Best Ai2 OLMoE Alternatives in 2025
Find the top alternatives to Ai2 OLMoE currently available. Compare ratings, reviews, pricing, and features of Ai2 OLMoE alternatives in 2025. Slashdot lists the best Ai2 OLMoE alternatives on the market that offer competing products that are similar to Ai2 OLMoE. Sort through Ai2 OLMoE alternatives below to make the best choice for your needs
-
1
DBRX
Databricks
We are thrilled to present DBRX, a versatile open LLM developed by Databricks. This innovative model achieves unprecedented performance on a variety of standard benchmarks, setting a new benchmark for existing open LLMs. Additionally, it equips both the open-source community and enterprises crafting their own LLMs with features that were once exclusive to proprietary model APIs; our evaluations indicate that it outperforms GPT-3.5 and competes effectively with Gemini 1.0 Pro. Notably, it excels as a code model, outperforming specialized counterparts like CodeLLaMA-70B in programming tasks, while also demonstrating its prowess as a general-purpose LLM. The remarkable quality of DBRX is complemented by significant enhancements in both training and inference efficiency. Thanks to its advanced fine-grained mixture-of-experts (MoE) architecture, DBRX elevates the efficiency of open models to new heights. In terms of inference speed, it can be twice as fast as LLaMA2-70B, and its total and active parameter counts are approximately 40% of those in Grok-1, showcasing its compact design without compromising capability. This combination of speed and size makes DBRX a game-changer in the landscape of open AI models. -
2
DeepSeek-V2
DeepSeek
FreeDeepSeek-V2 is a cutting-edge Mixture-of-Experts (MoE) language model developed by DeepSeek-AI, noted for its cost-effective training and high-efficiency inference features. It boasts an impressive total of 236 billion parameters, with only 21 billion active for each token, and is capable of handling a context length of up to 128K tokens. The model utilizes advanced architectures such as Multi-head Latent Attention (MLA) to optimize inference by minimizing the Key-Value (KV) cache and DeepSeekMoE to enable economical training through sparse computations. Compared to its predecessor, DeepSeek 67B, this model shows remarkable improvements, achieving a 42.5% reduction in training expenses, a 93.3% decrease in KV cache size, and a 5.76-fold increase in generation throughput. Trained on an extensive corpus of 8.1 trillion tokens, DeepSeek-V2 demonstrates exceptional capabilities in language comprehension, programming, and reasoning tasks, positioning it as one of the leading open-source models available today. Its innovative approach not only elevates its performance but also sets new benchmarks within the field of artificial intelligence. -
3
OpenGPT-X
OpenGPT-X
FreeOpenGPT-X is an initiative based in Germany that is dedicated to creating large AI language models specifically designed to meet the needs of Europe, highlighting attributes such as adaptability, reliability, multilingual support, and open-source accessibility. This initiative unites various partners to encompass the full spectrum of the generative AI value chain, which includes scalable, GPU-powered infrastructure and data for training expansive language models, alongside model design and practical applications through prototypes and proofs of concept. The primary goal of OpenGPT-X is to promote innovative research with a significant emphasis on business applications, thus facilitating the quicker integration of generative AI within the German economic landscape. Additionally, the project places a strong importance on the ethical development of AI, ensuring that the models developed are both reliable and consistent with European values and regulations. Furthermore, OpenGPT-X offers valuable resources such as the LLM Workbook and a comprehensive three-part reference guide filled with examples and resources to aid users in grasping the essential features of large AI language models, ultimately fostering a deeper understanding of this technology. By providing these tools, OpenGPT-X not only supports the technical development of AI but also encourages responsible usage and implementation across various sectors. -
4
Mixtral 8x22B
Mistral AI
FreeThe Mixtral 8x22B represents our newest open model, establishing a new benchmark for both performance and efficiency in the AI sector. This sparse Mixture-of-Experts (SMoE) model activates only 39B parameters from a total of 141B, ensuring exceptional cost efficiency relative to its scale. Additionally, it demonstrates fluency in multiple languages, including English, French, Italian, German, and Spanish, while also possessing robust skills in mathematics and coding. With its native function calling capability, combined with the constrained output mode utilized on la Plateforme, it facilitates the development of applications and the modernization of technology stacks on a large scale. The model's context window can handle up to 64K tokens, enabling accurate information retrieval from extensive documents. We prioritize creating models that maximize cost efficiency for their sizes, thereby offering superior performance-to-cost ratios compared to others in the community. The Mixtral 8x22B serves as a seamless extension of our open model lineage, and its sparse activation patterns contribute to its speed, making it quicker than any comparable dense 70B model on the market. Furthermore, its innovative design positions it as a leading choice for developers seeking high-performance solutions. -
5
OLMo 2
Ai2
OLMo 2 represents a collection of completely open language models created by the Allen Institute for AI (AI2), aimed at giving researchers and developers clear access to training datasets, open-source code, reproducible training methodologies, and thorough assessments. These models are trained on an impressive volume of up to 5 trillion tokens and compete effectively with top open-weight models like Llama 3.1, particularly in English academic evaluations. A key focus of OLMo 2 is on ensuring training stability, employing strategies to mitigate loss spikes during extended training periods, and applying staged training interventions in the later stages of pretraining to mitigate weaknesses in capabilities. Additionally, the models leverage cutting-edge post-training techniques derived from AI2's Tülu 3, leading to the development of OLMo 2-Instruct models. To facilitate ongoing enhancements throughout the development process, an actionable evaluation framework known as the Open Language Modeling Evaluation System (OLMES) was created, which includes 20 benchmarks that evaluate essential capabilities. This comprehensive approach not only fosters transparency but also encourages continuous improvement in language model performance. -
