Best Amazon Managed Service for Apache Flink Alternatives in 2025
Find the top alternatives to Amazon Managed Service for Apache Flink currently available. Compare ratings, reviews, pricing, and features of Amazon Managed Service for Apache Flink alternatives in 2025. Slashdot lists the best Amazon Managed Service for Apache Flink alternatives on the market that offer competing products that are similar to Amazon Managed Service for Apache Flink. Sort through Amazon Managed Service for Apache Flink alternatives below to make the best choice for your needs
-
1
StarTree
StarTree
25 RatingsStarTree Cloud is a fully-managed real-time analytics platform designed for OLAP at massive speed and scale for user-facing applications. Powered by Apache Pinot, StarTree Cloud provides enterprise-grade reliability and advanced capabilities such as tiered storage, scalable upserts, plus additional indexes and connectors. It integrates seamlessly with transactional databases and event streaming platforms, ingesting data at millions of events per second and indexing it for lightning-fast query responses. StarTree Cloud is available on your favorite public cloud or for private SaaS deployment. StarTree Cloud includes StarTree Data Manager, which allows you to ingest data from both real-time sources such as Amazon Kinesis, Apache Kafka, Apache Pulsar, or Redpanda, as well as batch data sources such as data warehouses like Snowflake, Delta Lake or Google BigQuery, or object stores like Amazon S3, Apache Flink, Apache Hadoop, or Apache Spark. StarTree ThirdEye is an add-on anomaly detection system running on top of StarTree Cloud that observes your business-critical metrics, alerting you and allowing you to perform root-cause analysis — all in real-time. -
2
Apache Flink
Apache Software Foundation
Apache Flink serves as a powerful framework and distributed processing engine tailored for executing stateful computations on both unbounded and bounded data streams. It has been engineered to operate seamlessly across various cluster environments, delivering computations with impressive in-memory speed and scalability. Data of all types is generated as a continuous stream of events, encompassing credit card transactions, sensor data, machine logs, and user actions on websites or mobile apps. The capabilities of Apache Flink shine particularly when handling both unbounded and bounded data sets. Its precise management of time and state allows Flink’s runtime to support a wide range of applications operating on unbounded streams. For bounded streams, Flink employs specialized algorithms and data structures optimized for fixed-size data sets, ensuring remarkable performance. Furthermore, Flink is adept at integrating with all previously mentioned resource managers, enhancing its versatility in various computing environments. This makes Flink a valuable tool for developers seeking efficient and reliable stream processing solutions. -
3
Striim
Striim
Data integration for hybrid clouds Modern, reliable data integration across both your private cloud and public cloud. All this in real-time, with change data capture and streams. Striim was developed by the executive and technical team at GoldenGate Software. They have decades of experience in mission critical enterprise workloads. Striim can be deployed in your environment as a distributed platform or in the cloud. Your team can easily adjust the scaleability of Striim. Striim is fully secured with HIPAA compliance and GDPR compliance. Built from the ground up to support modern enterprise workloads, whether they are hosted in the cloud or on-premise. Drag and drop to create data flows among your sources and targets. Real-time SQL queries allow you to process, enrich, and analyze streaming data. -
4
Amazon Data Firehose
Amazon
$0.075 per monthEffortlessly capture, modify, and transfer streaming data in real time. You can create a delivery stream, choose your desired destination, and begin streaming data with minimal effort. The system automatically provisions and scales necessary compute, memory, and network resources without the need for continuous management. You can convert raw streaming data into various formats such as Apache Parquet and dynamically partition it without the hassle of developing your processing pipelines. Amazon Data Firehose is the most straightforward method to obtain, transform, and dispatch data streams in mere seconds to data lakes, data warehouses, and analytics platforms. To utilize Amazon Data Firehose, simply establish a stream by specifying the source, destination, and any transformations needed. The service continuously processes your data stream, automatically adjusts its scale according to the data volume, and ensures delivery within seconds. You can either choose a source for your data stream or utilize the Firehose Direct PUT API to write data directly. This streamlined approach allows for greater efficiency and flexibility in handling data streams. -
5
DeltaStream
DeltaStream
DeltaStream is an integrated serverless streaming processing platform that integrates seamlessly with streaming storage services. Imagine it as a compute layer on top your streaming storage. It offers streaming databases and streaming analytics along with other features to provide an integrated platform for managing, processing, securing and sharing streaming data. DeltaStream has a SQL-based interface that allows you to easily create stream processing apps such as streaming pipelines. It uses Apache Flink, a pluggable stream processing engine. DeltaStream is much more than a query-processing layer on top Kafka or Kinesis. It brings relational databases concepts to the world of data streaming, including namespacing, role-based access control, and enables you to securely access and process your streaming data, regardless of where it is stored. -
6
Google Cloud Datastream
Google
A user-friendly, serverless service for change data capture and replication that provides access to streaming data from a variety of databases including MySQL, PostgreSQL, AlloyDB, SQL Server, and Oracle. This solution enables near real-time analytics in BigQuery, allowing for quick insights and decision-making. With a straightforward setup that includes built-in secure connectivity, organizations can achieve faster time-to-value. The platform is designed to scale automatically, eliminating the need for resource provisioning or management. Utilizing a log-based mechanism, it minimizes the load and potential disruptions on source databases, ensuring smooth operation. This service allows for reliable data synchronization across diverse databases, storage systems, and applications, while keeping latency low and reducing any negative impact on source performance. Organizations can quickly activate the service, enjoying the benefits of a scalable solution with no infrastructure overhead. Additionally, it facilitates seamless data integration across the organization, leveraging the power of Google Cloud services such as BigQuery, Spanner, Dataflow, and Data Fusion, thus enhancing overall operational efficiency and data accessibility. This comprehensive approach not only streamlines data processes but also empowers teams to make informed decisions based on timely data insights. -
7
IBM Event Streams is a comprehensive event streaming service based on Apache Kafka, aimed at assisting businesses in managing and reacting to real-time data flows. It offers features such as machine learning integration, high availability, and secure deployment in the cloud, empowering organizations to develop smart applications that respond to events in real time. The platform is designed to accommodate multi-cloud infrastructures, disaster recovery options, and geo-replication, making it particularly suitable for critical operational tasks. By facilitating the construction and scaling of real-time, event-driven solutions, IBM Event Streams ensures that data is processed with speed and efficiency, ultimately enhancing business agility and responsiveness. As a result, organizations can harness the power of real-time data to drive innovation and improve decision-making processes.
