Best Agile Data Engine Alternatives in 2025
Find the top alternatives to Agile Data Engine currently available. Compare ratings, reviews, pricing, and features of Agile Data Engine alternatives in 2025. Slashdot lists the best Agile Data Engine alternatives on the market that offer competing products that are similar to Agile Data Engine. Sort through Agile Data Engine alternatives below to make the best choice for your needs
-
1
Teradata VantageCloud
Teradata
992 RatingsTeradata VantageCloud: Open, Scalable Cloud Analytics for AI VantageCloud is Teradata’s cloud-native analytics and data platform designed for performance and flexibility. It unifies data from multiple sources, supports complex analytics at scale, and makes it easier to deploy AI and machine learning models in production. With built-in support for multi-cloud and hybrid deployments, VantageCloud lets organizations manage data across AWS, Azure, Google Cloud, and on-prem environments without vendor lock-in. Its open architecture integrates with modern data tools and standard formats, giving developers and data teams freedom to innovate while keeping costs predictable. -
2
BigQuery is a serverless, multicloud data warehouse that makes working with all types of data effortless, allowing you to focus on extracting valuable business insights quickly. As a central component of Google’s data cloud, it streamlines data integration, enables cost-effective and secure scaling of analytics, and offers built-in business intelligence for sharing detailed data insights. With a simple SQL interface, it also supports training and deploying machine learning models, helping to foster data-driven decision-making across your organization. Its robust performance ensures that businesses can handle increasing data volumes with minimal effort, scaling to meet the needs of growing enterprises. Gemini within BigQuery brings AI-powered tools that enhance collaboration and productivity, such as code recommendations, visual data preparation, and intelligent suggestions aimed at improving efficiency and lowering costs. The platform offers an all-in-one environment with SQL, a notebook, and a natural language-based canvas interface, catering to data professionals of all skill levels. This cohesive workspace simplifies the entire analytics journey, enabling teams to work faster and more efficiently.
-
3
Kubit
Kubit
33 RatingsWarehouse-Native Customer Journey Analytics—No Black Boxes. No Limits. Kubit is the leading customer journey analytics platform, built for product, data, and marketing teams who need self-service insights, real-time visibility, and full control of their data—all without engineering dependencies or vendor lock-in. Unlike traditional analytics tools, Kubit is warehouse-native, enabling you to analyze user behavior directly in your cloud data platform (Snowflake, BigQuery, or Databricks). No data extraction. No hidden algorithms. No black-box logic. With built-in support for funnel analysis, retention, user paths, and cohort exploration, Kubit makes it easy to understand what’s working—and what’s not—across the entire customer journey. Add real-time anomaly detection and exploratory analytics, and you get faster decisions, smarter optimizations, and more engaged users. Top enterprises like Paramount, TelevisaUnivision, and Miro trust Kubit for its flexibility, data governance, and unmatched customer support. Discover the future of customer analytics at kubit.ai -
4
AnalyticsCreator
AnalyticsCreator
46 RatingsAccelerate your data journey with AnalyticsCreator—a metadata-driven data warehouse automation solution purpose-built for the Microsoft data ecosystem. AnalyticsCreator simplifies the design, development, and deployment of modern data architectures, including dimensional models, data marts, data vaults, or blended modeling approaches tailored to your business needs. Seamlessly integrate with Microsoft SQL Server, Azure Synapse Analytics, Microsoft Fabric (including OneLake and SQL Endpoint Lakehouse environments), and Power BI. AnalyticsCreator automates ELT pipeline creation, data modeling, historization, and semantic layer generation—helping reduce tool sprawl and minimizing manual SQL coding. Designed to support CI/CD pipelines, AnalyticsCreator connects easily with Azure DevOps and GitHub for version-controlled deployments across development, test, and production environments. This ensures faster, error-free releases while maintaining governance and control across your entire data engineering workflow. Key features include automated documentation, end-to-end data lineage tracking, and adaptive schema evolution—enabling teams to manage change, reduce risk, and maintain auditability at scale. AnalyticsCreator empowers agile data engineering by enabling rapid prototyping and production-grade deployments for Microsoft-centric data initiatives. By eliminating repetitive manual tasks and deployment risks, AnalyticsCreator allows your team to focus on delivering actionable business insights—accelerating time-to-value for your data products and analytics initiatives. -
5
Snowflake offers a unified AI Data Cloud platform that transforms how businesses store, analyze, and leverage data by eliminating silos and simplifying architectures. It features interoperable storage that enables seamless access to diverse datasets at massive scale, along with an elastic compute engine that delivers leading performance for a wide range of workloads. Snowflake Cortex AI integrates secure access to cutting-edge large language models and AI services, empowering enterprises to accelerate AI-driven insights. The platform’s cloud services automate and streamline resource management, reducing complexity and cost. Snowflake also offers Snowgrid, which securely connects data and applications across multiple regions and cloud providers for a consistent experience. Their Horizon Catalog provides built-in governance to manage security, privacy, compliance, and access control. Snowflake Marketplace connects users to critical business data and apps to foster collaboration within the AI Data Cloud network. Serving over 11,000 customers worldwide, Snowflake supports industries from healthcare and finance to retail and telecom.
