Best Amazon EC2 Trn2 Instances Alternatives in 2025
Find the top alternatives to Amazon EC2 Trn2 Instances currently available. Compare ratings, reviews, pricing, and features of Amazon EC2 Trn2 Instances alternatives in 2025. Slashdot lists the best Amazon EC2 Trn2 Instances alternatives on the market that offer competing products that are similar to Amazon EC2 Trn2 Instances. Sort through Amazon EC2 Trn2 Instances alternatives below to make the best choice for your needs
-
1
Vertex AI
Google
713 RatingsFully managed ML tools allow you to build, deploy and scale machine-learning (ML) models quickly, for any use case. Vertex AI Workbench is natively integrated with BigQuery Dataproc and Spark. You can use BigQuery to create and execute machine-learning models in BigQuery by using standard SQL queries and spreadsheets or you can export datasets directly from BigQuery into Vertex AI Workbench to run your models there. Vertex Data Labeling can be used to create highly accurate labels for data collection. Vertex AI Agent Builder empowers developers to design and deploy advanced generative AI applications for enterprise use. It supports both no-code and code-driven development, enabling users to create AI agents through natural language prompts or by integrating with frameworks like LangChain and LlamaIndex. -
2
RunPod
RunPod
141 RatingsRunPod provides a cloud infrastructure that enables seamless deployment and scaling of AI workloads with GPU-powered pods. By offering access to a wide array of NVIDIA GPUs, such as the A100 and H100, RunPod supports training and deploying machine learning models with minimal latency and high performance. The platform emphasizes ease of use, allowing users to spin up pods in seconds and scale them dynamically to meet demand. With features like autoscaling, real-time analytics, and serverless scaling, RunPod is an ideal solution for startups, academic institutions, and enterprises seeking a flexible, powerful, and affordable platform for AI development and inference. -
3
Amazon EC2 Trn1 Instances
Amazon
$1.34 per hourThe Trn1 instances of Amazon Elastic Compute Cloud (EC2), driven by AWS Trainium chips, are specifically designed to enhance the efficiency of deep learning training for generative AI models, such as large language models and latent diffusion models. These instances provide significant cost savings of up to 50% compared to other similar Amazon EC2 offerings. They are capable of facilitating the training of deep learning and generative AI models with over 100 billion parameters, applicable in various domains, including text summarization, code generation, question answering, image and video creation, recommendation systems, and fraud detection. Additionally, the AWS Neuron SDK supports developers in training their models on AWS Trainium and deploying them on the AWS Inferentia chips. With seamless integration into popular frameworks like PyTorch and TensorFlow, developers can leverage their current codebases and workflows for training on Trn1 instances, ensuring a smooth transition to optimized deep learning practices. Furthermore, this capability allows businesses to harness advanced AI technologies while maintaining cost-effectiveness and performance. -
4
Amazon SageMaker
Amazon
Amazon SageMaker is a comprehensive machine learning platform that integrates powerful tools for model building, training, and deployment in one cohesive environment. It combines data processing, AI model development, and collaboration features, allowing teams to streamline the development of custom AI applications. With SageMaker, users can easily access data stored across Amazon S3 data lakes and Amazon Redshift data warehouses, facilitating faster insights and AI model development. It also supports generative AI use cases, enabling users to develop and scale applications with cutting-edge AI technologies. The platform’s governance and security features ensure that data and models are handled with precision and compliance throughout the entire ML lifecycle. Furthermore, SageMaker provides a unified development studio for real-time collaboration, speeding up data discovery and model deployment. -
5
Quickly set up a virtual machine on Google Cloud for your deep learning project using the Deep Learning VM Image, which simplifies the process of launching a VM with essential AI frameworks on Google Compute Engine. This solution allows you to initiate Compute Engine instances that come equipped with popular libraries such as TensorFlow, PyTorch, and scikit-learn, eliminating concerns over software compatibility. Additionally, you have the flexibility to incorporate Cloud GPU and Cloud TPU support effortlessly. The Deep Learning VM Image is designed to support both the latest and most widely used machine learning frameworks, ensuring you have access to cutting-edge tools like TensorFlow and PyTorch. To enhance the speed of your model training and deployment, these images are optimized with the latest NVIDIA® CUDA-X AI libraries and drivers, as well as the Intel® Math Kernel Library. By using this service, you can hit the ground running with all necessary frameworks, libraries, and drivers pre-installed and validated for compatibility. Furthermore, the Deep Learning VM Image provides a smooth notebook experience through its integrated support for JupyterLab, facilitating an efficient workflow for your data science tasks. This combination of features makes it an ideal solution for both beginners and experienced practitioners in the field of machine learning.