-
8
Google Cloud Dataflow
Google
Data processing that integrates both streaming and batch operations while being serverless, efficient, and budget-friendly. It offers a fully managed service for data processing, ensuring seamless automation in the provisioning and administration of resources. With horizontal autoscaling capabilities, worker resources can be adjusted dynamically to enhance overall resource efficiency. The innovation is driven by the open-source community, particularly through the Apache Beam SDK. This platform guarantees reliable and consistent processing with exactly-once semantics. Dataflow accelerates the development of streaming data pipelines, significantly reducing data latency in the process. By adopting a serverless model, teams can devote their efforts to programming rather than the complexities of managing server clusters, effectively eliminating the operational burdens typically associated with data engineering tasks. Additionally, Dataflow’s automated resource management not only minimizes latency but also optimizes utilization, ensuring that teams can operate with maximum efficiency. Furthermore, this approach promotes a collaborative environment where developers can focus on building robust applications without the distraction of underlying infrastructure concerns. -
9
VeloDB
VeloDB
VeloDB, which utilizes Apache Doris, represents a cutting-edge data warehouse designed for rapid analytics on large-scale real-time data. It features both push-based micro-batch and pull-based streaming data ingestion that occurs in mere seconds, alongside a storage engine capable of real-time upserts, appends, and pre-aggregations. The platform delivers exceptional performance for real-time data serving and allows for dynamic interactive ad-hoc queries. VeloDB accommodates not only structured data but also semi-structured formats, supporting both real-time analytics and batch processing capabilities. Moreover, it functions as a federated query engine, enabling seamless access to external data lakes and databases in addition to internal data. The system is designed for distribution, ensuring linear scalability. Users can deploy it on-premises or as a cloud service, allowing for adaptable resource allocation based on workload demands, whether through separation or integration of storage and compute resources. Leveraging the strengths of open-source Apache Doris, VeloDB supports the MySQL protocol and various functions, allowing for straightforward integration with a wide range of data tools, ensuring flexibility and compatibility across different environments. -
10
Samza
Apache Software Foundation
Samza enables the development of stateful applications that can handle real-time data processing from various origins, such as Apache Kafka. Proven to perform effectively at scale, it offers versatile deployment choices, allowing execution on YARN or as an independent library. With the capability to deliver remarkably low latencies and high throughput, Samza provides instantaneous data analysis. It can manage multiple terabytes of state through features like incremental checkpoints and host-affinity, ensuring efficient data handling. Additionally, Samza's operational simplicity is enhanced by its deployment flexibility—whether on YARN, Kubernetes, or in standalone mode. Users can leverage the same codebase to seamlessly process both batch and streaming data, which streamlines development efforts. Furthermore, Samza integrates with a wide range of data sources, including Kafka, HDFS, AWS Kinesis, Azure Event Hubs, key-value stores, and ElasticSearch, making it a highly adaptable tool for modern data processing needs. -
11
Apache Doris
The Apache Software Foundation
FreeApache Doris serves as a cutting-edge data warehouse tailored for real-time analytics, enabling exceptionally rapid analysis of data at scale. It features both push-based micro-batch and pull-based streaming data ingestion that occurs within a second, alongside a storage engine capable of real-time upserts, appends, and pre-aggregation. With its columnar storage architecture, MPP design, cost-based query optimization, and vectorized execution engine, it is optimized for handling high-concurrency and high-throughput queries efficiently. Moreover, it allows for federated querying across various data lakes, including Hive, Iceberg, and Hudi, as well as relational databases such as MySQL and PostgreSQL. Doris supports complex data types like Array, Map, and JSON, and includes a Variant data type that facilitates automatic inference for JSON structures, along with advanced text search capabilities through NGram bloomfilters and inverted indexes. Its distributed architecture ensures linear scalability and incorporates workload isolation and tiered storage to enhance resource management. Additionally, it accommodates both shared-nothing clusters and the separation of storage from compute resources, providing flexibility in deployment and management. -
12
Astra Streaming
DataStax
Engaging applications captivate users while motivating developers to innovate. To meet the growing demands of the digital landscape, consider utilizing the DataStax Astra Streaming service platform. This cloud-native platform for messaging and event streaming is built on the robust foundation of Apache Pulsar. With Astra Streaming, developers can create streaming applications that leverage a multi-cloud, elastically scalable architecture. Powered by the advanced capabilities of Apache Pulsar, this platform offers a comprehensive solution that encompasses streaming, queuing, pub/sub, and stream processing. Astra Streaming serves as an ideal partner for Astra DB, enabling current users to construct real-time data pipelines seamlessly connected to their Astra DB instances. Additionally, the platform's flexibility allows for deployment across major public cloud providers, including AWS, GCP, and Azure, thereby preventing vendor lock-in. Ultimately, Astra Streaming empowers developers to harness the full potential of their data in real-time environments. -
13