6
RedPajama
RedPajama
FreeFoundation models, including GPT-4, have significantly accelerated advancements in artificial intelligence, yet the most advanced models remain either proprietary or only partially accessible. In response to this challenge, the RedPajama initiative aims to develop a collection of top-tier, fully open-source models. We are thrilled to announce that we have successfully completed the initial phase of this endeavor: recreating the LLaMA training dataset, which contains over 1.2 trillion tokens. Currently, many of the leading foundation models are locked behind commercial APIs, restricting opportunities for research, customization, and application with sensitive information. The development of fully open-source models represents a potential solution to these limitations, provided that the open-source community can bridge the gap in quality between open and closed models. Recent advancements have shown promising progress in this area, suggesting that the AI field is experiencing a transformative period akin to the emergence of Linux. The success of Stable Diffusion serves as a testament to the fact that open-source alternatives can not only match the quality of commercial products like DALL-E but also inspire remarkable creativity through the collaborative efforts of diverse communities. By fostering an open-source ecosystem, we can unlock new possibilities for innovation and ensure broader access to cutting-edge AI technology. -
7
Qwen2
Alibaba
FreeQwen2 represents a collection of extensive language models crafted by the Qwen team at Alibaba Cloud. This series encompasses a variety of models, including base and instruction-tuned versions, with parameters varying from 0.5 billion to an impressive 72 billion, showcasing both dense configurations and a Mixture-of-Experts approach. The Qwen2 series aims to outperform many earlier open-weight models, including its predecessor Qwen1.5, while also striving to hold its own against proprietary models across numerous benchmarks in areas such as language comprehension, generation, multilingual functionality, programming, mathematics, and logical reasoning. Furthermore, this innovative series is poised to make a significant impact in the field of artificial intelligence, offering enhanced capabilities for a diverse range of applications. -
8
DeepSeek R1
DeepSeek
Free 1 RatingDeepSeek-R1 is a cutting-edge open-source reasoning model created by DeepSeek, aimed at competing with OpenAI's Model o1. It is readily available through web, app, and API interfaces, showcasing its proficiency in challenging tasks such as mathematics and coding, and achieving impressive results on assessments like the American Invitational Mathematics Examination (AIME) and MATH. Utilizing a mixture of experts (MoE) architecture, this model boasts a remarkable total of 671 billion parameters, with 37 billion parameters activated for each token, which allows for both efficient and precise reasoning abilities. As a part of DeepSeek's dedication to the progression of artificial general intelligence (AGI), the model underscores the importance of open-source innovation in this field. Furthermore, its advanced capabilities may significantly impact how we approach complex problem-solving in various domains. -
9
Llama 3.2
Meta
FreeThe latest iteration of the open-source AI model, which can be fine-tuned and deployed in various environments, is now offered in multiple versions, including 1B, 3B, 11B, and 90B, alongside the option to continue utilizing Llama 3.1. Llama 3.2 comprises a series of large language models (LLMs) that come pretrained and fine-tuned in 1B and 3B configurations for multilingual text only, while the 11B and 90B models accommodate both text and image inputs, producing text outputs. With this new release, you can create highly effective and efficient applications tailored to your needs. For on-device applications, such as summarizing phone discussions or accessing calendar tools, the 1B or 3B models are ideal choices. Meanwhile, the 11B or 90B models excel in image-related tasks, enabling you to transform existing images or extract additional information from images of your environment. Overall, this diverse range of models allows developers to explore innovative use cases across various domains. -
10
Falcon 2
Technology Innovation Institute (TII)
FreeFalcon 2 11B is a versatile AI model that is open-source, supports multiple languages, and incorporates multimodal features, particularly excelling in vision-to-language tasks. It outperforms Meta’s Llama 3 8B and matches the capabilities of Google’s Gemma 7B, as validated by the Hugging Face Leaderboard. In the future, the development plan includes adopting a 'Mixture of Experts' strategy aimed at significantly improving the model's functionalities, thereby advancing the frontiers of AI technology even further. This evolution promises to deliver remarkable innovations, solidifying Falcon 2's position in the competitive landscape of artificial intelligence. -
11
DeepSeek R2
DeepSeek
FreeDeepSeek R2 is the highly awaited successor to DeepSeek R1, an innovative AI reasoning model that made waves when it was introduced in January 2025 by the Chinese startup DeepSeek. This new version builds on the remarkable achievements of R1, which significantly altered the AI landscape by providing cost-effective performance comparable to leading models like OpenAI’s o1. R2 is set to offer a substantial upgrade in capabilities, promising impressive speed and reasoning abilities akin to that of a human, particularly in challenging areas such as complex coding and advanced mathematics. By utilizing DeepSeek’s cutting-edge Mixture-of-Experts architecture along with optimized training techniques, R2 is designed to surpass the performance of its predecessor while keeping computational demands low. Additionally, there are expectations that this model may broaden its reasoning skills to accommodate languages beyond just English, potentially increasing its global usability. The anticipation surrounding R2 highlights the ongoing evolution of AI technology and its implications for various industries. -