-
6
Amazon Redshift
Amazon
$0.25 per hourAmazon Redshift is the preferred choice among customers for cloud data warehousing, outpacing all competitors in popularity. It supports analytical tasks for a diverse range of organizations, from Fortune 500 companies to emerging startups, facilitating their evolution into large-scale enterprises, as evidenced by Lyft's growth. No other data warehouse simplifies the process of extracting insights from extensive datasets as effectively as Redshift. Users can perform queries on vast amounts of structured and semi-structured data across their operational databases, data lakes, and the data warehouse using standard SQL queries. Moreover, Redshift allows for the seamless saving of query results back to S3 data lakes in open formats like Apache Parquet, enabling further analysis through various analytics services, including Amazon EMR, Amazon Athena, and Amazon SageMaker. Recognized as the fastest cloud data warehouse globally, Redshift continues to enhance its performance year after year. For workloads that demand high performance, the new RA3 instances provide up to three times the performance compared to any other cloud data warehouse available today, ensuring businesses can operate at peak efficiency. This combination of speed and user-friendly features makes Redshift a compelling choice for organizations of all sizes. -
7
Dimodelo
Dimodelo
$899 per monthConcentrate on producing insightful and impactful reports and analytics rather than getting bogged down in the complexities of data warehouse code. Avoid allowing your data warehouse to turn into a chaotic mix of numerous difficult-to-manage pipelines, notebooks, stored procedures, tables, and views. Dimodelo DW Studio significantly minimizes the workload associated with designing, constructing, deploying, and operating a data warehouse. It enables the design and deployment of a data warehouse optimized for Azure Synapse Analytics. By creating a best practice architecture that incorporates Azure Data Lake, Polybase, and Azure Synapse Analytics, Dimodelo Data Warehouse Studio ensures the delivery of a high-performance and contemporary data warehouse in the cloud. Moreover, with its use of parallel bulk loads and in-memory tables, Dimodelo Data Warehouse Studio offers an efficient solution for modern data warehousing needs, enabling teams to focus on valuable insights rather than maintenance tasks. -
8
Y42
Datos-Intelligence GmbH
Y42 is the first fully managed Modern DataOps Cloud for production-ready data pipelines on top of Google BigQuery and Snowflake. -
9
Hyper-Q
Datometry
Adaptive Data Virtualization™ technology empowers businesses to operate their current applications on contemporary cloud data warehouses without the need for extensive modifications or reconfiguration. With Datometry Hyper-Q™, organizations can swiftly embrace new cloud databases, effectively manage ongoing operational costs, and enhance their analytical capabilities to accelerate digital transformation efforts. This virtualization software from Datometry enables any existing application to function on any cloud database, thus facilitating interoperability between applications and databases. Consequently, enterprises can select their preferred cloud database without the necessity of dismantling, rewriting, or replacing their existing applications. Furthermore, it ensures runtime application compatibility by transforming and emulating legacy data warehouse functionalities. This solution can be deployed seamlessly on major cloud platforms like Azure, AWS, and GCP. Additionally, applications can leverage existing JDBC, ODBC, and native connectors without any alterations, ensuring a smooth transition. It also establishes connections with leading cloud data warehouses, including Azure Synapse Analytics, AWS Redshift, and Google BigQuery, broadening the scope for data integration and analysis. -
10
Azure Synapse Analytics
Microsoft
1 RatingAzure Synapse represents the advanced evolution of Azure SQL Data Warehouse. It is a comprehensive analytics service that integrates enterprise data warehousing with Big Data analytics capabilities. Users can query data flexibly, choosing between serverless or provisioned resources, and can do so at scale. By merging these two domains, Azure Synapse offers a cohesive experience for ingesting, preparing, managing, and delivering data, catering to the immediate requirements of business intelligence and machine learning applications. This integration enhances the efficiency and effectiveness of data-driven decision-making processes. -
11
Electrik.Ai
Electrik.Ai
$49 per monthEffortlessly import marketing data into your preferred data warehouse or cloud storage solution, including BigQuery, Snowflake, Redshift, Azure SQL, AWS S3, Azure Data Lake, and Google Cloud Storage, through our fully-managed ETL pipelines hosted in the cloud. Our comprehensive marketing data warehouse consolidates all your marketing information and delivers valuable insights, such as advertising performance, cross-channel attribution, content analysis, competitor intelligence, and much more. Additionally, our customer data platform facilitates real-time identity resolution across various data sources, providing a cohesive view of the customer and their journey. Electrik.AI serves as a cloud-driven marketing analytics software and an all-encompassing service platform designed to optimize your marketing efforts. Moreover, Electrik.AI’s Google Analytics Hit Data Extractor is capable of enhancing and retrieving the un-sampled hit-level data transmitted to Google Analytics from your website or application, routinely transferring it to your specified destination database, data warehouse, or data lake for further analysis. This ensures you have access to the most accurate and actionable data to drive your marketing strategies effectively. -
12
Panoply
SQream
$299 per monthPanoply makes it easy to store, sync and access all your business information in the cloud. With built-in integrations to all major CRMs and file systems, building a single source of truth for your data has never been easier. Panoply is quick to set up and requires no ongoing maintenance. It also offers award-winning support, and a plan to fit any need. -
13
Actian Avalanche
Actian
Actian Avalanche is a hybrid cloud data warehouse service that is fully managed and engineered to achieve exceptional performance and scalability across various aspects, including data volume, the number of concurrent users, and the complexity of queries, all while remaining cost-effective compared to other options. This versatile platform can be implemented on-premises or across several cloud providers like AWS, Azure, and Google Cloud, allowing organizations to transition their applications and data to the cloud at a comfortable rate. With Actian Avalanche, users experience industry-leading price-performance right from the start, eliminating the need for extensive tuning and optimization typically required by database administrators. For the same investment as other solutions, users can either enjoy significantly enhanced performance or maintain comparable performance at a much lower cost. Notably, Avalanche boasts a remarkable price-performance advantage, offering up to 6 times better efficiency than Snowflake, according to GigaOm’s TPC-H benchmark, while outperforming many traditional appliance vendors even further. This makes Actian Avalanche a compelling choice for businesses seeking to optimize their data management strategies. -