The Streaming service is a real-time, serverless platform for event streaming that is compatible with Apache Kafka, designed specifically for developers and data scientists. It is seamlessly integrated with Oracle Cloud Infrastructure (OCI), Database, GoldenGate, and Integration Cloud. Furthermore, the service offers ready-made integrations with numerous third-party products spanning various categories, including DevOps, databases, big data, and SaaS applications. Data engineers can effortlessly establish and manage extensive big data pipelines. Oracle takes care of all aspects of infrastructure and platform management for event streaming, which encompasses provisioning, scaling, and applying security updates. Additionally, by utilizing consumer groups, Streaming effectively manages state for thousands of consumers, making it easier for developers to create applications that can scale efficiently. This comprehensive approach not only streamlines the development process but also enhances overall operational efficiency.
-
14
SelectDB
SelectDB
$0.22 per hourSelectDB is an innovative data warehouse built on Apache Doris, designed for swift query analysis on extensive real-time datasets. Transitioning from Clickhouse to Apache Doris facilitates the separation of the data lake and promotes an upgrade to a more efficient lake warehouse structure. This high-speed OLAP system handles nearly a billion query requests daily, catering to various data service needs across multiple scenarios. To address issues such as storage redundancy, resource contention, and the complexities of data governance and querying, the original lake warehouse architecture was restructured with Apache Doris. By leveraging Doris's capabilities for materialized view rewriting and automated services, it achieves both high-performance data querying and adaptable data governance strategies. The system allows for real-time data writing within seconds and enables the synchronization of streaming data from databases. With a storage engine that supports immediate updates and enhancements, it also facilitates real-time pre-polymerization of data for improved processing efficiency. This integration marks a significant advancement in the management and utilization of large-scale real-time data. -
15
WarpStream
WarpStream
$2,987 per monthWarpStream serves as a data streaming platform that is fully compatible with Apache Kafka, leveraging object storage to eliminate inter-AZ networking expenses and disk management, while offering infinite scalability within your VPC. The deployment of WarpStream occurs through a stateless, auto-scaling agent binary, which operates without the need for local disk management. This innovative approach allows agents to stream data directly to and from object storage, bypassing local disk buffering and avoiding any data tiering challenges. Users can instantly create new “virtual clusters” through our control plane, accommodating various environments, teams, or projects without the hassle of dedicated infrastructure. With its seamless protocol compatibility with Apache Kafka, WarpStream allows you to continue using your preferred tools and software without any need for application rewrites or proprietary SDKs. By simply updating the URL in your Kafka client library, you can begin streaming immediately, ensuring that you never have to compromise between reliability and cost-effectiveness again. Additionally, this flexibility fosters an environment where innovation can thrive without the constraints of traditional infrastructure. -
16
Spark Streaming
Apache Software Foundation
Spark Streaming extends the capabilities of Apache Spark by integrating its language-based API for stream processing, allowing you to create streaming applications in the same manner as batch applications. This powerful tool is compatible with Java, Scala, and Python. One of its key features is the automatic recovery of lost work and operator state, such as sliding windows, without requiring additional code from the user. By leveraging the Spark framework, Spark Streaming enables the reuse of the same code for batch processes, facilitates the joining of streams with historical data, and supports ad-hoc queries on the stream's state. This makes it possible to develop robust interactive applications rather than merely focusing on analytics. Spark Streaming is an integral component of Apache Spark, benefiting from regular testing and updates with each new release of Spark. Users can deploy Spark Streaming in various environments, including Spark's standalone cluster mode and other compatible cluster resource managers, and it even offers a local mode for development purposes. For production environments, Spark Streaming ensures high availability by utilizing ZooKeeper and HDFS, providing a reliable framework for real-time data processing. This combination of features makes Spark Streaming an essential tool for developers looking to harness the power of real-time analytics efficiently. -
17
Arroyo
Arroyo
Scale from zero to millions of events per second effortlessly. Arroyo is delivered as a single, compact binary, allowing for local development on MacOS or Linux, and seamless deployment to production environments using Docker or Kubernetes. As a pioneering stream processing engine, Arroyo has been specifically designed to simplify real-time processing, making it more accessible than traditional batch processing. Its architecture empowers anyone with SQL knowledge to create dependable, efficient, and accurate streaming pipelines. Data scientists and engineers can independently develop comprehensive real-time applications, models, and dashboards without needing a specialized team of streaming professionals. By employing SQL, users can transform, filter, aggregate, and join data streams, all while achieving sub-second response times. Your streaming pipelines should remain stable and not trigger alerts simply because Kubernetes has chosen to reschedule your pods. Built for modern, elastic cloud infrastructures, Arroyo supports everything from straightforward container runtimes like Fargate to complex, distributed setups on Kubernetes, ensuring versatility and robust performance across various environments. This innovative approach to stream processing significantly enhances the ability to manage data flows in real-time applications. -
18
HarperDB
HarperDB