12
PaLM 2
Google
PaLM 2 represents the latest evolution in large language models, continuing Google's tradition of pioneering advancements in machine learning and ethical AI practices. It demonstrates exceptional capabilities in complex reasoning activities such as coding, mathematics, classification, answering questions, translation across languages, and generating natural language, surpassing the performance of previous models, including its predecessor PaLM. This enhanced performance is attributed to its innovative construction, which combines optimal computing scalability, a refined mixture of datasets, and enhancements in model architecture. Furthermore, PaLM 2 aligns with Google's commitment to responsible AI development and deployment, having undergone extensive assessments to identify potential harms, biases, and practical applications in both research and commercial products. This model serves as a foundation for other cutting-edge applications, including Med-PaLM 2 and Sec-PaLM, while also powering advanced AI features and tools at Google, such as Bard and the PaLM API. Additionally, its versatility makes it a significant asset in various fields, showcasing the potential of AI to enhance productivity and innovation. -
13
Sky-T1
NovaSky
FreeSky-T1-32B-Preview is an innovative open-source reasoning model crafted by the NovaSky team at UC Berkeley's Sky Computing Lab. It delivers performance comparable to proprietary models such as o1-preview on various reasoning and coding assessments, while being developed at a cost of less than $450, highlighting the potential for budget-friendly, advanced reasoning abilities. Fine-tuned from Qwen2.5-32B-Instruct, the model utilized a meticulously curated dataset comprising 17,000 examples spanning multiple fields, such as mathematics and programming. The entire training process was completed in just 19 hours using eight H100 GPUs with DeepSpeed Zero-3 offloading technology. Every component of this initiative—including the data, code, and model weights—is entirely open-source, allowing both academic and open-source communities to not only replicate but also improve upon the model's capabilities. This accessibility fosters collaboration and innovation in the realm of artificial intelligence research and development. -
14
R1 1776
Perplexity AI
FreePerplexity AI has released R1 1776 as an open-source large language model (LLM), built on the DeepSeek R1 framework, with the goal of improving transparency and encouraging collaborative efforts in the field of AI development. With this release, researchers and developers can explore the model's architecture and underlying code, providing them the opportunity to enhance and tailor it for diverse use cases. By making R1 1776 available to the public, Perplexity AI seeks to drive innovation while upholding ethical standards in the AI sector. This initiative not only empowers the community but also fosters a culture of shared knowledge and responsibility among AI practitioners. -
15
PygmalionAI
PygmalionAI
FreePygmalionAI is a vibrant community focused on the development of open-source initiatives utilizing EleutherAI's GPT-J 6B and Meta's LLaMA models. Essentially, Pygmalion specializes in crafting AI tailored for engaging conversations and roleplaying. The actively maintained Pygmalion AI model currently features the 7B variant, derived from Meta AI's LLaMA model. Requiring a mere 18GB (or even less) of VRAM, Pygmalion demonstrates superior chat functionality compared to significantly larger language models, all while utilizing relatively limited resources. Our meticulously assembled dataset, rich in high-quality roleplaying content, guarantees that your AI companion will be the perfect partner for roleplaying scenarios. Both the model weights and the training code are entirely open-source, allowing you the freedom to modify and redistribute them for any purpose you desire. Generally, language models, such as Pygmalion, operate on GPUs, as they require swift memory access and substantial processing power to generate coherent text efficiently. As a result, users can expect a smooth and responsive interaction experience when employing Pygmalion's capabilities. -
16
Stable LM
Stability AI
FreeStable LM represents a significant advancement in the field of language models by leveraging our previous experience with open-source initiatives, particularly in collaboration with EleutherAI, a nonprofit research organization. This journey includes the development of notable models such as GPT-J, GPT-NeoX, and the Pythia suite, all of which were trained on The Pile open-source dataset, while many contemporary open-source models like Cerebras-GPT and Dolly-2 have drawn inspiration from this foundational work. Unlike its predecessors, Stable LM is trained on an innovative dataset that is three times the size of The Pile, encompassing a staggering 1.5 trillion tokens. We plan to share more information about this dataset in the near future. The extensive nature of this dataset enables Stable LM to excel remarkably in both conversational and coding scenarios, despite its relatively modest size of 3 to 7 billion parameters when compared to larger models like GPT-3, which boasts 175 billion parameters. Designed for versatility, Stable LM 3B is a streamlined model that can efficiently function on portable devices such as laptops and handheld gadgets, making us enthusiastic about its practical applications and mobility. Overall, the development of Stable LM marks a pivotal step towards creating more efficient and accessible language models for a wider audience. -
17
EXAONE
LG