-
6
AWS Neuron
Amazon Web Services
It enables efficient training on Amazon Elastic Compute Cloud (Amazon EC2) Trn1 instances powered by AWS Trainium. Additionally, for model deployment, it facilitates both high-performance and low-latency inference utilizing AWS Inferentia-based Amazon EC2 Inf1 instances along with AWS Inferentia2-based Amazon EC2 Inf2 instances. With the Neuron SDK, users can leverage widely-used frameworks like TensorFlow and PyTorch to effectively train and deploy machine learning (ML) models on Amazon EC2 Trn1, Inf1, and Inf2 instances with minimal alterations to their code and no reliance on vendor-specific tools. The integration of the AWS Neuron SDK with these frameworks allows for seamless continuation of existing workflows, requiring only minor code adjustments to get started. For those involved in distributed model training, the Neuron SDK also accommodates libraries such as Megatron-LM and PyTorch Fully Sharded Data Parallel (FSDP), enhancing its versatility and scalability for various ML tasks. By providing robust support for these frameworks and libraries, it significantly streamlines the process of developing and deploying advanced machine learning solutions. -
7
Amazon EC2 Inf1 Instances
Amazon
$0.228 per hourAmazon EC2 Inf1 instances are specifically designed to provide efficient, high-performance machine learning inference at a competitive cost. They offer an impressive throughput that is up to 2.3 times greater and a cost that is up to 70% lower per inference compared to other EC2 offerings. Equipped with up to 16 AWS Inferentia chips—custom ML inference accelerators developed by AWS—these instances also incorporate 2nd generation Intel Xeon Scalable processors and boast networking bandwidth of up to 100 Gbps, making them suitable for large-scale machine learning applications. Inf1 instances are particularly well-suited for a variety of applications, including search engines, recommendation systems, computer vision, speech recognition, natural language processing, personalization, and fraud detection. Developers have the advantage of deploying their ML models on Inf1 instances through the AWS Neuron SDK, which is compatible with widely-used ML frameworks such as TensorFlow, PyTorch, and Apache MXNet, enabling a smooth transition with minimal adjustments to existing code. This makes Inf1 instances not only powerful but also user-friendly for developers looking to optimize their machine learning workloads. The combination of advanced hardware and software support makes them a compelling choice for enterprises aiming to enhance their AI capabilities. -
8
AWS Deep Learning AMIs
Amazon
AWS Deep Learning AMIs (DLAMI) offer machine learning professionals and researchers a secure and curated collection of frameworks, tools, and dependencies to enhance deep learning capabilities in cloud environments. Designed for both Amazon Linux and Ubuntu, these Amazon Machine Images (AMIs) are pre-equipped with popular frameworks like TensorFlow, PyTorch, Apache MXNet, Chainer, Microsoft Cognitive Toolkit (CNTK), Gluon, Horovod, and Keras, enabling quick deployment and efficient operation of these tools at scale. By utilizing these resources, you can create sophisticated machine learning models for the development of autonomous vehicle (AV) technology, thoroughly validating your models with millions of virtual tests. The setup and configuration process for AWS instances is expedited, facilitating faster experimentation and assessment through access to the latest frameworks and libraries, including Hugging Face Transformers. Furthermore, the incorporation of advanced analytics, machine learning, and deep learning techniques allows for the discovery of trends and the generation of predictions from scattered and raw health data, ultimately leading to more informed decision-making. This comprehensive ecosystem not only fosters innovation but also enhances operational efficiency across various applications. -
9
AWS Inferentia
Amazon
AWS Inferentia accelerators, engineered by AWS, aim to provide exceptional performance while minimizing costs for deep learning (DL) inference tasks. The initial generation of AWS Inferentia accelerators supports Amazon Elastic Compute Cloud (Amazon EC2) Inf1 instances, boasting up to 2.3 times greater throughput and a 70% reduction in cost per inference compared to similar GPU-based Amazon EC2 instances. Numerous companies, such as Airbnb, Snap, Sprinklr, Money Forward, and Amazon Alexa, have embraced Inf1 instances and experienced significant advantages in both performance and cost. Each first-generation Inferentia accelerator is equipped with 8 GB of DDR4 memory along with a substantial amount of on-chip memory. The subsequent Inferentia2 model enhances capabilities by providing 32 GB of HBM2e memory per accelerator, quadrupling the total memory and decoupling the memory bandwidth, which is ten times greater than its predecessor. This evolution in technology not only optimizes the processing power but also significantly improves the efficiency of deep learning applications across various sectors. -
10
NVIDIA Run:ai
NVIDIA
NVIDIA Run:ai is a cutting-edge platform that streamlines AI workload orchestration and GPU resource management to accelerate AI development and deployment at scale. It dynamically pools GPU resources across hybrid clouds, private data centers, and public clouds to optimize compute efficiency and workload capacity. The solution offers unified AI infrastructure management with centralized control and policy-driven governance, enabling enterprises to maximize GPU utilization while reducing operational costs. Designed with an API-first architecture, Run:ai integrates seamlessly with popular AI frameworks and tools, providing flexible deployment options from on-premises to multi-cloud environments. Its open-source KAI Scheduler offers developers simple and flexible Kubernetes scheduling capabilities. Customers benefit from accelerated AI training and inference with reduced bottlenecks, leading to faster innovation cycles. Run:ai is trusted by organizations seeking to scale AI initiatives efficiently while maintaining full visibility and control. This platform empowers teams to transform resource management into a strategic advantage with zero manual effort. -
11
Amazon EC2 Capacity Blocks for Machine Learning allow users to secure accelerated computing instances within Amazon EC2 UltraClusters specifically for their machine learning tasks. This service encompasses a variety of instance types, including Amazon EC2 P5en, P5e, P5, and P4d, which utilize NVIDIA H200, H100, and A100 Tensor Core GPUs, along with Trn2 and Trn1 instances that leverage AWS Trainium. Users can reserve these instances for periods of up to six months, with cluster sizes ranging from a single instance to 64 instances, translating to a maximum of 512 GPUs or 1,024 Trainium chips, thus providing ample flexibility to accommodate diverse machine learning workloads. Additionally, reservations can be arranged as much as eight weeks ahead of time. By operating within Amazon EC2 UltraClusters, Capacity Blocks facilitate low-latency and high-throughput network connectivity, which is essential for efficient distributed training processes. This configuration guarantees reliable access to high-performance computing resources, empowering you to confidently plan your machine learning projects, conduct experiments, develop prototypes, and effectively handle anticipated increases in demand for machine learning applications. Furthermore, this strategic approach not only enhances productivity but also optimizes resource utilization for varying project scales.