FreeHarperDB is an innovative platform that integrates database management, caching, application development, and streaming capabilities into a cohesive system. This allows businesses to efficiently implement global-scale back-end services with significantly reduced effort, enhanced performance, and cost savings compared to traditional methods. Users can deploy custom applications along with pre-existing add-ons, ensuring a high-throughput and ultra-low latency environment for their data needs. Its exceptionally fast distributed database offers vastly superior throughput rates than commonly used NoSQL solutions while maintaining unlimited horizontal scalability. Additionally, HarperDB supports real-time pub/sub communication and data processing through protocols like MQTT, WebSocket, and HTTP. This means organizations can leverage powerful data-in-motion functionalities without the necessity of adding extra services, such as Kafka, to their architecture. By prioritizing features that drive business growth, companies can avoid the complexities of managing intricate infrastructures. While you can’t alter the speed of light, you can certainly minimize the distance between your users and their data, enhancing overall efficiency and responsiveness. In doing so, HarperDB empowers businesses to focus on innovation and progress rather than getting bogged down by technical challenges. -
19
Yandex Data Streams
Yandex
$0.086400 per GBFacilitates seamless data exchange among components within microservice architectures. When utilized as a communication method for microservices, it not only streamlines integration but also enhances reliability and scalability. The system allows for reading and writing data in nearly real-time, while providing the flexibility to set data throughput and storage durations according to specific requirements. Users can finely configure resources for processing data streams, accommodating anything from small streams of 100 KB/s to more substantial ones at 100 MB/s. Additionally, Yandex Data Transfer enables the delivery of a single stream to various targets with distinct retention policies. Data is automatically replicated across multiple availability zones that are geographically distributed, ensuring redundancy and accessibility. After the initial setup, managing data streams can be done centrally through either the management console or the API, offering convenient oversight. It also supports continuous data collection from diverse sources, including website browsing histories and application logs, making it a versatile tool for real-time analytics. Overall, Yandex Data Streams stands out for its robust capabilities in handling various data ingestion needs across different platforms. -
20
SQLstream
Guavus, a Thales company
In the field of IoT stream processing and analytics, SQLstream ranks #1 according to ABI Research. Used by Verizon, Walmart, Cisco, and Amazon, our technology powers applications on premises, in the cloud, and at the edge. SQLstream enables time-critical alerts, live dashboards, and real-time action with sub-millisecond latency. Smart cities can reroute ambulances and fire trucks or optimize traffic light timing based on real-time conditions. Security systems can detect hackers and fraudsters, shutting them down right away. AI / ML models, trained with streaming sensor data, can predict equipment failures. Thanks to SQLstream's lightning performance -- up to 13 million rows / second / CPU core -- companies have drastically reduced their footprint and cost. Our efficient, in-memory processing allows operations at the edge that would otherwise be impossible. Acquire, prepare, analyze, and act on data in any format from any source. Create pipelines in minutes not months with StreamLab, our interactive, low-code, GUI dev environment. Edit scripts instantly and view instantaneous results without compiling. Deploy with native Kubernetes support. Easy installation includes Docker, AWS, Azure, Linux, VMWare, and more -
21
Amazon Kinesis
Amazon
Effortlessly gather, manage, and scrutinize video and data streams as they occur. Amazon Kinesis simplifies the process of collecting, processing, and analyzing streaming data in real-time, empowering you to gain insights promptly and respond swiftly to emerging information. It provides essential features that allow for cost-effective processing of streaming data at any scale while offering the adaptability to select the tools that best align with your application's needs. With Amazon Kinesis, you can capture real-time data like video, audio, application logs, website clickstreams, and IoT telemetry, facilitating machine learning, analytics, and various other applications. This service allows you to handle and analyze incoming data instantaneously, eliminating the need to wait for all data to be collected before starting the processing. Moreover, Amazon Kinesis allows for the ingestion, buffering, and real-time processing of streaming data, enabling you to extract insights in a matter of seconds or minutes, significantly reducing the time it takes compared to traditional methods. Overall, this capability revolutionizes how businesses can respond to data-driven opportunities as they arise. -
22
Decodable
Decodable
$0.20 per task per hourSay goodbye to the complexities of low-level coding and integrating intricate systems. With SQL, you can effortlessly construct and deploy data pipelines in mere minutes. This data engineering service empowers both developers and data engineers to easily create and implement real-time data pipelines tailored for data-centric applications. The platform provides ready-made connectors for various messaging systems, storage solutions, and database engines, simplifying the process of connecting to and discovering available data. Each established connection generates a stream that facilitates data movement to or from the respective system. Utilizing Decodable, you can design your pipelines using SQL, where streams play a crucial role in transmitting data to and from your connections. Additionally, streams can be utilized to link pipelines, enabling the management of even the most intricate processing tasks. You can monitor your pipelines to ensure a steady flow of data and create curated streams for collaborative use by other teams. Implement retention policies on streams to prevent data loss during external system disruptions, and benefit from real-time health and performance metrics that keep you informed about the operation's status, ensuring everything is running smoothly. Ultimately, Decodable streamlines the entire data pipeline process, allowing for greater efficiency and quicker results in data handling and analysis. -
23
Apache Kafka
The Apache Software Foundation