14
GRAX
GRAX
$9,000/mo per Salesforce Org Global 100 companies trust GRAX to enable them to: ✔ Maintain 100% Digital Chain of Custody ✔ Take ownership and control of all Salesforce backup and archive data ✔ Backup, archive, and recover multiple Salesforce Orgs ✔ Reduce storage costs and improve Org performance ✔ Reuse backup/archive data in analytics & reporting ✔ Track manually deleted data ✔ Bring historical Salesforce data into data warehouses ✔ Report on multiple orgs in tools like Tableau ✔ Improve global compliance and governance ✔ Make better predictions through reporting ✔ Answer business questions with their data Your Salesforce backup and archive data has strategic value. GRAX helps you maximize that value by letting you reuse your history to ADAPT FASTER. -
15
Tabular
Tabular
$100 per monthTabular is an innovative open table storage solution designed by the same team behind Apache Iceberg, allowing seamless integration with various computing engines and frameworks. By leveraging this technology, users can significantly reduce both query times and storage expenses, achieving savings of up to 50%. It centralizes the enforcement of role-based access control (RBAC) policies, ensuring data security is consistently maintained. The platform is compatible with multiple query engines and frameworks, such as Athena, BigQuery, Redshift, Snowflake, Databricks, Trino, Spark, and Python, offering extensive flexibility. With features like intelligent compaction and clustering, as well as other automated data services, Tabular further enhances efficiency by minimizing storage costs and speeding up query performance. It allows for unified data access at various levels, whether at the database or table. Additionally, managing RBAC controls is straightforward, ensuring that security measures are not only consistent but also easily auditable. Tabular excels in usability, providing robust ingestion capabilities and performance, all while maintaining effective RBAC management. Ultimately, it empowers users to select from a variety of top-tier compute engines, each tailored to their specific strengths, while also enabling precise privilege assignments at the database, table, or even column level. This combination of features makes Tabular a powerful tool for modern data management. -
16
nao
nao
$30 per monthNao is an innovative data IDE powered by artificial intelligence, specifically tailored for data teams, seamlessly merging a code editor with direct access to your data warehouse, enabling you to write, test, and manage data-related code while retaining complete contextual awareness. It is compatible with various data warehouses, including Postgres, Snowflake, BigQuery, Databricks, DuckDB, Motherduck, Athena, and Redshift. Upon connection, nao enhances the conventional data warehouse console by providing features like schema-aware SQL auto-completion, data previews, SQL worksheets, and effortless navigation between multiple warehouses. At the heart of nao lies its intelligent AI agent, which possesses comprehensive knowledge of your data schema, tables, columns, metadata, as well as your codebase or data-stack context. This agent is capable of generating SQL queries, constructing entire data transformation models such as those used in dbt workflows, refactoring existing code, updating documentation, conducting data quality assessments, and performing data-diff tests. Furthermore, it can uncover insights and facilitate exploratory analytics, all while maintaining strict adherence to data structure and quality standards. With its robust capabilities, nao empowers data teams to streamline their workflows and enhance productivity significantly. -
17
Openbridge
Openbridge
$149 per monthDiscover how to enhance sales growth effortlessly by utilizing automated data pipelines that connect seamlessly to data lakes or cloud storage solutions without the need for coding. This adaptable platform adheres to industry standards, enabling the integration of sales and marketing data to generate automated insights for more intelligent expansion. Eliminate the hassle and costs associated with cumbersome manual data downloads. You’ll always have a clear understanding of your expenses, only paying for the services you actually use. Empower your tools with rapid access to data that is ready for analytics. Our certified developers prioritize security by exclusively working with official APIs. You can quickly initiate data pipelines sourced from widely-used platforms. With pre-built, pre-transformed pipelines at your disposal, you can unlock crucial data from sources like Amazon Vendor Central, Amazon Seller Central, Instagram Stories, Facebook, Amazon Advertising, Google Ads, and more. The processes for data ingestion and transformation require no coding, allowing teams to swiftly and affordably harness the full potential of their data. Your information is consistently safeguarded and securely stored in a reliable, customer-controlled data destination such as Databricks or Amazon Redshift, ensuring peace of mind as you manage your data assets. This streamlined approach not only saves time but also enhances overall operational efficiency. -
18
Fully compatible with Netezza, this solution offers a streamlined command-line upgrade option. It can be deployed on-premises, in the cloud, or through a hybrid model. The IBM® Netezza® Performance Server for IBM Cloud Pak® for Data serves as a sophisticated platform for data warehousing and analytics, catering to both on-premises and cloud environments. With significant improvements in in-database analytics functions, this next-generation Netezza empowers users to engage in data science and machine learning with datasets that can reach petabyte levels. It includes features for detecting failures and ensuring rapid recovery, making it robust for enterprise use. Users can upgrade existing systems using a single command-line interface. The platform allows for querying multiple systems as a cohesive unit. You can select the nearest data center or availability zone, specify the desired compute units and storage capacity, and initiate the setup seamlessly. Furthermore, the IBM® Netezza® Performance Server is accessible on IBM Cloud®, Amazon Web Services (AWS), and Microsoft Azure, and it can also be implemented on a private cloud, all powered by the capabilities of IBM Cloud Pak for Data System. This flexibility enables organizations to tailor the deployment to their specific needs and infrastructure.