EXAONE is an advanced language model created by LG AI Research, designed to cultivate "Expert AI" across various fields. To enhance EXAONE's capabilities, the Expert AI Alliance was established, bringing together prominent companies from diverse sectors to collaborate. These partner organizations will act as mentors, sharing their expertise, skills, and data to support EXAONE in becoming proficient in specific domains. Much like a college student who has finished general courses, EXAONE requires further focused training to achieve true expertise. LG AI Research has already showcased EXAONE's potential through practical implementations, including Tilda, an AI human artist that made its debut at New York Fashion Week, and AI tools that summarize customer service interactions as well as extract insights from intricate academic papers. This initiative not only highlights the innovative applications of AI but also emphasizes the importance of collaborative efforts in advancing technology. -
18
OpenEuroLLM
OpenEuroLLM
OpenEuroLLM represents a collaborative effort between prominent AI firms and research organizations across Europe, aimed at creating a suite of open-source foundational models to promote transparency in artificial intelligence within the continent. This initiative prioritizes openness by making data, documentation, training and testing code, and evaluation metrics readily available, thereby encouraging community participation. It is designed to comply with European Union regulations, with the goal of delivering efficient large language models that meet the specific standards of Europe. A significant aspect of the project is its commitment to linguistic and cultural diversity, ensuring that multilingual capabilities cover all official EU languages and potentially more. The initiative aspires to broaden access to foundational models that can be fine-tuned for a range of applications, enhance evaluation outcomes across different languages, and boost the availability of training datasets and benchmarks for researchers and developers alike. By sharing tools, methodologies, and intermediate results, transparency is upheld during the entire training process, fostering trust and collaboration within the AI community. Ultimately, OpenEuroLLM aims to pave the way for more inclusive and adaptable AI solutions that reflect the rich diversity of European languages and cultures. -
19
fullmoon
fullmoon
FreeFullmoon is an innovative, open-source application designed to allow users to engage directly with large language models on their personal devices, prioritizing privacy and enabling offline use. Tailored specifically for Apple silicon, it functions smoothly across various platforms, including iOS, iPadOS, macOS, and visionOS. Users have the ability to customize their experience by modifying themes, fonts, and system prompts, while the app also works seamlessly with Apple's Shortcuts to enhance user productivity. Notably, Fullmoon is compatible with models such as Llama-3.2-1B-Instruct-4bit and Llama-3.2-3B-Instruct-4bit, allowing for effective AI interactions without requiring internet connectivity. This makes it a versatile tool for anyone looking to harness the power of AI conveniently and privately. -
20
Falcon 3
Technology Innovation Institute (TII)
FreeFalcon 3 is a large language model that has been made open-source by the Technology Innovation Institute (TII), aiming to broaden access to advanced AI capabilities. Its design prioritizes efficiency, enabling it to function effectively on lightweight devices like laptops while maintaining high performance levels. The Falcon 3 suite includes four scalable models, each specifically designed for various applications and capable of supporting multiple languages while minimizing resource consumption. This new release in TII's LLM lineup sets a benchmark in reasoning, language comprehension, instruction adherence, coding, and mathematical problem-solving. By offering a blend of robust performance and resource efficiency, Falcon 3 seeks to democratize AI access, allowing users in numerous fields to harness sophisticated technology without the necessity for heavy computational power. Furthermore, this initiative not only enhances individual capabilities but also fosters innovation across different sectors by making advanced AI tools readily available. -
21
Reka Flash 3
Reka
Reka Flash 3 is a cutting-edge multimodal AI model with 21 billion parameters, crafted by Reka AI to perform exceptionally well in tasks such as general conversation, coding, following instructions, and executing functions. This model adeptly handles and analyzes a myriad of inputs, including text, images, video, and audio, providing a versatile and compact solution for a wide range of applications. Built from the ground up, Reka Flash 3 was trained on a rich array of datasets, encompassing both publicly available and synthetic information, and it underwent a meticulous instruction tuning process with high-quality selected data to fine-tune its capabilities. The final phase of its training involved employing reinforcement learning techniques, specifically using the REINFORCE Leave One-Out (RLOO) method, which combined both model-based and rule-based rewards to significantly improve its reasoning skills. With an impressive context length of 32,000 tokens, Reka Flash 3 competes effectively with proprietary models like OpenAI's o1-mini, making it an excellent choice for applications requiring low latency or on-device processing. The model operates at full precision with a memory requirement of 39GB (fp16), although it can be efficiently reduced to just 11GB through the use of 4-bit quantization, demonstrating its adaptability for various deployment scenarios. Overall, Reka Flash 3 represents a significant advancement in multimodal AI technology, capable of meeting diverse user needs across multiple platforms. -
22
Ministral 3B
Mistral AI
