Simulation stands out as a robust solution for optimizing plant performance, streamlining design processes, and enhancing operational efficiency. -
38
FEATool Multiphysics
Precise Simulation
1 RatingFEATool Multiphysics – "Physics Simulator Made Easy" – a fully integrated physics simulation, FEA and CFD toolbox. FEATool Multiphysics provides a fully integrated simulation platform that includes a unified user interface for several multi-physics solvers such as OpenFOAM and Computational fluid dynamics (CFD), including SU2 Code and FEniCS. This allows users to model coupled physics phenomena, such as those found in fluid flow and heat transfer, structural, electromagnetics acoustics and chemical engineering applications. FEATool multiphysics is a trusted tool for engineers and researchers in the energy, automotive and semi-conductor industries. -
39
Energy2D
The Concord Consortium
FreeEnergy2D is an interactive multiphysics simulation program grounded in computational physics, designed to model the three primary modes of heat transfer: conduction, convection, and radiation, while also integrating particle dynamics. This software operates efficiently on a wide range of computers, simplifying the process by removing the need for switches between preprocessors, solvers, and postprocessors that are usually necessary for computational fluid dynamics simulations. Users can create "computational experiments" to explore scientific hypotheses or address engineering challenges without the need for intricate mathematical formulations. Additionally, development is ongoing to introduce various energy transformation types and to enhance support for different fluid types. While Energy2D excels in accurately modeling conduction, its representations of convection and radiation are not entirely precise, which means results involving these elements should be regarded as qualitative. Over 40 scientific papers have utilized Energy2D as a valuable research instrument, showcasing its adoption in the academic community. As the program evolves, its capabilities are expected to expand further, potentially offering more comprehensive insights into complex physical interactions. -
40
Explore a versatile, scalable, and modular virtual driving simulator that facilitates testing across diverse objectives and performance metrics. The Ansys VRXPERIENCE Driving Simulator, powered by SCANeR™, allows users to create scenarios, evaluate software, analyze vehicle dynamics, and engage with sensors all within a virtual driving framework. This simulator provides a complete virtual driving laboratory for scrutinizing performance outcomes. The VRXPERIENCE Driving Simulator delivers an engaging simulated driving experience situated in a realistic environment. Conduct thorough safety evaluations that enable the simulation of millions of virtual miles in just a few days, significantly accelerating development by a factor of 1,000 when compared to traditional road testing methods. As the landscape of passenger vehicles evolves to become increasingly digital and autonomous, the demand for an array of advanced technologies, including various sensors like cameras, radar, and lidar, as well as sophisticated embedded software for automated control systems, continues to grow. This advancement underscores the necessity for innovative tools in vehicle development and testing.
-
41
OPTIMICA Compiler Toolkit
MODELON
Modelon’s OPTIMICA Compiler Toolkit stands out as the market's leading Modelica-based mathematical engine, providing users with a robust solution for automating, simulating, and optimizing system behaviors across the model-based design cycle. As the trusted compiler for Modelon Impact, OPTIMICA allows users to construct multi-domain physical systems by selecting from a vast library of model components. The toolkit’s cutting-edge solvers facilitate the evaluation of intricate physical systems, accommodating both transient simulations and steady-state calculations, as well as dynamic optimization. With its advanced mathematical capabilities, OPTIMICA can effectively manipulate and streamline models to enhance performance and reliability, catering to diverse industries and applications that range from automotive and active safety to energy and power generation optimization. Given the growing demand for effective power regulation in the contemporary energy landscape, optimizing the startup processes of thermal power plants has become a critical industrial requirement. Furthermore, the flexibility and efficiency of OPTIMICA make it an invaluable asset for engineers tackling complex system challenges. -
42
Geminus
Geminus
Geminus harnesses the capabilities of predictive intelligence by blending artificial intelligence with physics through innovative multi-fidelity modeling techniques. Our pioneering AI, based on first principles, incorporates the physical limitations of the real world into robust predictive frameworks. The Geminus platform adeptly utilizes limited data to swiftly evaluate the dynamics of intricate industrial systems, enabling precise forecasts regarding the effects of key business decisions. By integrating models and data, Geminus's multi-fidelity strategy allows for the rapid creation of highly accurate surrogates, achieving speeds over 1,000 times faster than conventional simulations. Unique to Geminus is its ability to effectively measure model uncertainty, ensuring that you can trust your predictions and the strategic choices they inform. Additionally, Geminus significantly reduces the time taken to develop models from months to mere hours, while demanding far less data and computational resources compared to traditional AI or simulation approaches. The models generated through Geminus are imbued with insights derived from the actual behaviors of real-world systems, providing a deeper understanding that enhances decision-making. This innovative approach not only streamlines the modeling process but also empowers organizations to adapt swiftly to changing environments. -
43
ESS has gained significant traction in the automotive sector due to our specialized solutions tailored for this niche market. As our offerings thrived in a highly competitive landscape, ESS expanded into the “on-demand” sector. With the introduction of the alsim cloud, we are accomplishing unprecedented feats in the realm of simulation technology. Our pay-per-use simulation tools are accessible to all users, regardless of their CFD background, allowing students, engineers, and businesses to leverage our advanced techniques to enhance their projects. In addition to our offline products, we cater to diverse industries by providing solutions and detailed reports derived from our simulation outputs. We engage in close collaboration with our clients to understand their specific needs and challenges, ensuring they receive precise simulation results tailored to their requirements. Drawing from our extensive experience with industrial processes and our powerful solvers, we have successfully supported several leading OEMs around the globe. This dedication to customer satisfaction and innovation continues to drive our growth and influence in the industry.
-
44
Ansys HPC
Ansys
The Ansys HPC software suite allows users to leverage modern multicore processors to conduct a greater number of simulations in a shorter timeframe. These simulations can achieve unprecedented levels of complexity, size, and accuracy thanks to high-performance computing (HPC) capabilities. Ansys provides a range of HPC licensing options that enable scalability, accommodating everything from single-user setups for basic parallel processing to extensive configurations that support nearly limitless parallel processing power. For larger teams, Ansys ensures the ability to execute highly scalable, multiple parallel processing simulations to tackle the most demanding projects. In addition to its parallel computing capabilities, Ansys also delivers parametric computing solutions, allowing for a deeper exploration of various design parameters—including dimensions, weight, shape, materials, and mechanical properties—during the early stages of product development. This comprehensive approach not only enhances simulation efficiency but also significantly optimizes the design process. -
45
SimFlow
SIMFLOW Technologies
SimFlow is a desktop Computational Fluid Dynamics analysis software for Windows OS and Linux OS. It is based upon OpenFOAM libraries and acts as an OpenFOAM GUI. It is a professional CAE package that engineers can use to create 3D simulations. SimFlow is a powerful CFD software that can be used for all purposes. SimFlow combines the intuitive graphical user interface of OpenFOAM®, with the benefits of the open-source OpenFOAM®. SimFlow is free to download and you can use it in an evaluation mode to solve some of the most difficult problems that you face as an engineer or scientist. Perhaps you use CFD software every day or just want to get started on your adventure. SimFlow is a powerful fluid simulation software that allows you to rediscover CFD without any time limits.