-
12
Intel Tiber AI Cloud
Intel
FreeThe Intel® Tiber™ AI Cloud serves as a robust platform tailored to efficiently scale artificial intelligence workloads through cutting-edge computing capabilities. Featuring specialized AI hardware, including the Intel Gaudi AI Processor and Max Series GPUs, it enhances the processes of model training, inference, and deployment. Aimed at enterprise-level applications, this cloud offering allows developers to create and refine models using well-known libraries such as PyTorch. Additionally, with a variety of deployment choices, secure private cloud options, and dedicated expert assistance, Intel Tiber™ guarantees smooth integration and rapid deployment while boosting model performance significantly. This comprehensive solution is ideal for organizations looking to harness the full potential of AI technologies. -
13
FluidStack
FluidStack
$1.49 per monthAchieve prices that are 3-5 times more competitive than conventional cloud services. FluidStack combines underutilized GPUs from data centers globally to provide unmatched economic advantages in the industry. With just one platform and API, you can deploy over 50,000 high-performance servers in mere seconds. Gain access to extensive A100 and H100 clusters equipped with InfiniBand in just a few days. Utilize FluidStack to train, fine-tune, and launch large language models on thousands of cost-effective GPUs in a matter of minutes. By connecting multiple data centers, FluidStack effectively disrupts monopolistic GPU pricing in the cloud. Experience computing speeds that are five times faster while enhancing cloud efficiency. Instantly tap into more than 47,000 idle servers, all with tier 4 uptime and security, through a user-friendly interface. You can train larger models, set up Kubernetes clusters, render tasks more quickly, and stream content without delays. The setup process requires only one click, allowing for custom image and API deployment in seconds. Additionally, our engineers are available around the clock through Slack, email, or phone, acting as a seamless extension of your team to ensure you receive the support you need. This level of accessibility and assistance can significantly streamline your operations. -
14
AWS Trainium
Amazon Web Services
AWS Trainium represents a next-generation machine learning accelerator specifically designed for the training of deep learning models with over 100 billion parameters. Each Amazon Elastic Compute Cloud (EC2) Trn1 instance can utilize as many as 16 AWS Trainium accelerators, providing an efficient and cost-effective solution for deep learning training in a cloud environment. As the demand for deep learning continues to rise, many development teams often find themselves constrained by limited budgets, which restricts the extent and frequency of necessary training to enhance their models and applications. The EC2 Trn1 instances equipped with Trainium address this issue by enabling faster training times while also offering up to 50% savings in training costs compared to similar Amazon EC2 instances. This innovation allows teams to maximize their resources and improve their machine learning capabilities without the financial burden typically associated with extensive training. -
15
Amazon EC2 P4 Instances
Amazon
$11.57 per hourAmazon EC2 P4d instances are designed for optimal performance in machine learning training and high-performance computing (HPC) applications within the cloud environment. Equipped with NVIDIA A100 Tensor Core GPUs, these instances provide exceptional throughput and low-latency networking capabilities, boasting 400 Gbps instance networking. P4d instances are remarkably cost-effective, offering up to a 60% reduction in expenses for training machine learning models, while also delivering an impressive 2.5 times better performance for deep learning tasks compared to the older P3 and P3dn models. They are deployed within expansive clusters known as Amazon EC2 UltraClusters, which allow for the seamless integration of high-performance computing, networking, and storage resources. This flexibility enables users to scale their operations from a handful to thousands of NVIDIA A100 GPUs depending on their specific project requirements. Researchers, data scientists, and developers can leverage P4d instances to train machine learning models for diverse applications, including natural language processing, object detection and classification, and recommendation systems, in addition to executing HPC tasks such as pharmaceutical discovery and other complex computations. These capabilities collectively empower teams to innovate and accelerate their projects with greater efficiency and effectiveness. -
16
Amazon EC2 P5 Instances
Amazon
Amazon's Elastic Compute Cloud (EC2) offers P5 instances that utilize NVIDIA H100 Tensor Core GPUs, alongside P5e and P5en instances featuring NVIDIA H200 Tensor Core GPUs, ensuring unmatched performance for deep learning and high-performance computing tasks. With these advanced instances, you can reduce the time to achieve results by as much as four times compared to earlier GPU-based EC2 offerings, while also cutting ML model training costs by up to 40%. This capability enables faster iteration on solutions, allowing businesses to reach the market more efficiently. P5, P5e, and P5en instances are ideal for training and deploying sophisticated large language models and diffusion models that drive the most intensive generative AI applications, which encompass areas like question-answering, code generation, video and image creation, and speech recognition. Furthermore, these instances can also support large-scale deployment of high-performance computing applications, facilitating advancements in fields such as pharmaceutical discovery, ultimately transforming how research and development are conducted in the industry. -
17
Lambda GPU Cloud
Lambda
$1.25 per hour 1 RatingTrain advanced models in AI, machine learning, and deep learning effortlessly. With just a few clicks, you can scale your computing resources from a single machine to a complete fleet of virtual machines. Initiate or expand your deep learning endeavors using Lambda Cloud, which allows you to quickly get started, reduce computing expenses, and seamlessly scale up to hundreds of GPUs when needed. Each virtual machine is equipped with the latest version of Lambda Stack, featuring prominent deep learning frameworks and CUDA® drivers. In mere seconds, you can access a dedicated Jupyter Notebook development environment for every machine directly through the cloud dashboard. For immediate access, utilize the Web Terminal within the dashboard or connect via SSH using your provided SSH keys. By creating scalable compute infrastructure tailored specifically for deep learning researchers, Lambda is able to offer substantial cost savings. Experience the advantages of cloud computing's flexibility without incurring exorbitant on-demand fees, even as your workloads grow significantly. This means you can focus on your research and projects without being hindered by financial constraints. -
18
Deep learning frameworks like TensorFlow, PyTorch, Caffe, Torch, Theano, and MXNet have significantly enhanced the accessibility of deep learning by simplifying the design, training, and application of deep learning models. Fabric for Deep Learning (FfDL, pronounced “fiddle”) offers a standardized method for deploying these deep-learning frameworks as a service on Kubernetes, ensuring smooth operation. The architecture of FfDL is built on microservices, which minimizes the interdependence between components, promotes simplicity, and maintains a stateless nature for each component. This design choice also helps to isolate failures, allowing for independent development, testing, deployment, scaling, and upgrading of each element. By harnessing the capabilities of Kubernetes, FfDL delivers a highly scalable, resilient, and fault-tolerant environment for deep learning tasks. Additionally, the platform incorporates a distribution and orchestration layer that enables efficient learning from large datasets across multiple compute nodes within a manageable timeframe. This comprehensive approach ensures that deep learning projects can be executed with both efficiency and reliability.