1 RatingApache Kafka® is a robust, open-source platform designed for distributed streaming. It can scale production environments to accommodate up to a thousand brokers, handling trillions of messages daily and managing petabytes of data with hundreds of thousands of partitions. The system allows for elastic growth and reduction of both storage and processing capabilities. Furthermore, it enables efficient cluster expansion across availability zones or facilitates the interconnection of distinct clusters across various geographic locations. Users can process event streams through features such as joins, aggregations, filters, transformations, and more, all while utilizing event-time and exactly-once processing guarantees. Kafka's built-in Connect interface seamlessly integrates with a wide range of event sources and sinks, including Postgres, JMS, Elasticsearch, AWS S3, among others. Additionally, developers can read, write, and manipulate event streams using a diverse selection of programming languages, enhancing the platform's versatility and accessibility. This extensive support for various integrations and programming environments makes Kafka a powerful tool for modern data architectures. -
24
ksqlDB
Confluent
With your data now actively flowing, it's essential to extract meaningful insights from it. Stream processing allows for immediate analysis of your data streams, though establishing the necessary infrastructure can be a daunting task. To address this challenge, Confluent has introduced ksqlDB, a database specifically designed for applications that require stream processing. By continuously processing data streams generated across your organization, you can turn your data into actionable insights right away. ksqlDB features an easy-to-use syntax that facilitates quick access to and enhancement of data within Kafka, empowering development teams to create real-time customer experiences and meet operational demands driven by data. This platform provides a comprehensive solution for gathering data streams, enriching them, and executing queries on newly derived streams and tables. As a result, you will have fewer infrastructure components to deploy, manage, scale, and secure. By minimizing the complexity in your data architecture, you can concentrate more on fostering innovation and less on technical maintenance. Ultimately, ksqlDB transforms the way businesses leverage their data for growth and efficiency. -
25
Apache NiFi
Apache Software Foundation
A user-friendly, robust, and dependable system for data processing and distribution is offered by Apache NiFi, which facilitates the creation of efficient and scalable directed graphs for routing, transforming, and mediating data. Among its various high-level functions and goals, Apache NiFi provides a web-based user interface that ensures an uninterrupted experience for design, control, feedback, and monitoring. It is designed to be highly configurable, loss-tolerant, and capable of low latency and high throughput, while also allowing for dynamic prioritization of data flows. Additionally, users can alter the flow in real-time, manage back pressure, and trace data provenance from start to finish, as it is built with extensibility in mind. You can also develop custom processors and more, which fosters rapid development and thorough testing. Security features are robust, including SSL, SSH, HTTPS, and content encryption, among others. The system supports multi-tenant authorization along with internal policy and authorization management. Also, NiFi consists of various web applications, such as a web UI, web API, documentation, and custom user interfaces, necessitating the configuration of your mapping to the root path for optimal functionality. This flexibility and range of features make Apache NiFi an essential tool for modern data workflows. -
26
3forge
3forge
Navigating the challenges of your organization may seem daunting, but creating a solution doesn't have to be complicated. 3forge offers a highly adaptable, low-code platform designed to accelerate enterprise application development like never before. Need reliability? Absolutely. Looking for scalability? You got it. What about rapid deliverability? That's also guaranteed, even with intricate workflows and extensive data sets. With 3forge, you can seamlessly unify data integration, virtualization, processing, visualization, and workflows in a single solution, effectively tackling some of the most intricate real-time streaming data challenges faced today. This award-winning technology from 3forge empowers developers to launch mission-critical applications swiftly and efficiently. Discover the transformative power of real-time data coupled with zero latency, as 3forge prioritizes seamless data integration, virtualization, processing, and visualization for optimal performance. As a result, you can focus on innovation rather than getting bogged down in technical difficulties. -
27
Materialize
Materialize
$0.98 per hourMaterialize is an innovative reactive database designed to provide updates to views incrementally. It empowers developers to seamlessly work with streaming data through the use of standard SQL. One of the key advantages of Materialize is its ability to connect directly to a variety of external data sources without the need for pre-processing. Users can link to real-time streaming sources such as Kafka, Postgres databases, and change data capture (CDC), as well as access historical data from files or S3. The platform enables users to execute queries, perform joins, and transform various data sources using standard SQL, presenting the outcomes as incrementally-updated Materialized views. As new data is ingested, queries remain active and are continuously refreshed, allowing developers to create data visualizations or real-time applications with ease. Moreover, constructing applications that utilize streaming data becomes a straightforward task, often requiring just a few lines of SQL code, which significantly enhances productivity. With Materialize, developers can focus on building innovative solutions rather than getting bogged down in complex data management tasks. -
28
Confluent
Confluent
