What Integrates with Amazon Elastic Inference?
Find out what Amazon Elastic Inference integrations exist in 2025. Learn what software and services currently integrate with Amazon Elastic Inference, and sort them by reviews, cost, features, and more. Below is a list of products that Amazon Elastic Inference currently integrates with:
-
1
AWS is the leading provider of cloud computing, delivering over 200 fully featured services to organizations worldwide. Its offerings cover everything from infrastructure—such as compute, storage, and networking—to advanced technologies like artificial intelligence, machine learning, and agentic AI. Businesses use AWS to modernize legacy systems, run high-performance workloads, and build scalable, secure applications. Core services like Amazon EC2, Amazon S3, and Amazon DynamoDB provide foundational capabilities, while advanced solutions like SageMaker and AWS Transform enable AI-driven transformation. The platform is supported by a global infrastructure that includes 38 regions, 120 availability zones, and 400+ edge locations, ensuring low latency and high reliability. AWS integrates with leading enterprise tools, developer SDKs, and partner ecosystems, giving teams the flexibility to adopt cloud at their own pace. Its training and certification programs help individuals and companies grow cloud expertise with industry-recognized credentials. With its unmatched breadth, depth, and proven track record, AWS empowers organizations to innovate and compete in the digital-first economy.
-
2
TensorFlow
TensorFlow
Free 2 RatingsTensorFlow is a comprehensive open-source machine learning platform that covers the entire process from development to deployment. This platform boasts a rich and adaptable ecosystem featuring various tools, libraries, and community resources, empowering researchers to advance the field of machine learning while allowing developers to create and implement ML-powered applications with ease. With intuitive high-level APIs like Keras and support for eager execution, users can effortlessly build and refine ML models, facilitating quick iterations and simplifying debugging. The flexibility of TensorFlow allows for seamless training and deployment of models across various environments, whether in the cloud, on-premises, within browsers, or directly on devices, regardless of the programming language utilized. Its straightforward and versatile architecture supports the transformation of innovative ideas into practical code, enabling the development of cutting-edge models that can be published swiftly. Overall, TensorFlow provides a powerful framework that encourages experimentation and accelerates the machine learning process. -
3
Amazon EC2
Amazon
2 RatingsAmazon Elastic Compute Cloud (Amazon EC2) is a cloud service that offers flexible and secure computing capabilities. Its primary aim is to simplify large-scale cloud computing for developers. With an easy-to-use web service interface, Amazon EC2 allows users to quickly obtain and configure computing resources with ease. Users gain full control over their computing power while utilizing Amazon’s established computing framework. The service offers an extensive range of compute options, networking capabilities (up to 400 Gbps), and tailored storage solutions that enhance price and performance specifically for machine learning initiatives. Developers can create, test, and deploy macOS workloads on demand. Furthermore, users can scale their capacity dynamically as requirements change, all while benefiting from AWS's pay-as-you-go pricing model. This infrastructure enables rapid access to the necessary resources for high-performance computing (HPC) applications, resulting in enhanced speed and cost efficiency. In essence, Amazon EC2 ensures a secure, dependable, and high-performance computing environment that caters to the diverse demands of modern businesses. Overall, it stands out as a versatile solution for various computing needs across different industries. -
4
Effortlessly switch between eager and graph modes using TorchScript, while accelerating your journey to production with TorchServe. The torch-distributed backend facilitates scalable distributed training and enhances performance optimization for both research and production environments. A comprehensive suite of tools and libraries enriches the PyTorch ecosystem, supporting development across fields like computer vision and natural language processing. Additionally, PyTorch is compatible with major cloud platforms, simplifying development processes and enabling seamless scaling. You can easily choose your preferences and execute the installation command. The stable version signifies the most recently tested and endorsed iteration of PyTorch, which is typically adequate for a broad range of users. For those seeking the cutting-edge, a preview is offered, featuring the latest nightly builds of version 1.10, although these may not be fully tested or supported. It is crucial to verify that you meet all prerequisites, such as having numpy installed, based on your selected package manager. Anaconda is highly recommended as the package manager of choice, as it effectively installs all necessary dependencies, ensuring a smooth installation experience for users. This comprehensive approach not only enhances productivity but also ensures a robust foundation for development.
-
5
MXNet
The Apache Software Foundation
A hybrid front-end efficiently switches between Gluon eager imperative mode and symbolic mode, offering both adaptability and speed. The framework supports scalable distributed training and enhances performance optimization for both research and real-world applications through its dual parameter server and Horovod integration. It features deep compatibility with Python and extends support to languages such as Scala, Julia, Clojure, Java, C++, R, and Perl. A rich ecosystem of tools and libraries bolsters MXNet, facilitating a variety of use-cases, including computer vision, natural language processing, time series analysis, and much more. Apache MXNet is currently in the incubation phase at The Apache Software Foundation (ASF), backed by the Apache Incubator. This incubation stage is mandatory for all newly accepted projects until they receive further evaluation to ensure that their infrastructure, communication practices, and decision-making processes align with those of other successful ASF initiatives. By engaging with the MXNet scientific community, individuals can actively contribute, gain knowledge, and find solutions to their inquiries. This collaborative environment fosters innovation and growth, making it an exciting time to be involved with MXNet. -
6
Amazon EC2 G4 Instances
Amazon
Amazon EC2 G4 instances are specifically designed to enhance the performance of machine learning inference and applications that require high graphics capabilities. Users can select between NVIDIA T4 GPUs (G4dn) and AMD Radeon Pro V520 GPUs (G4ad) according to their requirements. The G4dn instances combine NVIDIA T4 GPUs with bespoke Intel Cascade Lake CPUs, ensuring an optimal mix of computational power, memory, and networking bandwidth. These instances are well-suited for tasks such as deploying machine learning models, video transcoding, game streaming, and rendering graphics. On the other hand, G4ad instances, equipped with AMD Radeon Pro V520 GPUs and 2nd-generation AMD EPYC processors, offer a budget-friendly option for handling graphics-intensive workloads. Both instance types utilize Amazon Elastic Inference, which permits users to add economical GPU-powered inference acceleration to Amazon EC2, thereby lowering costs associated with deep learning inference. They come in a range of sizes tailored to meet diverse performance demands and seamlessly integrate with various AWS services, including Amazon SageMaker, Amazon ECS, and Amazon EKS. Additionally, this versatility makes G4 instances an attractive choice for organizations looking to leverage cloud-based machine learning and graphics processing capabilities.
- Previous
- You're on page 1
- Next