-
19
DeepSpeed
Microsoft
FreeDeepSpeed is an open-source library focused on optimizing deep learning processes for PyTorch. Its primary goal is to enhance efficiency by minimizing computational power and memory requirements while facilitating the training of large-scale distributed models with improved parallel processing capabilities on available hardware. By leveraging advanced techniques, DeepSpeed achieves low latency and high throughput during model training. This tool can handle deep learning models with parameter counts exceeding one hundred billion on contemporary GPU clusters, and it is capable of training models with up to 13 billion parameters on a single graphics processing unit. Developed by Microsoft, DeepSpeed is specifically tailored to support distributed training for extensive models, and it is constructed upon the PyTorch framework, which excels in data parallelism. Additionally, the library continuously evolves to incorporate cutting-edge advancements in deep learning, ensuring it remains at the forefront of AI technology. -
20
Huawei Cloud ModelArts
Huawei Cloud
ModelArts, an all-encompassing AI development platform from Huawei Cloud, is crafted to optimize the complete AI workflow for both developers and data scientists. This platform encompasses a comprehensive toolchain that facilitates various phases of AI development, including data preprocessing, semi-automated data labeling, distributed training, automated model creation, and versatile deployment across cloud, edge, and on-premises systems. It is compatible with widely used open-source AI frameworks such as TensorFlow, PyTorch, and MindSpore, while also enabling the integration of customized algorithms to meet unique project requirements. The platform's end-to-end development pipeline fosters enhanced collaboration among DataOps, MLOps, and DevOps teams, resulting in improved development efficiency by as much as 50%. Furthermore, ModelArts offers budget-friendly AI computing resources with a range of specifications, supporting extensive distributed training and accelerating inference processes. This flexibility empowers organizations to adapt their AI solutions to meet evolving business challenges effectively. -
21
TensorWave
TensorWave
TensorWave is a cloud platform designed for AI and high-performance computing (HPC), exclusively utilizing AMD Instinct Series GPUs to ensure optimal performance. It features a high-bandwidth and memory-optimized infrastructure that seamlessly scales to accommodate even the most rigorous training or inference tasks. Users can access AMD’s leading GPUs in mere seconds, including advanced models like the MI300X and MI325X, renowned for their exceptional memory capacity and bandwidth, boasting up to 256GB of HBM3E and supporting speeds of 6.0TB/s. Additionally, TensorWave's architecture is equipped with UEC-ready functionalities that enhance the next generation of Ethernet for AI and HPC networking, as well as direct liquid cooling systems that significantly reduce total cost of ownership, achieving energy cost savings of up to 51% in data centers. The platform also incorporates high-speed network storage, which provides transformative performance, security, and scalability for AI workflows. Furthermore, it ensures seamless integration with a variety of tools and platforms, accommodating various models and libraries to enhance user experience. TensorWave stands out for its commitment to performance and efficiency in the evolving landscape of AI technology. -
22
NVIDIA Triton Inference Server
NVIDIA
FreeThe NVIDIA Triton™ inference server provides efficient and scalable AI solutions for production environments. This open-source software simplifies the process of AI inference, allowing teams to deploy trained models from various frameworks, such as TensorFlow, NVIDIA TensorRT®, PyTorch, ONNX, XGBoost, Python, and more, across any infrastructure that relies on GPUs or CPUs, whether in the cloud, data center, or at the edge. By enabling concurrent model execution on GPUs, Triton enhances throughput and resource utilization, while also supporting inferencing on both x86 and ARM architectures. It comes equipped with advanced features such as dynamic batching, model analysis, ensemble modeling, and audio streaming capabilities. Additionally, Triton is designed to integrate seamlessly with Kubernetes, facilitating orchestration and scaling, while providing Prometheus metrics for effective monitoring and supporting live updates to models. This software is compatible with all major public cloud machine learning platforms and managed Kubernetes services, making it an essential tool for standardizing model deployment in production settings. Ultimately, Triton empowers developers to achieve high-performance inference while simplifying the overall deployment process. -
23
Horovod
Horovod
FreeOriginally created by Uber, Horovod aims to simplify and accelerate the process of distributed deep learning, significantly reducing model training durations from several days or weeks to mere hours or even minutes. By utilizing Horovod, users can effortlessly scale their existing training scripts to leverage the power of hundreds of GPUs with just a few lines of Python code. It offers flexibility for deployment, as it can be installed on local servers or seamlessly operated in various cloud environments such as AWS, Azure, and Databricks. In addition, Horovod is compatible with Apache Spark, allowing a cohesive integration of data processing and model training into one streamlined pipeline. Once set up, the infrastructure provided by Horovod supports model training across any framework, facilitating easy transitions between TensorFlow, PyTorch, MXNet, and potential future frameworks as the landscape of machine learning technologies continues to progress. This adaptability ensures that users can keep pace with the rapid advancements in the field without being locked into a single technology. -
24
SambaNova
SambaNova Systems
SambaNova is the leading purpose-built AI system for generative and agentic AI implementations, from chips to models, that gives enterprises full control over their model and private data. We take the best models, optimize them for fast tokens and higher batch sizes, the largest inputs and enable customizations to deliver value with simplicity. The full suite includes the SambaNova DataScale system, the SambaStudio software, and the innovative SambaNova Composition of Experts (CoE) model architecture. These components combine into a powerful platform that delivers unparalleled performance, ease of use, accuracy, data privacy, and the ability to power every use case across the world's largest organizations. At the heart of SambaNova innovation is the fourth generation SN40L Reconfigurable Dataflow Unit (RDU). Purpose built for AI workloads, the SN40L RDU takes advantage of a dataflow architecture and a three-tiered memory design. The dataflow architecture eliminates the challenges that GPUs have with high performance inference. The three tiers of memory enable the platform to run hundreds of models on a single node and to switch between them in microseconds. We give our customers the optionality to experience through the cloud or on-premise. -