-
19
BigLake
Google
$5 per TBBigLake serves as a storage engine that merges the functionalities of data warehouses and lakes, allowing BigQuery and open-source frameworks like Spark to efficiently access data while enforcing detailed access controls. It enhances query performance across various multi-cloud storage systems and supports open formats, including Apache Iceberg. Users can maintain a single version of data, ensuring consistent features across both data warehouses and lakes. With its capacity for fine-grained access management and comprehensive governance over distributed data, BigLake seamlessly integrates with open-source analytics tools and embraces open data formats. This solution empowers users to conduct analytics on distributed data, regardless of its storage location or method, while selecting the most suitable analytics tools, whether they be open-source or cloud-native, all based on a singular data copy. Additionally, it offers fine-grained access control for open-source engines such as Apache Spark, Presto, and Trino, along with formats like Parquet. As a result, users can execute high-performing queries on data lakes driven by BigQuery. Furthermore, BigLake collaborates with Dataplex, facilitating scalable management and logical organization of data assets. This integration not only enhances operational efficiency but also simplifies the complexities of data governance in large-scale environments. -
20
beVault
beVault
beVault serves as an all-encompassing platform for automating data management, specifically tailored to tackle the complexities associated with changing business demands and data frameworks. The platform significantly accelerates the creation and implementation of new business scenarios, enhancing data warehouse automation by as much as fivefold, which in turn shortens time-to-market while preserving organizational agility. It promotes effective collaboration between IT and business stakeholders through its user-friendly, business-focused interface, enabling teams to collaboratively construct data models without encountering technical hurdles. As a comprehensive low-code solution, beVault reduces reliance on costly resources and eliminates the need for multiple licenses, streamlining data management tools to cut down on both implementation and operational expenses. Noteworthy attributes of the platform include a scalable, business-oriented model that evolves with data requirements, an integrated data quality framework to uphold high standards, and a versatile architecture that supports on-premises, cloud, or hybrid deployment options. Additionally, beVault is designed to adapt to future technological advancements, ensuring that organizations remain competitive and responsive to new challenges. -
21
Orchestra
Orchestra
Orchestra serves as a Comprehensive Control Platform for Data and AI Operations, aimed at empowering data teams to effortlessly create, deploy, and oversee workflows. This platform provides a declarative approach that merges coding with a graphical interface, enabling users to develop workflows at a tenfold speed while cutting maintenance efforts by half. Through its real-time metadata aggregation capabilities, Orchestra ensures complete data observability, facilitating proactive alerts and swift recovery from any pipeline issues. It smoothly integrates with a variety of tools such as dbt Core, dbt Cloud, Coalesce, Airbyte, Fivetran, Snowflake, BigQuery, Databricks, and others, ensuring it fits well within existing data infrastructures. With a modular design that accommodates AWS, Azure, and GCP, Orchestra proves to be a flexible option for businesses and growing organizations looking to optimize their data processes and foster confidence in their AI ventures. Additionally, its user-friendly interface and robust connectivity options make it an essential asset for organizations striving to harness the full potential of their data ecosystems. -
22
Cloudera Data Warehouse
Cloudera
Cloudera Data Warehouse is a cloud-native, self-service analytics platform designed to empower IT departments to quickly provide query functionalities to BI analysts, allowing users to transition from no query capabilities to active querying within minutes. It accommodates all forms of data, including structured, semi-structured, unstructured, real-time, and batch data, and it scales efficiently from gigabytes to petabytes based on demand. This solution is seamlessly integrated with various services, including streaming, data engineering, and AI, while maintaining a cohesive framework for security, governance, and metadata across private, public, or hybrid cloud environments. Each virtual warehouse, whether a data warehouse or mart, is autonomously configured and optimized, ensuring that different workloads remain independent and do not disrupt one another. Cloudera utilizes a range of open-source engines, such as Hive, Impala, Kudu, and Druid, along with tools like Hue, to facilitate diverse analytical tasks, which span from creating dashboards and conducting operational analytics to engaging in research and exploration of extensive event or time-series data. This comprehensive approach not only enhances data accessibility but also significantly improves the efficiency of data analysis across various sectors. -
23
biGENIUS
biGENIUS AG
833CHF/seat/ month biGENIUS automates all phases of analytic data management solutions (e.g. data warehouses, data lakes and data marts. thereby allowing you to turn your data into a business as quickly and cost-effectively as possible. Your data analytics solutions will save you time, effort and money. Easy integration of new ideas and data into data analytics solutions. The metadata-driven approach allows you to take advantage of new technologies. Advancement of digitalization requires traditional data warehouses (DWH) as well as business intelligence systems to harness an increasing amount of data. Analytical data management is essential to support business decision making today. It must integrate new data sources, support new technologies, and deliver effective solutions faster than ever, ideally with limited resources. -
24
Mitzu.io is a warehouse-native analytics platform tailored for SaaS and e-commerce teams, enabling actionable insights directly from data warehouses or lakes like Snowflake, BigQuery, and Redshift. It eliminates complex data modeling and duplication by working on raw datasets, ensuring streamlined workflows. Mitzu’s standout feature is self-service analytics, empowering non-technical users like marketers and product managers to explore data without SQL expertise. It auto-generates SQL queries based on user interactions for real-time insights into user behavior and engagement. Plus, seat-based pricing is a cost-effective alternative to traditional tools.