FreeMistral AI has launched two cutting-edge models designed for on-device computing and edge applications, referred to as "les Ministraux": Ministral 3B and Ministral 8B. These innovative models redefine the standards of knowledge, commonsense reasoning, function-calling, and efficiency within the sub-10B category. They are versatile enough to be utilized or customized for a wide range of applications, including managing complex workflows and developing specialized task-focused workers. Capable of handling up to 128k context length (with the current version supporting 32k on vLLM), Ministral 8B also incorporates a unique interleaved sliding-window attention mechanism to enhance both speed and memory efficiency during inference. Designed for low-latency and compute-efficient solutions, these models excel in scenarios such as offline translation, smart assistants that don't rely on internet connectivity, local data analysis, and autonomous robotics. Moreover, when paired with larger language models like Mistral Large, les Ministraux can effectively function as streamlined intermediaries, facilitating function-calling within intricate multi-step workflows, thereby expanding their applicability across various domains. This combination not only enhances performance but also broadens the scope of what can be achieved with AI in edge computing. -
23
Open R1
Open R1
FreeOpen R1 is a collaborative, open-source effort focused on mimicking the sophisticated AI functionalities of DeepSeek-R1 using clear and open methods. Users have the opportunity to explore the Open R1 AI model or engage in a free online chat with DeepSeek R1 via the Open R1 platform. This initiative presents a thorough execution of DeepSeek-R1's reasoning-optimized training framework, featuring resources for GRPO training, SFT fine-tuning, and the creation of synthetic data, all available under the MIT license. Although the original training dataset is still proprietary, Open R1 equips users with a complete suite of tools to create and enhance their own AI models, allowing for greater customization and experimentation in the field of artificial intelligence. -
24
Aya
Cohere AI
Aya represents a cutting-edge, open-source generative language model that boasts support for 101 languages, significantly surpassing the language capabilities of current open-source counterparts. By facilitating access to advanced language processing for a diverse array of languages and cultures that are often overlooked, Aya empowers researchers to explore the full potential of generative language models. In addition to the Aya model, we are releasing the largest dataset for multilingual instruction fine-tuning ever created, which includes 513 million entries across 114 languages. This extensive dataset features unique annotations provided by native and fluent speakers worldwide, thereby enhancing the ability of AI to cater to a wide range of global communities that have historically had limited access to such technology. Furthermore, the initiative aims to bridge the gap in AI accessibility, ensuring that even the most underserved languages receive the attention they deserve in the digital landscape. -
25
Tülu 3
Ai2
FreeTülu 3 is a cutting-edge language model created by the Allen Institute for AI (Ai2) that aims to improve proficiency in fields like knowledge, reasoning, mathematics, coding, and safety. It is based on the Llama 3 Base and undergoes a detailed four-stage post-training regimen: careful prompt curation and synthesis, supervised fine-tuning on a wide array of prompts and completions, preference tuning utilizing both off- and on-policy data, and a unique reinforcement learning strategy that enhances targeted skills through measurable rewards. Notably, this open-source model sets itself apart by ensuring complete transparency, offering access to its training data, code, and evaluation tools, thus bridging the performance divide between open and proprietary fine-tuning techniques. Performance assessments reveal that Tülu 3 surpasses other models with comparable sizes, like Llama 3.1-Instruct and Qwen2.5-Instruct, across an array of benchmarks, highlighting its effectiveness. The continuous development of Tülu 3 signifies the commitment to advancing AI capabilities while promoting an open and accessible approach to technology. -
26
Sarvam AI
Sarvam AI
We are creating advanced large language models tailored to India's rich linguistic diversity while also facilitating innovative GenAI applications through custom enterprise solutions. Our focus is on building a robust platform that empowers businesses to create and assess their own GenAI applications seamlessly. Believing in the transformative potential of open-source, we are dedicated to contributing to community-driven models and datasets, and we will take a leading role in curating large-scale data aimed at the public good. Our team consists of dynamic AI innovators who combine their expertise in research, engineering, product design, and business operations to drive progress. United by a common dedication to scientific excellence and making a positive societal impact, we cultivate a workplace where addressing intricate technological challenges is embraced as a true passion. In this collaborative environment, we strive to push the boundaries of AI and its applications for the betterment of society. -
27
Cohere is a robust enterprise AI platform that empowers developers and organizations to create advanced applications leveraging language technologies. With a focus on large language models (LLMs), Cohere offers innovative solutions for tasks such as text generation, summarization, and semantic search capabilities. The platform features the Command family designed for superior performance in language tasks, alongside Aya Expanse, which supports multilingual functionalities across 23 different languages. Emphasizing security and adaptability, Cohere facilitates deployment options that span major cloud providers, private cloud infrastructures, or on-premises configurations to cater to a wide array of enterprise requirements. The company partners with influential industry players like Oracle and Salesforce, striving to weave generative AI into business applications, thus enhancing automation processes and customer interactions. Furthermore, Cohere For AI, its dedicated research lab, is committed to pushing the boundaries of machine learning via open-source initiatives and fostering a collaborative global research ecosystem. This commitment to innovation not only strengthens their technology but also contributes to the broader AI landscape.