25
Lumino
Lumino
Introducing a pioneering compute protocol that combines integrated hardware and software for the training and fine-tuning of AI models. Experience a reduction in training expenses by as much as 80%. You can deploy your models in mere seconds, utilizing either open-source templates or your own customized models. Effortlessly debug your containers while having access to vital resources such as GPU, CPU, Memory, and other performance metrics. Real-time log monitoring allows for immediate insights into your processes. Maintain complete accountability by tracing all models and training datasets with cryptographically verified proofs. Command the entire training workflow effortlessly with just a few straightforward commands. Additionally, you can earn block rewards by contributing your computer to the network, while also tracking essential metrics like connectivity and uptime to ensure optimal performance. The innovative design of this system not only enhances efficiency but also promotes a collaborative environment for AI development. -
26
Qualcomm Cloud AI SDK
Qualcomm
The Qualcomm Cloud AI SDK serves as a robust software suite aimed at enhancing the performance of trained deep learning models for efficient inference on Qualcomm Cloud AI 100 accelerators. It accommodates a diverse array of AI frameworks like TensorFlow, PyTorch, and ONNX, which empowers developers to compile, optimize, and execute models with ease. Offering tools for onboarding, fine-tuning, and deploying models, the SDK streamlines the entire process from preparation to production rollout. In addition, it includes valuable resources such as model recipes, tutorials, and sample code to support developers in speeding up their AI projects. This ensures a seamless integration with existing infrastructures, promoting scalable and efficient AI inference solutions within cloud settings. By utilizing the Cloud AI SDK, developers are positioned to significantly boost the performance and effectiveness of their AI-driven applications, ultimately leading to more innovative solutions in the field. -
27
Replicate
Replicate
FreeReplicate is a comprehensive platform designed to help developers and businesses seamlessly run, fine-tune, and deploy machine learning models with just a few lines of code. It hosts thousands of community-contributed models that support diverse use cases such as image and video generation, speech synthesis, music creation, and text generation. Users can enhance model performance by fine-tuning models with their own datasets, enabling highly specialized AI applications. The platform supports custom model deployment through Cog, an open-source tool that automates packaging and deployment on cloud infrastructure while managing scaling transparently. Replicate’s pricing model is usage-based, ensuring customers pay only for the compute time they consume, with support for a variety of GPU and CPU options. The system provides built-in monitoring and logging capabilities to track model performance and troubleshoot predictions. Major companies like Buzzfeed, Unsplash, and Character.ai use Replicate to power their AI features. Replicate’s goal is to democratize access to scalable, production-ready machine learning infrastructure, making AI deployment accessible even to non-experts. -
28
GPUonCLOUD
GPUonCLOUD
$1 per hourIn the past, tasks such as deep learning, 3D modeling, simulations, distributed analytics, and molecular modeling could take several days or even weeks to complete. Thanks to GPUonCLOUD’s specialized GPU servers, these processes can now be accomplished in just a few hours. You can choose from a range of pre-configured systems or ready-to-use instances equipped with GPUs that support popular deep learning frameworks like TensorFlow, PyTorch, MXNet, and TensorRT, along with libraries such as the real-time computer vision library OpenCV, all of which enhance your AI/ML model-building journey. Among the diverse selection of GPUs available, certain servers are particularly well-suited for graphics-intensive tasks and multiplayer accelerated gaming experiences. Furthermore, instant jumpstart frameworks significantly boost the speed and flexibility of the AI/ML environment while ensuring effective and efficient management of the entire lifecycle. This advancement not only streamlines workflows but also empowers users to innovate at an unprecedented pace. -
29
NVIDIA GPU-Optimized AMI
Amazon
$3.06 per hourThe NVIDIA GPU-Optimized AMI serves as a virtual machine image designed to enhance your GPU-accelerated workloads in Machine Learning, Deep Learning, Data Science, and High-Performance Computing (HPC). By utilizing this AMI, you can quickly launch a GPU-accelerated EC2 virtual machine instance, complete with a pre-installed Ubuntu operating system, GPU driver, Docker, and the NVIDIA container toolkit, all within a matter of minutes. This AMI simplifies access to NVIDIA's NGC Catalog, which acts as a central hub for GPU-optimized software, enabling users to easily pull and run performance-tuned, thoroughly tested, and NVIDIA-certified Docker containers. The NGC catalog offers complimentary access to a variety of containerized applications for AI, Data Science, and HPC, along with pre-trained models, AI SDKs, and additional resources, allowing data scientists, developers, and researchers to concentrate on creating and deploying innovative solutions. Additionally, this GPU-optimized AMI is available at no charge, with an option for users to purchase enterprise support through NVIDIA AI Enterprise. For further details on obtaining support for this AMI, please refer to the section labeled 'Support Information' below. Moreover, leveraging this AMI can significantly streamline the development process for projects requiring intensive computational resources. -
30
Together AI
Together AI
$0.0001 per 1k tokensBe it prompt engineering, fine-tuning, or extensive training, we are fully equipped to fulfill your business needs. Seamlessly incorporate your newly developed model into your application with the Together Inference API, which offers unparalleled speed and flexible scaling capabilities. Together AI is designed to adapt to your evolving requirements as your business expands. You can explore the training processes of various models and the datasets used to enhance their accuracy while reducing potential risks. It's important to note that the ownership of the fine-tuned model lies with you, not your cloud service provider, allowing for easy transitions if you decide to switch providers for any reason, such as cost adjustments. Furthermore, you can ensure complete data privacy by opting to store your data either locally or within our secure cloud environment. The flexibility and control we offer empower you to make decisions that best suit your business. -