-
25
AnswerDock
AnswerDock
$495 per month 1 RatingAnswerDock is an innovative analytics platform powered by AI, designed specifically for enterprise use. It enables business users to obtain answers to their inquiries and facilitates quicker, more informed decision-making without relying on data analysts. Users can gain immediate insights from their data warehouses through live queries, compatible with platforms like Snowflake, Amazon Redshift, Microsoft Synapse, and Google BigQuery. Additionally, it allows for the uploading of Excel files and connections to traditional relational databases such as MySQL and SQL Server, along with third-party APIs like Google Analytics. You can explore AnswerDock using a sample retail dataset without the hassle of registration or login. For those interested in using their own data, signing up for the free version provides access to all features. With AnswerDock, business users can effortlessly generate their own reports and dashboards by simply entering their questions, similar to how one would use a web search engine. For instance, if you need a sales report, just type in "Top 10 Sales People by growth in number of leads this quarter," and AnswerDock will conduct the analysis and present the best visualization in an instant, making the process incredibly straightforward and user-friendly. This platform is revolutionizing the way companies interact with their data, empowering them to make data-driven decisions with ease. -
26
SAP BW/4HANA
SAP
SAP BW/4HANA is an integrated data warehouse solution that utilizes SAP HANA technology. Serving as the on-premise component of SAP’s Business Technology Platform, it facilitates the consolidation of enterprise data, ensuring a unified and agreed-upon view across the organization. By providing a single source for real-time insights, it simplifies processes and fosters innovation. Leveraging the capabilities of SAP HANA, this advanced data warehouse empowers businesses to unlock the full potential of their data, whether sourced from SAP applications, third-party systems, or diverse data formats like unstructured, geospatial, or Hadoop-based sources. Organizations can transform their data management practices to enhance efficiency and agility, enabling the deployment of live insights at scale, whether hosted on-premise or in the cloud. Additionally, it supports the digitization of all business sectors, while integrating seamlessly with SAP’s digital business platform solutions. This approach allows companies to drive substantial improvements in decision-making and operational efficiency. -
27
CData Sync
CData Software
CData Sync is a universal database pipeline that automates continuous replication between hundreds SaaS applications & cloud-based data sources. It also supports any major data warehouse or database, whether it's on-premise or cloud. Replicate data from hundreds cloud data sources to popular databases destinations such as SQL Server and Redshift, S3, Snowflake and BigQuery. It is simple to set up replication: log in, select the data tables you wish to replicate, then select a replication period. It's done. CData Sync extracts data iteratively. It has minimal impact on operational systems. CData Sync only queries and updates data that has been updated or added since the last update. CData Sync allows for maximum flexibility in partial and full replication scenarios. It ensures that critical data is safely stored in your database of choice. Get a 30-day trial of the Sync app for free or request more information at www.cdata.com/sync -
28
Databricks Data Intelligence Platform
Databricks
The Databricks Data Intelligence Platform empowers every member of your organization to leverage data and artificial intelligence effectively. Constructed on a lakehouse architecture, it establishes a cohesive and transparent foundation for all aspects of data management and governance, enhanced by a Data Intelligence Engine that recognizes the distinct characteristics of your data. Companies that excel across various sectors will be those that harness the power of data and AI. Covering everything from ETL processes to data warehousing and generative AI, Databricks facilitates the streamlining and acceleration of your data and AI objectives. By merging generative AI with the integrative advantages of a lakehouse, Databricks fuels a Data Intelligence Engine that comprehends the specific semantics of your data. This functionality enables the platform to optimize performance automatically and manage infrastructure in a manner tailored to your organization's needs. Additionally, the Data Intelligence Engine is designed to grasp the unique language of your enterprise, making the search and exploration of new data as straightforward as posing a question to a colleague, thus fostering collaboration and efficiency. Ultimately, this innovative approach transforms the way organizations interact with their data, driving better decision-making and insights. -
29
Oracle Autonomous Data Warehouse is a cloud-based data warehousing solution designed to remove the intricate challenges associated with managing a data warehouse, including cloud operations, data security, and the creation of data-centric applications. This service automates essential processes such as provisioning, configuration, security measures, tuning, scaling, and data backup, streamlining the overall experience. Additionally, it features self-service tools for data loading, transformation, and business modeling, along with automatic insights and integrated converged database functionalities that simplify queries across diverse data formats and facilitate machine learning analyses. Available through both the Oracle public cloud and the Oracle Cloud@Customer within client data centers, it offers flexibility to organizations. Industry analysis by experts from DSC highlights the advantages of Oracle Autonomous Data Warehouse, suggesting it is the preferred choice for numerous global enterprises. Furthermore, there are various applications and tools that work seamlessly with the Autonomous Data Warehouse, enhancing its usability and effectiveness.