-
28
Pixtral Large
Mistral AI
FreePixtral Large is an expansive multimodal model featuring 124 billion parameters, crafted by Mistral AI and enhancing their previous Mistral Large 2 framework. This model combines a 123-billion-parameter multimodal decoder with a 1-billion-parameter vision encoder, allowing it to excel in the interpretation of various content types, including documents, charts, and natural images, all while retaining superior text comprehension abilities. With the capability to manage a context window of 128,000 tokens, Pixtral Large can efficiently analyze at least 30 high-resolution images at once. It has achieved remarkable results on benchmarks like MathVista, DocVQA, and VQAv2, outpacing competitors such as GPT-4o and Gemini-1.5 Pro. Available for research and educational purposes under the Mistral Research License, it also has a Mistral Commercial License for business applications. This versatility makes Pixtral Large a valuable tool for both academic research and commercial innovations. -
29
Ministral 8B
Mistral AI
FreeMistral AI has unveiled two cutting-edge models specifically designed for on-device computing and edge use cases, collectively referred to as "les Ministraux": Ministral 3B and Ministral 8B. These innovative models stand out due to their capabilities in knowledge retention, commonsense reasoning, function-calling, and overall efficiency, all while remaining within the sub-10B parameter range. They boast support for a context length of up to 128k, making them suitable for a diverse range of applications such as on-device translation, offline smart assistants, local analytics, and autonomous robotics. Notably, Ministral 8B incorporates an interleaved sliding-window attention mechanism, which enhances both the speed and memory efficiency of inference processes. Both models are adept at serving as intermediaries in complex multi-step workflows, skillfully managing functions like input parsing, task routing, and API interactions based on user intent, all while minimizing latency and operational costs. Benchmark results reveal that les Ministraux consistently exceed the performance of similar models across a variety of tasks, solidifying their position in the market. As of October 16, 2024, these models are now available for developers and businesses, with Ministral 8B being offered at a competitive rate of $0.1 for every million tokens utilized. This pricing structure enhances accessibility for users looking to integrate advanced AI capabilities into their solutions. -
30
QwQ-Max-Preview
Alibaba
FreeQwQ-Max-Preview is a cutting-edge AI model based on the Qwen2.5-Max framework, specifically engineered to excel in areas such as complex reasoning, mathematical problem-solving, programming, and agent tasks. This preview showcases its enhanced capabilities across a variety of general-domain applications while demonstrating proficiency in managing intricate workflows. Anticipated to be officially released as open-source software under the Apache 2.0 license, QwQ-Max-Preview promises significant improvements and upgrades in its final iteration. Additionally, it contributes to the development of a more inclusive AI environment, as evidenced by the forthcoming introduction of the Qwen Chat application and streamlined model versions like QwQ-32B, which cater to developers interested in local deployment solutions. This initiative not only broadens accessibility but also encourages innovation within the AI community. -
31
Qwen2.5-Max
Alibaba
FreeQwen2.5-Max is an advanced Mixture-of-Experts (MoE) model created by the Qwen team, which has been pretrained on an extensive dataset of over 20 trillion tokens and subsequently enhanced through methods like Supervised Fine-Tuning (SFT) and Reinforcement Learning from Human Feedback (RLHF). Its performance in evaluations surpasses that of models such as DeepSeek V3 across various benchmarks, including Arena-Hard, LiveBench, LiveCodeBench, and GPQA-Diamond, while also achieving strong results in other tests like MMLU-Pro. This model is available through an API on Alibaba Cloud, allowing users to easily integrate it into their applications, and it can also be interacted with on Qwen Chat for a hands-on experience. With its superior capabilities, Qwen2.5-Max represents a significant advancement in AI model technology. -
32
Mistral Small 3.1
Mistral
FreeMistral Small 3.1 represents a cutting-edge, multimodal, and multilingual AI model that has been released under the Apache 2.0 license. This upgraded version builds on Mistral Small 3, featuring enhanced text capabilities and superior multimodal comprehension, while also accommodating an extended context window of up to 128,000 tokens. It demonstrates superior performance compared to similar models such as Gemma 3 and GPT-4o Mini, achieving impressive inference speeds of 150 tokens per second. Tailored for adaptability, Mistral Small 3.1 shines in a variety of applications, including instruction following, conversational support, image analysis, and function execution, making it ideal for both business and consumer AI needs. The model's streamlined architecture enables it to operate efficiently on hardware such as a single RTX 4090 or a Mac equipped with 32GB of RAM, thus supporting on-device implementations. Users can download it from Hugging Face and access it through Mistral AI's developer playground, while it is also integrated into platforms like Google Cloud Vertex AI, with additional accessibility on NVIDIA NIM and more. This flexibility ensures that developers can leverage its capabilities across diverse environments and applications. -
33
Gemma
Google