31
Azure Machine Learning
Microsoft
Streamline the entire machine learning lifecycle from start to finish. Equip developers and data scientists with an extensive array of efficient tools for swiftly building, training, and deploying machine learning models. Enhance the speed of market readiness and promote collaboration among teams through leading-edge MLOps—akin to DevOps but tailored for machine learning. Drive innovation within a secure, reliable platform that prioritizes responsible AI practices. Cater to users of all expertise levels with options for both code-centric and drag-and-drop interfaces, along with automated machine learning features. Implement comprehensive MLOps functionalities that seamlessly align with existing DevOps workflows, facilitating the management of the entire machine learning lifecycle. Emphasize responsible AI by providing insights into model interpretability and fairness, securing data through differential privacy and confidential computing, and maintaining control over the machine learning lifecycle with audit trails and datasheets. Additionally, ensure exceptional compatibility with top open-source frameworks and programming languages such as MLflow, Kubeflow, ONNX, PyTorch, TensorFlow, Python, and R, thus broadening accessibility and usability for diverse projects. By fostering an environment that promotes collaboration and innovation, teams can achieve remarkable advancements in their machine learning endeavors. -
32
NVIDIA NGC
NVIDIA
NVIDIA GPU Cloud (NGC) serves as a cloud platform that harnesses GPU acceleration for deep learning and scientific computations. It offers a comprehensive catalog of fully integrated containers for deep learning frameworks designed to optimize performance on NVIDIA GPUs, whether in single or multi-GPU setups. Additionally, the NVIDIA train, adapt, and optimize (TAO) platform streamlines the process of developing enterprise AI applications by facilitating quick model adaptation and refinement. Through a user-friendly guided workflow, organizations can fine-tune pre-trained models with their unique datasets, enabling them to create precise AI models in mere hours instead of the traditional months, thereby reducing the necessity for extensive training periods and specialized AI knowledge. If you're eager to dive into the world of containers and models on NGC, you’ve found the ideal starting point. Furthermore, NGC's Private Registries empower users to securely manage and deploy their proprietary assets, enhancing their AI development journey. -
33
Amazon EC2 G5 Instances
Amazon
$1.006 per hourThe Amazon EC2 G5 instances represent the newest generation of NVIDIA GPU-powered instances, designed to cater to a variety of graphics-heavy and machine learning applications. They offer performance improvements of up to three times for graphics-intensive tasks and machine learning inference, while achieving a remarkable 3.3 times increase in performance for machine learning training when compared to the previous G4dn instances. Users can leverage G5 instances for demanding applications such as remote workstations, video rendering, and gaming, enabling them to create high-quality graphics in real time. Additionally, these instances provide machine learning professionals with an efficient and high-performing infrastructure to develop and implement larger, more advanced models in areas like natural language processing, computer vision, and recommendation systems. Notably, G5 instances provide up to three times the graphics performance and a 40% improvement in price-performance ratio relative to G4dn instances. Furthermore, they feature a greater number of ray tracing cores than any other GPU-equipped EC2 instance, making them an optimal choice for developers seeking to push the boundaries of graphical fidelity. With their cutting-edge capabilities, G5 instances are poised to redefine expectations in both gaming and machine learning sectors. -
34
Deep Lake
activeloop
$995 per monthWhile generative AI is a relatively recent development, our efforts over the last five years have paved the way for this moment. Deep Lake merges the strengths of data lakes and vector databases to craft and enhance enterprise-level solutions powered by large language models, allowing for continual refinement. However, vector search alone does not address retrieval challenges; a serverless query system is necessary for handling multi-modal data that includes embeddings and metadata. You can perform filtering, searching, and much more from either the cloud or your local machine. This platform enables you to visualize and comprehend your data alongside its embeddings, while also allowing you to monitor and compare different versions over time to enhance both your dataset and model. Successful enterprises are not solely reliant on OpenAI APIs, as it is essential to fine-tune your large language models using your own data. Streamlining data efficiently from remote storage to GPUs during model training is crucial. Additionally, Deep Lake datasets can be visualized directly in your web browser or within a Jupyter Notebook interface. You can quickly access various versions of your data, create new datasets through on-the-fly queries, and seamlessly stream them into frameworks like PyTorch or TensorFlow, thus enriching your data processing capabilities. This ensures that users have the flexibility and tools needed to optimize their AI-driven projects effectively. -
35
Businesses now have numerous options to efficiently train their deep learning and machine learning models without breaking the bank. AI accelerators cater to various scenarios, providing solutions that range from economical inference to robust training capabilities. Getting started is straightforward, thanks to an array of services designed for both development and deployment purposes. Custom-built ASICs known as Tensor Processing Units (TPUs) are specifically designed to train and run deep neural networks with enhanced efficiency. With these tools, organizations can develop and implement more powerful and precise models at a lower cost, achieving faster speeds and greater scalability. A diverse selection of NVIDIA GPUs is available to facilitate cost-effective inference or to enhance training capabilities, whether by scaling up or by expanding out. Furthermore, by utilizing RAPIDS and Spark alongside GPUs, users can execute deep learning tasks with remarkable efficiency. Google Cloud allows users to run GPU workloads while benefiting from top-tier storage, networking, and data analytics technologies that improve overall performance. Additionally, when initiating a VM instance on Compute Engine, users can leverage CPU platforms, which offer a variety of Intel and AMD processors to suit different computational needs. This comprehensive approach empowers businesses to harness the full potential of AI while managing costs effectively.