-
30
Datavault Builder
Datavault Builder
Quickly establish your own Data Warehouse (DWH) to lay the groundwork for new reporting capabilities or seamlessly incorporate emerging data sources with agility, allowing for rapid results. The Datavault Builder serves as a fourth-generation automation tool for Data Warehousing, addressing every aspect and phase of DWH development. By employing a well-established industry-standard methodology, you can initiate your agile Data Warehouse right away and generate business value in the initial sprint. Whether dealing with mergers and acquisitions, related companies, sales performance, or supply chain management, effective data integration remains crucial in these scenarios and beyond. The Datavault Builder adeptly accommodates various contexts, providing not merely a tool but a streamlined and standardized workflow. It enables the retrieval and transfer of data between multiple systems in real-time. Moreover, it allows for the integration of diverse sources, offering a comprehensive view of your organization. As you continually transition data to new targets, the tool ensures both data availability and quality are maintained throughout the process, enhancing your overall operational efficiency. This capability is vital for organizations looking to stay competitive in an ever-evolving market. -
31
Archon Data Store
Platform 3 Solutions
1 RatingThe Archon Data Store™ is a robust and secure platform built on open-source principles, tailored for archiving and managing extensive data lakes. Its compliance capabilities and small footprint facilitate large-scale data search, processing, and analysis across structured, unstructured, and semi-structured data within an organization. By merging the essential characteristics of both data warehouses and data lakes, Archon Data Store creates a seamless and efficient platform. This integration effectively breaks down data silos, enhancing data engineering, analytics, data science, and machine learning workflows. With its focus on centralized metadata, optimized storage solutions, and distributed computing, the Archon Data Store ensures the preservation of data integrity. Additionally, its cohesive strategies for data management, security, and governance empower organizations to operate more effectively and foster innovation at a quicker pace. By offering a singular platform for both archiving and analyzing all organizational data, Archon Data Store not only delivers significant operational efficiencies but also positions your organization for future growth and agility. -
32
Onehouse
Onehouse
Introducing a unique cloud data lakehouse that is entirely managed and capable of ingesting data from all your sources within minutes, while seamlessly accommodating every query engine at scale, all at a significantly reduced cost. This platform enables ingestion from both databases and event streams at terabyte scale in near real-time, offering the ease of fully managed pipelines. Furthermore, you can execute queries using any engine, catering to diverse needs such as business intelligence, real-time analytics, and AI/ML applications. By adopting this solution, you can reduce your expenses by over 50% compared to traditional cloud data warehouses and ETL tools, thanks to straightforward usage-based pricing. Deployment is swift, taking just minutes, without the burden of engineering overhead, thanks to a fully managed and highly optimized cloud service. Consolidate your data into a single source of truth, eliminating the necessity of duplicating data across various warehouses and lakes. Select the appropriate table format for each task, benefitting from seamless interoperability between Apache Hudi, Apache Iceberg, and Delta Lake. Additionally, quickly set up managed pipelines for change data capture (CDC) and streaming ingestion, ensuring that your data architecture is both agile and efficient. This innovative approach not only streamlines your data processes but also enhances decision-making capabilities across your organization. -
33
QuerySurge
RTTS
8 RatingsQuerySurge is the smart Data Testing solution that automates the data validation and ETL testing of Big Data, Data Warehouses, Business Intelligence Reports and Enterprise Applications with full DevOps functionality for continuous testing. Use Cases - Data Warehouse & ETL Testing - Big Data (Hadoop & NoSQL) Testing - DevOps for Data / Continuous Testing - Data Migration Testing - BI Report Testing - Enterprise Application/ERP Testing Features Supported Technologies - 200+ data stores are supported QuerySurge Projects - multi-project support Data Analytics Dashboard - provides insight into your data Query Wizard - no programming required Design Library - take total control of your custom test desig BI Tester - automated business report testing Scheduling - run now, periodically or at a set time Run Dashboard - analyze test runs in real-time Reports - 100s of reports API - full RESTful API DevOps for Data - integrates into your CI/CD pipeline Test Management Integration QuerySurge will help you: - Continuously detect data issues in the delivery pipeline - Dramatically increase data validation coverage - Leverage analytics to optimize your critical data - Improve your data quality at speed -
34
Bliss
Bliss
$99/month Bliss assists smaller or nascent businesses that may not yet be ready for advanced solutions like Snowflake by consolidating all their data into a streamlined automated data warehouse. This integration enables these companies to fully leverage their preferred AI and business intelligence tools for greater insights and efficiency. By simplifying data management, Bliss empowers organizations to focus on growth and innovation. -
35
VeloDB
VeloDB
VeloDB, which utilizes Apache Doris, represents a cutting-edge data warehouse designed for rapid analytics on large-scale real-time data. It features both push-based micro-batch and pull-based streaming data ingestion that occurs in mere seconds, alongside a storage engine capable of real-time upserts, appends, and pre-aggregations. The platform delivers exceptional performance for real-time data serving and allows for dynamic interactive ad-hoc queries. VeloDB accommodates not only structured data but also semi-structured formats, supporting both real-time analytics and batch processing capabilities. Moreover, it functions as a federated query engine, enabling seamless access to external data lakes and databases in addition to internal data. The system is designed for distribution, ensuring linear scalability. Users can deploy it on-premises or as a cloud service, allowing for adaptable resource allocation based on workload demands, whether through separation or integration of storage and compute resources. Leveraging the strengths of open-source Apache Doris, VeloDB supports the MySQL protocol and various functions, allowing for straightforward integration with a wide range of data tools, ensuring flexibility and compatibility across different environments. -