Achieve limitless data retention for Apache Kafka® with Confluent, empowering you to be infrastructure-enabled rather than constrained by outdated systems. Traditional technologies often force a choice between real-time processing and scalability, but event streaming allows you to harness both advantages simultaneously, paving the way for innovation and success. Have you ever considered how your rideshare application effortlessly analyzes vast datasets from various sources to provide real-time estimated arrival times? Or how your credit card provider monitors millions of transactions worldwide, promptly alerting users to potential fraud? The key to these capabilities lies in event streaming. Transition to microservices and facilitate your hybrid approach with a reliable connection to the cloud. Eliminate silos to ensure compliance and enjoy continuous, real-time event delivery. The possibilities truly are limitless, and the potential for growth is unprecedented. -
29
Baidu AI Cloud Stream Computing
Baidu AI Cloud
Baidu Stream Computing (BSC) offers the ability to process real-time streaming data with minimal latency, impressive throughput, and high precision. It seamlessly integrates with Spark SQL, allowing for complex business logic to be executed via SQL statements, which enhances usability. Users benefit from comprehensive lifecycle management of their streaming computing tasks. Additionally, BSC deeply integrates with various Baidu AI Cloud storage solutions, such as Baidu Kafka, RDS, BOS, IOT Hub, Baidu ElasticSearch, TSDB, and SCS, serving as both upstream and downstream components in the stream computing ecosystem. Moreover, it provides robust job monitoring capabilities, enabling users to track performance indicators and establish alarm rules to ensure job security, thereby enhancing the overall reliability of the system. This level of integration and monitoring makes BSC a powerful tool for businesses looking to leverage real-time data processing effectively. -
30
Informatica Data Engineering Streaming
Informatica
Informatica's AI-driven Data Engineering Streaming empowers data engineers to efficiently ingest, process, and analyze real-time streaming data, offering valuable insights. The advanced serverless deployment feature, coupled with an integrated metering dashboard, significantly reduces administrative burdens. With CLAIRE®-enhanced automation, users can swiftly construct intelligent data pipelines that include features like automatic change data capture (CDC). This platform allows for the ingestion of thousands of databases, millions of files, and various streaming events. It effectively manages databases, files, and streaming data for both real-time data replication and streaming analytics, ensuring a seamless flow of information. Additionally, it aids in the discovery and inventorying of all data assets within an organization, enabling users to intelligently prepare reliable data for sophisticated analytics and AI/ML initiatives. By streamlining these processes, organizations can harness the full potential of their data assets more effectively than ever before. -
31
Apache Storm
Apache Software Foundation
Apache Storm is a distributed computation system that is both free and open source, designed for real-time data processing. It simplifies the reliable handling of endless data streams, similar to how Hadoop revolutionized batch processing. The platform is user-friendly, compatible with various programming languages, and offers an enjoyable experience for developers. With numerous applications including real-time analytics, online machine learning, continuous computation, distributed RPC, and ETL, Apache Storm proves its versatility. It's remarkably fast, with benchmarks showing it can process over a million tuples per second on a single node. Additionally, it is scalable and fault-tolerant, ensuring that data processing is both reliable and efficient. Setting up and managing Apache Storm is straightforward, and it seamlessly integrates with existing queueing and database technologies. Users can design Apache Storm topologies to consume and process data streams in complex manners, allowing for flexible repartitioning between different stages of computation. For further insights, be sure to explore the detailed tutorial available. -
32
Aiven
Aiven
$200.00 per monthAiven takes the reins on your open-source data infrastructure hosted in the cloud, allowing you to focus on what you excel at: developing applications. While you channel your energy into innovation, we expertly handle the complexities of managing cloud data infrastructure. Our solutions are entirely open source, providing the flexibility to transfer data between various clouds or establish multi-cloud setups. You will have complete visibility into your expenses, with a clear understanding of costs as we consolidate networking, storage, and basic support fees. Our dedication to ensuring your Aiven software remains operational is unwavering; should any challenges arise, you can count on us to resolve them promptly. You can launch a service on the Aiven platform in just 10 minutes and sign up without needing to provide credit card information. Simply select your desired open-source service along with the cloud and region for deployment, pick a suitable plan—which includes $300 in free credits—and hit "Create service" to begin configuring your data sources. Enjoy the benefits of maintaining control over your data while leveraging robust open-source services tailored to your needs. With Aiven, you can streamline your cloud operations and focus on driving your projects forward. -
33
Timeplus
Timeplus
$199 per monthTimeplus is an efficient, user-friendly stream processing platform that is both powerful and affordable. It comes packaged as a single binary, making it easy to deploy in various environments. Designed for data teams across diverse sectors, it enables the quick and intuitive processing of both streaming and historical data. With a lightweight design that requires no external dependencies, Timeplus offers comprehensive analytic capabilities for streaming and historical data. Its cost is just a fraction—1/10—of what similar open-source frameworks charge. Users can transform real-time market and transaction data into actionable insights seamlessly. The platform supports both append-only and key-value streams, making it ideal for monitoring financial information. Additionally, Timeplus allows the creation of real-time feature pipelines effortlessly. It serves as a unified solution for managing all infrastructure logs, metrics, and traces, which are essential for maintaining observability. Timeplus also accommodates a broad array of data sources through its user-friendly web console UI, while providing options to push data via REST API or to create external streams without the need to copy data into the platform. Overall, Timeplus offers a versatile and comprehensive approach to data processing for organizations looking to enhance their operational efficiency. -