Gemma represents a collection of cutting-edge, lightweight open models that are built upon the same research and technology underlying the Gemini models. Created by Google DeepMind alongside various teams at Google, the inspiration for Gemma comes from the Latin word "gemma," which translates to "precious stone." In addition to providing our model weights, we are also offering tools aimed at promoting developer creativity, encouraging collaboration, and ensuring the ethical application of Gemma models. Sharing key technical and infrastructural elements with Gemini, which stands as our most advanced AI model currently accessible, Gemma 2B and 7B excel in performance within their weight categories when compared to other open models. Furthermore, these models can conveniently operate on a developer's laptop or desktop, demonstrating their versatility. Impressively, Gemma not only outperforms significantly larger models on crucial benchmarks but also maintains our strict criteria for delivering safe and responsible outputs, making it a valuable asset for developers. -
34
OpenELM
Apple
OpenELM is a family of open-source language models created by Apple. By employing a layer-wise scaling approach, it effectively distributes parameters across the transformer model's layers, resulting in improved accuracy when compared to other open language models of a similar scale. This model is trained using datasets that are publicly accessible and is noted for achieving top-notch performance relative to its size. Furthermore, OpenELM represents a significant advancement in the pursuit of high-performing language models in the open-source community. -
35
NVIDIA Nemotron
NVIDIA
NVIDIA has created the Nemotron family of open-source models aimed at producing synthetic data specifically for training large language models (LLMs) intended for commercial use. Among these, the Nemotron-4 340B model stands out as a key innovation, providing developers with a robust resource to generate superior quality data while also allowing for the filtering of this data according to multiple attributes through a reward model. This advancement not only enhances data generation capabilities but also streamlines the process of training LLMs, making it more efficient and tailored to specific needs. -
36
Falcon Mamba 7B
Technology Innovation Institute (TII)
FreeFalcon Mamba 7B marks a significant milestone as the inaugural open-source State Space Language Model (SSLM), presenting a revolutionary architecture within the Falcon model family. Celebrated as the premier open-source SSLM globally by Hugging Face, it establishes a new standard for efficiency in artificial intelligence. In contrast to conventional transformers, SSLMs require significantly less memory and can produce lengthy text sequences seamlessly without extra resource demands. Falcon Mamba 7B outperforms top transformer models, such as Meta’s Llama 3.1 8B and Mistral’s 7B, demonstrating enhanced capabilities. This breakthrough not only highlights Abu Dhabi’s dedication to pushing the boundaries of AI research but also positions the region as a pivotal player in the global AI landscape. Such advancements are vital for fostering innovation and collaboration in technology. -
37
IBM Granite
IBM
FreeIBM® Granite™ comprises a suite of AI models specifically designed for business applications, built from the ground up to prioritize trust and scalability in AI implementations. Currently, the open-source Granite models can be accessed. Our goal is to make AI widely available to as many developers as possible, which is why we have released the essential Granite Code, as well as Time Series, Language, and GeoSpatial models as open-source on Hugging Face, under the permissive Apache 2.0 license, allowing extensive commercial use without restrictions. Every Granite model is developed using meticulously selected data, ensuring exceptional transparency regarding the sources of the training data. Additionally, we have made the tools that validate and maintain the quality of this data accessible to the public, meeting the rigorous standards required for enterprise-level applications. This commitment to openness and quality reflects our dedication to fostering innovation in the AI landscape. -
38
Alpaca
Stanford Center for Research on Foundation Models (CRFM)
Instruction-following models like GPT-3.5 (text-DaVinci-003), ChatGPT, Claude, and Bing Chat have seen significant advancements in their capabilities, leading to a rise in their usage among individuals in both personal and professional contexts. Despite their growing popularity and integration into daily tasks, these models are not without their shortcomings, as they can sometimes disseminate inaccurate information, reinforce harmful stereotypes, and use inappropriate language. To effectively tackle these critical issues, it is essential for researchers and scholars to become actively involved in exploring these models further. However, conducting research on instruction-following models within academic settings has posed challenges due to the unavailability of models with comparable functionality to proprietary options like OpenAI’s text-DaVinci-003. In response to this gap, we are presenting our insights on an instruction-following language model named Alpaca, which has been fine-tuned from Meta’s LLaMA 7B model, aiming to contribute to the discourse and development in this field. This initiative represents a step towards enhancing the understanding and capabilities of instruction-following models in a more accessible manner for researchers. -
39
The GPT-3.5 series represents an advancement in OpenAI's large language models, building on the capabilities of its predecessor, GPT-3. These models excel at comprehending and producing human-like text, with four primary variations designed for various applications. The core GPT-3.5 models are intended to be utilized through the text completion endpoint, while additional models are optimized for different endpoint functionalities. Among these, the Davinci model family stands out as the most powerful, capable of executing any task that the other models can handle, often requiring less detailed input. For tasks that demand a deep understanding of context, such as tailoring summaries for specific audiences or generating creative content, the Davinci model tends to yield superior outcomes. However, this enhanced capability comes at a cost, as Davinci requires more computing resources, making it pricier for API usage and slower compared to its counterparts. Overall, the advancements in GPT-3.5 not only improve performance but also expand the range of potential applications.