36
Qlik Compose
Qlik
Qlik Compose for Data Warehouses offers a contemporary solution that streamlines and enhances the process of establishing and managing data warehouses. This tool not only automates the design of the warehouse but also generates ETL code and implements updates swiftly, all while adhering to established best practices and reliable design frameworks. By utilizing Qlik Compose for Data Warehouses, organizations can significantly cut down on the time, expense, and risk associated with BI initiatives, regardless of whether they are deployed on-premises or in the cloud. On the other hand, Qlik Compose for Data Lakes simplifies the creation of analytics-ready datasets by automating data pipeline processes. By handling data ingestion, schema setup, and ongoing updates, companies can achieve a quicker return on investment from their data lake resources, further enhancing their data strategy. Ultimately, these tools empower organizations to maximize their data potential efficiently. -
37
dashDB Local
IBM
DashDB Local, the latest addition to IBM's dashDB suite, enhances the company's hybrid data warehouse strategy by equipping organizations with a highly adaptable architecture that reduces the cost of analytics in the rapidly evolving landscape of big data and cloud computing. This is achievable thanks to a unified analytics engine that supports various deployment methods in both private and public cloud environments, allowing for seamless migration and optimization of analytics workloads. Now available for those who prefer deploying in a hosted private cloud or an on-premises private cloud via a software-defined infrastructure, dashDB Local presents a versatile choice. From an IT perspective, it streamlines deployment and management through the use of container technology, ensuring elastic scalability and straightforward maintenance. On the user side, dashDB Local accelerates the data acquisition process, applies tailored analytics for specific scenarios, and effectively turns insights into actionable operations, ultimately enhancing overall productivity. This comprehensive approach empowers organizations to harness their data more effectively than ever before. -
38
IBM® Db2® Warehouse delivers a client-managed, preconfigured data warehouse solution that functions effectively within private clouds, virtual private clouds, and various container-supported environments. This platform is crafted to serve as the perfect hybrid cloud option, enabling users to retain control over their data while benefiting from the flexibility typically associated with cloud services. Featuring integrated machine learning, automatic scaling, built-in analytics, and both SMP and MPP processing capabilities, Db2 Warehouse allows businesses to integrate AI solutions more swiftly and effortlessly. You can set up a pre-configured data warehouse in just minutes on your chosen supported infrastructure, complete with elastic scaling to facilitate seamless updates and upgrades. By implementing in-database analytics directly where the data is stored, enterprises can achieve quicker and more efficient AI operations. Moreover, with the ability to design your application once, you can transfer workloads to the most suitable environment—be it public cloud, private cloud, or on-premises—while requiring little to no modifications. This flexibility ensures that businesses can optimize their data strategies effectively across diverse deployment options.
-
39
Data Virtuality
Data Virtuality
Connect and centralize data. Transform your data landscape into a flexible powerhouse. Data Virtuality is a data integration platform that allows for instant data access, data centralization, and data governance. Logical Data Warehouse combines materialization and virtualization to provide the best performance. For high data quality, governance, and speed-to-market, create your single source data truth by adding a virtual layer to your existing data environment. Hosted on-premises or in the cloud. Data Virtuality offers three modules: Pipes Professional, Pipes Professional, or Logical Data Warehouse. You can cut down on development time up to 80% Access any data in seconds and automate data workflows with SQL. Rapid BI Prototyping allows for a significantly faster time to market. Data quality is essential for consistent, accurate, and complete data. Metadata repositories can be used to improve master data management. -
40
Lyftrondata
Lyftrondata
If you're looking to establish a governed delta lake, create a data warehouse, or transition from a conventional database to a contemporary cloud data solution, Lyftrondata has you covered. You can effortlessly create and oversee all your data workloads within a single platform, automating the construction of your pipeline and warehouse. Instantly analyze your data using ANSI SQL and business intelligence or machine learning tools, and easily share your findings without the need for custom coding. This functionality enhances the efficiency of your data teams and accelerates the realization of value. You can define, categorize, and locate all data sets in one centralized location, enabling seamless sharing with peers without the complexity of coding, thus fostering insightful data-driven decisions. This capability is particularly advantageous for organizations wishing to store their data once, share it with various experts, and leverage it repeatedly for both current and future needs. In addition, you can define datasets, execute SQL transformations, or migrate your existing SQL data processing workflows to any cloud data warehouse of your choice, ensuring flexibility and scalability in your data management strategy. -
41
Hackolade
Hackolade