34
Apache Beam
Apache Software Foundation
Batch and streaming data processing can be streamlined effortlessly. With the capability to write once and run anywhere, it is ideal for mission-critical production tasks. Beam allows you to read data from a wide variety of sources, whether they are on-premises or cloud-based. It seamlessly executes your business logic across both batch and streaming scenarios. The outcomes of your data processing efforts can be written to the leading data sinks available in the market. This unified programming model simplifies operations for all members of your data and application teams. Apache Beam is designed for extensibility, with frameworks like TensorFlow Extended and Apache Hop leveraging its capabilities. You can run pipelines on various execution environments (runners), which provides flexibility and prevents vendor lock-in. The open and community-driven development model ensures that your applications can evolve and adapt to meet specific requirements. This adaptability makes Beam a powerful choice for organizations aiming to optimize their data processing strategies. -
35
Hitachi Streaming Data Platform
Hitachi
The Hitachi Streaming Data Platform (SDP) is engineered for real-time processing of extensive time-series data as it is produced. Utilizing in-memory and incremental computation techniques, SDP allows for rapid analysis that circumvents the typical delays experienced with conventional stored data processing methods. Users have the capability to outline summary analysis scenarios through Continuous Query Language (CQL), which resembles SQL, thus enabling adaptable and programmable data examination without requiring bespoke applications. The platform's architecture includes various components such as development servers, data-transfer servers, data-analysis servers, and dashboard servers, which together create a scalable and efficient data processing ecosystem. Additionally, SDP’s modular framework accommodates multiple data input and output formats, including text files and HTTP packets, and seamlessly integrates with visualization tools like RTView for real-time performance monitoring. This comprehensive design ensures that users can effectively manage and analyze data streams as they occur. -
36
Apache Flume
Apache Software Foundation
Flume is a dependable and distributed service designed to efficiently gather, aggregate, and transport significant volumes of log data. Its architecture is straightforward and adaptable, centered on streaming data flows, which enhances its usability. The system is built to withstand faults and includes various mechanisms for recovery and adjustable reliability features. Additionally, it employs a simple yet extensible data model that supports online analytic applications effectively. The Apache Flume team is excited to announce the launch of Flume version 1.8.0, which continues to enhance its capabilities. This version further solidifies Flume's role as a reliable tool for managing large-scale streaming event data efficiently. -
37
Tinybird
Tinybird
$0.07 per processed GBUtilize Pipes to query and manipulate your data seamlessly, a novel method for linking SQL queries that draws inspiration from Python Notebooks. This approach aims to streamline complexity while maintaining optimal performance. By dividing your query into various nodes, you enhance both development and maintenance processes. With just a single click, you can activate your API endpoints that are ready for production use. Transformations happen instantly, ensuring you always have access to the most current data. You can securely share access to your data with just one click, providing quick and reliable results. In addition to offering monitoring capabilities, Tinybird is designed to scale effortlessly, so you need not be concerned about unexpected traffic surges. Visualize transforming any Data Stream or CSV file into a fully secured real-time analytics API endpoint in mere minutes. We advocate for high-frequency decision-making across every sector, including retail, manufacturing, telecommunications, government, advertising, entertainment, healthcare, and financial services, making data-driven insights accessible to all types of organizations. Our commitment is to empower businesses to make informed decisions swiftly, ensuring they stay ahead in an ever-evolving landscape. -
38
Redpanda
Redpanda Data
Introducing revolutionary data streaming features that enable unparalleled customer experiences. The Kafka API and its ecosystem are fully compatible with Redpanda, which boasts predictable low latencies and ensures zero data loss. Redpanda is designed to outperform Kafka by up to ten times, offering enterprise-level support and timely hotfixes. It also includes automated backups to S3 or GCS, providing a complete escape from the routine operations associated with Kafka. Additionally, it supports both AWS and GCP environments, making it a versatile choice for various cloud platforms. Built from the ground up for ease of installation, Redpanda allows for rapid deployment of streaming services. Once you witness its incredible capabilities, you can confidently utilize its advanced features in a production setting. We take care of provisioning, monitoring, and upgrades without requiring access to your cloud credentials, ensuring that sensitive data remains within your environment. Your streaming infrastructure will be provisioned, operated, and maintained seamlessly, with customizable instance types available to suit your specific needs. As your requirements evolve, expanding your cluster is straightforward and efficient, allowing for sustainable growth. -
39
Cloudera DataFlow
Cloudera