-
36
Skyportal
Skyportal
$2.40 per hourSkyportal is a cloud platform utilizing GPUs specifically designed for AI engineers, boasting a 50% reduction in cloud expenses while delivering 100% GPU performance. By providing an affordable GPU infrastructure tailored for machine learning tasks, it removes the uncertainty of fluctuating cloud costs and hidden charges. The platform features a smooth integration of Kubernetes, Slurm, PyTorch, TensorFlow, CUDA, cuDNN, and NVIDIA Drivers, all finely tuned for Ubuntu 22.04 LTS and 24.04 LTS, enabling users to concentrate on innovation and scaling effortlessly. Users benefit from high-performance NVIDIA H100 and H200 GPUs, which are optimized for ML/AI tasks, alongside instant scalability and round-the-clock expert support from a knowledgeable team adept in ML workflows and optimization strategies. In addition, Skyportal's clear pricing model and absence of egress fees ensure predictable expenses for AI infrastructure. Users are encouraged to communicate their AI/ML project needs and ambitions, allowing them to deploy models within the infrastructure using familiar tools and frameworks while adjusting their infrastructure capacity as necessary. Ultimately, Skyportal empowers AI engineers to streamline their workflows effectively while managing costs efficiently. -
37
Predibase
Predibase
Declarative machine learning systems offer an ideal combination of flexibility and ease of use, facilitating the rapid implementation of cutting-edge models. Users concentrate on defining the “what” while the system autonomously determines the “how.” Though you can start with intelligent defaults, you have the freedom to adjust parameters extensively, even diving into code if necessary. Our team has been at the forefront of developing declarative machine learning systems in the industry, exemplified by Ludwig at Uber and Overton at Apple. Enjoy a selection of prebuilt data connectors designed for seamless compatibility with your databases, data warehouses, lakehouses, and object storage solutions. This approach allows you to train advanced deep learning models without the hassle of infrastructure management. Automated Machine Learning achieves a perfect equilibrium between flexibility and control, all while maintaining a declarative structure. By adopting this declarative method, you can finally train and deploy models at the speed you desire, enhancing productivity and innovation in your projects. The ease of use encourages experimentation, making it easier to refine models based on your specific needs. -
38
Azure OpenAI Service
Microsoft
$0.0004 per 1000 tokensUtilize sophisticated coding and language models across a diverse range of applications. Harness the power of expansive generative AI models that possess an intricate grasp of both language and code, paving the way for enhanced reasoning and comprehension skills essential for developing innovative applications. These advanced models can be applied to multiple scenarios, including writing support, automatic code creation, and data reasoning. Moreover, ensure responsible AI practices by implementing measures to detect and mitigate potential misuse, all while benefiting from enterprise-level security features offered by Azure. With access to generative models pretrained on vast datasets comprising trillions of words, you can explore new possibilities in language processing, code analysis, reasoning, inferencing, and comprehension. Further personalize these generative models by using labeled datasets tailored to your unique needs through an easy-to-use REST API. Additionally, you can optimize your model's performance by fine-tuning hyperparameters for improved output accuracy. The few-shot learning functionality allows you to provide sample inputs to the API, resulting in more pertinent and context-aware outcomes. This flexibility enhances your ability to meet specific application demands effectively. -
39
Amazon SageMaker JumpStart
Amazon
Amazon SageMaker JumpStart serves as a comprehensive hub for machine learning (ML), designed to expedite your ML development process. This platform allows users to utilize various built-in algorithms accompanied by pretrained models sourced from model repositories, as well as foundational models that facilitate tasks like article summarization and image creation. Furthermore, it offers ready-made solutions aimed at addressing prevalent use cases in the field. Additionally, users have the ability to share ML artifacts, such as models and notebooks, within their organization to streamline the process of building and deploying ML models. SageMaker JumpStart boasts an extensive selection of hundreds of built-in algorithms paired with pretrained models from well-known hubs like TensorFlow Hub, PyTorch Hub, HuggingFace, and MxNet GluonCV. Furthermore, the SageMaker Python SDK allows for easy access to these built-in algorithms, which cater to various common ML functions, including data classification across images, text, and tabular data, as well as conducting sentiment analysis. This diverse range of features ensures that users have the necessary tools to effectively tackle their unique ML challenges. -
40
Pipeshift
Pipeshift
Pipeshift is an adaptable orchestration platform developed to streamline the creation, deployment, and scaling of open-source AI components like embeddings, vector databases, and various models for language, vision, and audio, whether in cloud environments or on-premises settings. It provides comprehensive orchestration capabilities, ensuring smooth integration and oversight of AI workloads while being fully cloud-agnostic, thus allowing users greater freedom in their deployment choices. Designed with enterprise-level security features, Pipeshift caters specifically to the demands of DevOps and MLOps teams who seek to implement robust production pipelines internally, as opposed to relying on experimental API services that might not prioritize privacy. Among its notable functionalities are an enterprise MLOps dashboard for overseeing multiple AI workloads, including fine-tuning, distillation, and deployment processes; multi-cloud orchestration equipped with automatic scaling, load balancing, and scheduling mechanisms for AI models; and effective management of Kubernetes clusters. Furthermore, Pipeshift enhances collaboration among teams by providing tools that facilitate the monitoring and adjustment of AI models in real-time. -