-
40
Dolly
Databricks
FreeDolly is an economical large language model that surprisingly demonstrates a notable level of instruction-following abilities similar to those seen in ChatGPT. While the Alpaca team's research revealed that cutting-edge models could be encouraged to excel in high-quality instruction adherence, our findings indicate that even older open-source models with earlier architectures can display remarkable behaviors when fine-tuned on a modest set of instructional training data. By utilizing an existing open-source model with 6 billion parameters from EleutherAI, Dolly has been slightly adjusted to enhance its ability to follow instructions, showcasing skills like brainstorming and generating text that were absent in its original form. This approach not only highlights the potential of older models but also opens new avenues for leveraging existing technologies in innovative ways. -
41
InstructGPT
OpenAI
$0.0200 per 1000 tokensInstructGPT is a publicly available framework that enables the training of language models capable of producing natural language instructions based on visual stimuli. By leveraging a generative pre-trained transformer (GPT) model alongside the advanced object detection capabilities of Mask R-CNN, it identifies objects within images and formulates coherent natural language descriptions. This framework is tailored for versatility across various sectors, including robotics, gaming, and education; for instance, it can guide robots in executing intricate tasks through spoken commands or support students by offering detailed narratives of events or procedures. Furthermore, InstructGPT's adaptability allows it to bridge the gap between visual understanding and linguistic expression, enhancing interaction in numerous applications. -
42
GPT4All
Nomic AI
FreeGPT4All represents a comprehensive framework designed for the training and deployment of advanced, tailored large language models that can operate efficiently on standard consumer-grade CPUs. Its primary objective is straightforward: to establish itself as the leading instruction-tuned assistant language model that individuals and businesses can access, share, and develop upon without restrictions. Each GPT4All model ranges between 3GB and 8GB in size, making it easy for users to download and integrate into the GPT4All open-source software ecosystem. Nomic AI plays a crucial role in maintaining and supporting this ecosystem, ensuring both quality and security while promoting the accessibility for anyone, whether individuals or enterprises, to train and deploy their own edge-based language models. The significance of data cannot be overstated, as it is a vital component in constructing a robust, general-purpose large language model. To facilitate this, the GPT4All community has established an open-source data lake, which serves as a collaborative platform for contributing valuable instruction and assistant tuning data, thereby enhancing future training efforts for models within the GPT4All framework. This initiative not only fosters innovation but also empowers users to engage actively in the development process. -
43
ChatGLM
Zhipu AI
FreeChatGLM-6B is a bilingual dialogue model that supports both Chinese and English, built on the General Language Model (GLM) framework and features 6.2 billion parameters. Thanks to model quantization techniques, it can be easily run on standard consumer graphics cards, requiring only 6GB of video memory at the INT4 quantization level. This model employs methodologies akin to those found in ChatGPT but is specifically tailored to enhance Chinese question-and-answer interactions and dialogue. Following extensive training with approximately 1 trillion identifiers in both languages, along with additional supervision, fine-tuning, self-assistance through feedback, and reinforcement learning from human input, ChatGLM-6B has demonstrated an impressive capability to produce responses that resonate well with human users. Its adaptability and performance make it a valuable tool for bilingual communication. -
44
Qwen LLM represents a collection of advanced large language models created by Alibaba Cloud's Damo Academy. These models leverage an extensive dataset comprising text and code, enabling them to produce human-like text, facilitate language translation, craft various forms of creative content, and provide informative answers to queries. Key attributes of Qwen LLMs include: A range of sizes: The Qwen series features models with parameters varying from 1.8 billion to 72 billion, catering to diverse performance requirements and applications. Open source availability: Certain versions of Qwen are open-source, allowing users to access and modify the underlying code as needed. Multilingual capabilities: Qwen is equipped to comprehend and translate several languages, including English, Chinese, and French. Versatile functionalities: In addition to language generation and translation, Qwen models excel in tasks such as answering questions, summarizing texts, and generating code, making them highly adaptable tools for various applications. Overall, the Qwen LLM family stands out for its extensive capabilities and flexibility in meeting user needs.
-
45
OPT
Meta
Large language models, often requiring extensive computational resources for training over long periods, have demonstrated impressive proficiency in zero- and few-shot learning tasks. Due to the high investment needed for their development, replicating these models poses a significant challenge for many researchers. Furthermore, access to the few models available via API is limited, as users cannot obtain the complete model weights, complicating academic exploration. In response to this, we introduce Open Pre-trained Transformers (OPT), a collection of decoder-only pre-trained transformers ranging from 125 million to 175 billion parameters, which we intend to share comprehensively and responsibly with interested scholars. Our findings indicate that OPT-175B exhibits performance on par with GPT-3, yet it is developed with only one-seventh of the carbon emissions required for GPT-3's training. Additionally, we will provide a detailed logbook that outlines the infrastructure hurdles we encountered throughout the project, as well as code to facilitate experimentation with all released models, ensuring that researchers have the tools they need to explore this technology further.