€175 per monthHackolade Studio is a comprehensive data modeling platform built for today’s complex and hybrid data ecosystems. Originally developed to address the lack of visual design tools for NoSQL databases, Hackolade has evolved into a multi-model solution that supports the broadest range of data technologies in the industry. The platform enables agile, iterative schema design and governance for both structured and semi-structured data, making it ideal for organizations working across traditional RDBMS, modern data warehouses, NoSQL stores, and streaming systems. Hackolade supports technologies such as Oracle, PostgreSQL, BigQuery, Databricks, Redshift, Snowflake, MongoDB, Cassandra, DynamoDB, Neo4j, Kafka (with Confluent Schema Registry), OpenAPI, GraphQL, and more. Beyond databases, Hackolade Studio offers robust capabilities for API modeling, supporting OpenAPI (Swagger) and GraphQL, as well as native modeling for data exchange formats like JSON Schema, Avro, Protobuf, Parquet, and YAML. It also integrates with metadata and data governance platforms like Unity Catalog and Collibra, making it a powerful enabler for organizations focused on data quality, lineage, and compliance. Key features include reverse and forward engineering, schema versioning, data type mapping, and team collaboration tools. Whether you're building data products, managing data contracts, or migrating between systems, Hackolade Studio provides a unified interface for modeling, documenting, and evolving your schemas. Hackolade is trusted by enterprises across finance, retail, healthcare, and telecom to align data architecture with real-world delivery. It’s an essential tool for teams implementing data mesh, data fabric, microservices, or API-first strategies. -
42
Numbers Station
Numbers Station
Speeding up the process of gaining insights and removing obstacles for data analysts is crucial. With the help of intelligent automation in the data stack, you can extract insights from your data much faster—up to ten times quicker—thanks to AI innovations. Originally developed at Stanford's AI lab, this cutting-edge intelligence for today’s data stack is now accessible for your organization. You can leverage natural language to derive value from your disorganized, intricate, and isolated data within just minutes. Simply instruct your data on what you want to achieve, and it will promptly produce the necessary code for execution. This automation is highly customizable, tailored to the unique complexities of your organization rather than relying on generic templates. It empowers individuals to securely automate data-heavy workflows on the modern data stack, alleviating the burden on data engineers from a never-ending queue of requests. Experience the ability to reach insights in mere minutes instead of waiting months, with solutions that are specifically crafted and optimized for your organization’s requirements. Moreover, it integrates seamlessly with various upstream and downstream tools such as Snowflake, Databricks, Redshift, and BigQuery, all while being built on dbt, ensuring a comprehensive approach to data management. This innovative solution not only enhances efficiency but also promotes a culture of data-driven decision-making across all levels of your enterprise. -
43
Tokern
Tokern
Tokern offers an open-source suite designed for data governance, specifically tailored for databases and data lakes. This user-friendly toolkit facilitates the collection, organization, and analysis of metadata from data lakes, allowing users to execute quick tasks via a command-line application or run it as a service for ongoing metadata collection. Users can delve into aspects like data lineage, access controls, and personally identifiable information (PII) datasets, utilizing reporting dashboards or Jupyter notebooks for programmatic analysis. As a comprehensive solution, Tokern aims to enhance your data's return on investment, ensure compliance with regulations such as HIPAA, CCPA, and GDPR, and safeguard sensitive information against insider threats seamlessly. It provides centralized management for metadata related to users, datasets, and jobs, which supports various other data governance functionalities. With the capability to track Column Level Data Lineage for platforms like Snowflake, AWS Redshift, and BigQuery, users can construct lineage from query histories or ETL scripts. Additionally, lineage exploration can be achieved through interactive graphs or programmatically via APIs or SDKs, offering a versatile approach to understanding data flow. Overall, Tokern empowers organizations to maintain robust data governance while navigating complex regulatory landscapes. -
44
DataLakeHouse.io
DataLakeHouse.io
$99DataLakeHouse.io Data Sync allows users to replicate and synchronize data from operational systems (on-premises and cloud-based SaaS), into destinations of their choice, primarily Cloud Data Warehouses. DLH.io is a tool for marketing teams, but also for any data team in any size organization. It enables business cases to build single source of truth data repositories such as dimensional warehouses, data vaults 2.0, and machine learning workloads. Use cases include technical and functional examples, including: ELT and ETL, Data Warehouses, Pipelines, Analytics, AI & Machine Learning and Data, Marketing and Sales, Retail and FinTech, Restaurants, Manufacturing, Public Sector and more. DataLakeHouse.io has a mission: to orchestrate the data of every organization, especially those who wish to become data-driven or continue their data-driven strategy journey. DataLakeHouse.io, aka DLH.io, allows hundreds of companies manage their cloud data warehousing solutions. -
45
FeatureByte
FeatureByte
FeatureByte acts as your AI data scientist, revolutionizing the entire data lifecycle so that processes that previously required months can now be accomplished in mere hours. It is seamlessly integrated with platforms like Databricks, Snowflake, BigQuery, or Spark, automating tasks such as feature engineering, ideation, cataloging, creating custom UDFs (including transformer support), evaluation, selection, historical backfill, deployment, and serving—whether online or in batch—all within a single, cohesive platform. The GenAI-inspired agents from FeatureByte collaborate with data, domain, MLOps, and data science experts to actively guide teams through essential processes like data acquisition, ensuring quality, generating features, creating models, orchestrating deployments, and ongoing monitoring. Additionally, FeatureByte offers an SDK and an intuitive user interface that facilitate both automated and semi-automated feature ideation, customizable pipelines, cataloging, lineage tracking, approval workflows, role-based access control, alerts, and version management, which collectively empower teams to rapidly and reliably construct, refine, document, and serve features. This comprehensive solution not only enhances efficiency but also ensures that teams can adapt to changing data requirements and maintain high standards in their data operations.