41
Amazon SageMaker Model Training streamlines the process of training and fine-tuning machine learning (ML) models at scale, significantly cutting down both time and costs while eliminating the need for infrastructure management. Users can leverage top-tier ML compute infrastructure, benefiting from SageMaker’s capability to seamlessly scale from a single GPU to thousands, adapting to demand as necessary. The pay-as-you-go model enables more effective management of training expenses, making it easier to keep costs in check. To accelerate the training of deep learning models, SageMaker’s distributed training libraries can divide extensive models and datasets across multiple AWS GPU instances, while also supporting third-party libraries like DeepSpeed, Horovod, or Megatron for added flexibility. Additionally, you can efficiently allocate system resources by choosing from a diverse range of GPUs and CPUs, including the powerful P4d.24xl instances, which are currently the fastest cloud training options available. With just one click, you can specify data locations and the desired SageMaker instances, simplifying the entire setup process for users. This user-friendly approach makes it accessible for both newcomers and experienced data scientists to maximize their ML training capabilities.
-
42
Segmind
Segmind
$5Segmind simplifies access to extensive computing resources, making it ideal for executing demanding tasks like deep learning training and various intricate processing jobs. It offers environments that require no setup within minutes, allowing for easy collaboration among team members. Additionally, Segmind's MLOps platform supports comprehensive management of deep learning projects, featuring built-in data storage and tools for tracking experiments. Recognizing that machine learning engineers often lack expertise in cloud infrastructure, Segmind takes on the complexities of cloud management, enabling teams to concentrate on their strengths and enhance model development efficiency. As training machine learning and deep learning models can be time-consuming and costly, Segmind allows for effortless scaling of computational power while potentially cutting costs by up to 70% through managed spot instances. Furthermore, today's ML managers often struggle to maintain an overview of ongoing ML development activities and associated expenses, highlighting the need for robust management solutions in the field. By addressing these challenges, Segmind empowers teams to achieve their goals more effectively. -
43
NetApp AIPod
NetApp
NetApp AIPod presents a holistic AI infrastructure solution aimed at simplifying the deployment and oversight of artificial intelligence workloads. By incorporating NVIDIA-validated turnkey solutions like the NVIDIA DGX BasePOD™ alongside NetApp's cloud-integrated all-flash storage, AIPod brings together analytics, training, and inference into one unified and scalable system. This integration allows organizations to efficiently execute AI workflows, encompassing everything from model training to fine-tuning and inference, while also prioritizing data management and security. With a preconfigured infrastructure tailored for AI operations, NetApp AIPod minimizes complexity, speeds up the path to insights, and ensures smooth integration in hybrid cloud settings. Furthermore, its design empowers businesses to leverage AI capabilities more effectively, ultimately enhancing their competitive edge in the market. -
44
SynapseAI
Habana Labs
Our accelerator hardware is specifically crafted to enhance the performance and efficiency of deep learning, while prioritizing usability for developers. SynapseAI aims to streamline the development process by providing support for widely-used frameworks and models, allowing developers to work with the tools they are familiar with and prefer. Essentially, SynapseAI and its extensive array of tools are tailored to support deep learning developers in their unique workflows, empowering them to create projects that align with their preferences and requirements. Additionally, Habana-based deep learning processors not only safeguard existing software investments but also simplify the process of developing new models, catering to both the training and deployment needs of an ever-expanding array of models that shape the landscape of deep learning, generative AI, and large language models. This commitment to adaptability and support ensures that developers can thrive in a rapidly evolving technological environment. -
45
ClearML
ClearML
$15ClearML is an open-source MLOps platform that enables data scientists, ML engineers, and DevOps to easily create, orchestrate and automate ML processes at scale. Our frictionless and unified end-to-end MLOps Suite allows users and customers to concentrate on developing ML code and automating their workflows. ClearML is used to develop a highly reproducible process for end-to-end AI models lifecycles by more than 1,300 enterprises, from product feature discovery to model deployment and production monitoring. You can use all of our modules to create a complete ecosystem, or you can plug in your existing tools and start using them. ClearML is trusted worldwide by more than 150,000 Data Scientists, Data Engineers and ML Engineers at Fortune 500 companies, enterprises and innovative start-ups.