Cloudera DataFlow for the Public Cloud (CDF-PC) is a versatile, cloud-based data distribution solution that utilizes Apache NiFi, enabling developers to seamlessly connect to diverse data sources with varying structures, process that data, and deliver it to a wide array of destinations. This platform features a flow-oriented low-code development approach that closely matches the preferences of developers when creating, developing, and testing their data distribution pipelines. CDF-PC boasts an extensive library of over 400 connectors and processors that cater to a broad spectrum of hybrid cloud services, including data lakes, lakehouses, cloud warehouses, and on-premises sources, ensuring efficient and flexible data distribution. Furthermore, the data flows created can be version-controlled within a catalog, allowing operators to easily manage deployments across different runtimes, thereby enhancing operational efficiency and simplifying the deployment process. Ultimately, CDF-PC empowers organizations to harness their data effectively, promoting innovation and agility in data management. -
40
Nussknacker
Nussknacker
0Nussknacker allows domain experts to use a visual tool that is low-code to help them create and execute real-time decisioning algorithm instead of writing code. It is used to perform real-time actions on data: real-time marketing and fraud detection, Internet of Things customer 360, Machine Learning inferring, and Internet of Things customer 360. A visual design tool for decision algorithm is an essential part of Nussknacker. It allows non-technical users, such as analysts or business people, to define decision logic in a clear, concise, and easy-to-follow manner. With a click, scenarios can be deployed for execution once they have been created. They can be modified and redeployed whenever there is a need. Nussknacker supports streaming and request-response processing modes. It uses Kafka as its primary interface in streaming mode. It supports both stateful processing and stateless processing. -
41
Estuary Flow
Estuary
$200/month Estuary Flow, a new DataOps platform, empowers engineering teams with the ability to build data-intensive real-time applications at scale and with minimal friction. This platform allows teams to unify their databases, pub/sub and SaaS systems around their data without having to invest in new infrastructure or development. -
42
TapData
TapData
A live data platform based on Change Data Capture (CDC) facilitates the replication of diverse databases, supports real-time data integration, and assists in constructing a real-time data warehouse. By implementing CDC to synchronize production line information stored in DB2 and Oracle with a modern database, TapData has empowered an AI-enhanced real-time dispatch application that streamlines the semiconductor manufacturing process. The availability of real-time data has enabled prompt decision-making within the RTD application, resulting in quicker turnaround times and increased production yield. As a major telecommunications provider, the client operates numerous regional systems designed to serve local users effectively. By consolidating and integrating data from multiple sources and locations into a single centralized data repository, the client successfully established an order center that aggregates orders from various applications. Additionally, TapData integrates inventory data from over 500 stores, delivering real-time insights into stock availability and customer preferences, thereby significantly boosting supply chain efficiency. This innovative approach not only enhances operational performance but also positions the client to respond swiftly to market demands. -
43
Rockset
Rockset
FreeReal-time analytics on raw data. Live ingest from S3, DynamoDB, DynamoDB and more. Raw data can be accessed as SQL tables. In minutes, you can create amazing data-driven apps and live dashboards. Rockset is a serverless analytics and search engine that powers real-time applications and live dashboards. You can directly work with raw data such as JSON, XML and CSV. Rockset can import data from real-time streams and data lakes, data warehouses, and databases. You can import real-time data without the need to build pipelines. Rockset syncs all new data as it arrives in your data sources, without the need to create a fixed schema. You can use familiar SQL, including filters, joins, and aggregations. Rockset automatically indexes every field in your data, making it lightning fast. Fast queries are used to power your apps, microservices and live dashboards. Scale without worrying too much about servers, shards or pagers. -
44
E-MapReduce
Alibaba
EMR serves as a comprehensive enterprise-grade big data platform, offering cluster, job, and data management functionalities that leverage various open-source technologies, including Hadoop, Spark, Kafka, Flink, and Storm. Alibaba Cloud Elastic MapReduce (EMR) is specifically designed for big data processing within the Alibaba Cloud ecosystem. Built on Alibaba Cloud's ECS instances, EMR integrates the capabilities of open-source Apache Hadoop and Apache Spark. This platform enables users to utilize components from the Hadoop and Spark ecosystems, such as Apache Hive, Apache Kafka, Flink, Druid, and TensorFlow, for effective data analysis and processing. Users can seamlessly process data stored across multiple Alibaba Cloud storage solutions, including Object Storage Service (OSS), Log Service (SLS), and Relational Database Service (RDS). EMR also simplifies cluster creation, allowing users to establish clusters rapidly without the hassle of hardware and software configuration. Additionally, all maintenance tasks can be managed efficiently through its user-friendly web interface, making it accessible for various users regardless of their technical expertise. -
45
Amazon MSK
Amazon
$0.0543 per hourAmazon Managed Streaming for Apache Kafka (Amazon MSK) simplifies the process of creating and operating applications that leverage Apache Kafka for handling streaming data. As an open-source framework, Apache Kafka enables the construction of real-time data pipelines and applications. Utilizing Amazon MSK allows you to harness the native APIs of Apache Kafka for various tasks, such as populating data lakes, facilitating data exchange between databases, and fueling machine learning and analytical solutions. However, managing Apache Kafka clusters independently can be quite complex, requiring tasks like server provisioning, manual configuration, and handling server failures. Additionally, you must orchestrate updates and patches, design the cluster to ensure high availability, secure and durably store data, establish monitoring systems, and strategically plan for scaling to accommodate fluctuating workloads. By utilizing Amazon MSK, you can alleviate many of these burdens and focus more on developing your applications rather than managing the underlying infrastructure.