What Integrates with AWS Parallel Computing Service?
Find out what AWS Parallel Computing Service integrations exist in 2025. Learn what software and services currently integrate with AWS Parallel Computing Service, and sort them by reviews, cost, features, and more. Below is a list of products that AWS Parallel Computing Service currently integrates with:
-
1
If you're in need of computing power, database solutions, content distribution, or various other functionalities, AWS offers a wide array of services designed to assist you in developing advanced applications with enhanced flexibility, scalability, and reliability. Amazon Web Services (AWS) stands as the most extensive and widely utilized cloud platform globally, boasting over 175 fully functional services spread across data centers worldwide. A diverse range of customers, from rapidly expanding startups to major corporations and prominent government bodies, are leveraging AWS to reduce expenses, enhance agility, and accelerate innovation. AWS provides a larger selection of services, along with more features within those services, compared to any other cloud provider—covering everything from fundamental infrastructure technologies like computing, storage, and databases to cutting-edge innovations such as machine learning, artificial intelligence, data lakes, analytics, and the Internet of Things. This breadth of offerings facilitates a quicker, simpler, and more cost-effective transition of your current applications to the cloud, ensuring that you can stay ahead in a competitive landscape while taking advantage of the latest technological advancements.
-
2
Slurm
IBM
FreeSlurm Workload Manager, which was previously referred to as Simple Linux Utility for Resource Management (SLURM), is an open-source and cost-free job scheduling and cluster management system tailored for Linux and Unix-like operating systems. Its primary function is to oversee computing tasks within high-performance computing (HPC) clusters and high-throughput computing (HTC) settings, making it a popular choice among numerous supercomputers and computing clusters globally. As technology continues to evolve, Slurm remains a critical tool for researchers and organizations requiring efficient resource management. -
3
The AWS Command Line Interface (AWS CLI) serves as a comprehensive tool for overseeing your AWS services efficiently. By simply downloading and configuring this single tool, users can manage various AWS services directly from the command line and streamline processes through automation scripts. The latest version, AWS CLI v2, introduces a host of enhancements, including better installation processes, new configuration options like AWS IAM Identity Center (which replaces AWS SSO), and a range of interactive features designed to elevate user experience. This command-line shell program is tailored to enhance convenience and productivity, catering to both beginners and experienced AWS CLI users alike. It supports resource identifiers such as Amazon EC2 instance IDs, Amazon SQS queue URLs, and Amazon SNS topic names, making it easier to work with AWS resources. As you type, detailed documentation for commands and options is readily available to assist you. The user guide for the AWS Command Line Interface provides step-by-step instructions for installation and configuration, ensuring you are well-equipped to start utilizing your AWS services from the command line right away. With this powerful tool at your disposal, managing cloud resources becomes more efficient than ever.
-
4
AWS Inferentia
Amazon
AWS Inferentia accelerators, engineered by AWS, aim to provide exceptional performance while minimizing costs for deep learning (DL) inference tasks. The initial generation of AWS Inferentia accelerators supports Amazon Elastic Compute Cloud (Amazon EC2) Inf1 instances, boasting up to 2.3 times greater throughput and a 70% reduction in cost per inference compared to similar GPU-based Amazon EC2 instances. Numerous companies, such as Airbnb, Snap, Sprinklr, Money Forward, and Amazon Alexa, have embraced Inf1 instances and experienced significant advantages in both performance and cost. Each first-generation Inferentia accelerator is equipped with 8 GB of DDR4 memory along with a substantial amount of on-chip memory. The subsequent Inferentia2 model enhances capabilities by providing 32 GB of HBM2e memory per accelerator, quadrupling the total memory and decoupling the memory bandwidth, which is ten times greater than its predecessor. This evolution in technology not only optimizes the processing power but also significantly improves the efficiency of deep learning applications across various sectors. -
5
AWS Trainium
Amazon Web Services
AWS Trainium represents a next-generation machine learning accelerator specifically designed for the training of deep learning models with over 100 billion parameters. Each Amazon Elastic Compute Cloud (EC2) Trn1 instance can utilize as many as 16 AWS Trainium accelerators, providing an efficient and cost-effective solution for deep learning training in a cloud environment. As the demand for deep learning continues to rise, many development teams often find themselves constrained by limited budgets, which restricts the extent and frequency of necessary training to enhance their models and applications. The EC2 Trn1 instances equipped with Trainium address this issue by enabling faster training times while also offering up to 50% savings in training costs compared to similar Amazon EC2 instances. This innovation allows teams to maximize their resources and improve their machine learning capabilities without the financial burden typically associated with extensive training. -
6
AWS HPC
Amazon
AWS High Performance Computing (HPC) services enable users to run extensive simulations and deep learning tasks in the cloud, offering nearly limitless computing power, advanced file systems, and high-speed networking capabilities. This comprehensive set of services fosters innovation by providing a diverse array of cloud-based resources, such as machine learning and analytics tools, which facilitate swift design and evaluation of new products. Users can achieve peak operational efficiency thanks to the on-demand nature of these computing resources, allowing them to concentrate on intricate problem-solving without the limitations of conventional infrastructure. AWS HPC offerings feature the Elastic Fabric Adapter (EFA) for optimized low-latency and high-bandwidth networking, AWS Batch for efficient scaling of computing tasks, AWS ParallelCluster for easy cluster setup, and Amazon FSx for delivering high-performance file systems. Collectively, these services create a flexible and scalable ecosystem that is well-suited for a variety of HPC workloads, empowering organizations to push the boundaries of what’s possible in their respective fields. As a result, users can experience greatly enhanced performance and productivity in their computational endeavors. -
7
AWS ParallelCluster
Amazon
AWS ParallelCluster is a free, open-source tool designed for efficient management and deployment of High-Performance Computing (HPC) clusters within the AWS environment. It streamlines the configuration of essential components such as compute nodes, shared filesystems, and job schedulers, while accommodating various instance types and job submission queues. Users have the flexibility to engage with ParallelCluster using a graphical user interface, command-line interface, or API, which allows for customizable cluster setups and oversight. The tool also works seamlessly with job schedulers like AWS Batch and Slurm, making it easier to transition existing HPC workloads to the cloud with minimal adjustments. Users incur no additional costs for the tool itself, only paying for the AWS resources their applications utilize. With AWS ParallelCluster, users can effectively manage their computing needs through a straightforward text file that allows for the modeling, provisioning, and dynamic scaling of necessary resources in a secure and automated fashion. This ease of use significantly enhances productivity and optimizes resource allocation for various computational tasks.
- Previous
- You're on page 1
- Next