Best AWS Elastic Fabric Adapter (EFA) Alternatives in 2025
Find the top alternatives to AWS Elastic Fabric Adapter (EFA) currently available. Compare ratings, reviews, pricing, and features of AWS Elastic Fabric Adapter (EFA) alternatives in 2025. Slashdot lists the best AWS Elastic Fabric Adapter (EFA) alternatives on the market that offer competing products that are similar to AWS Elastic Fabric Adapter (EFA). Sort through AWS Elastic Fabric Adapter (EFA) alternatives below to make the best choice for your needs
-
1
RunPod
RunPod
141 RatingsRunPod provides a cloud infrastructure that enables seamless deployment and scaling of AI workloads with GPU-powered pods. By offering access to a wide array of NVIDIA GPUs, such as the A100 and H100, RunPod supports training and deploying machine learning models with minimal latency and high performance. The platform emphasizes ease of use, allowing users to spin up pods in seconds and scale them dynamically to meet demand. With features like autoscaling, real-time analytics, and serverless scaling, RunPod is an ideal solution for startups, academic institutions, and enterprises seeking a flexible, powerful, and affordable platform for AI development and inference. -
2
Amazon EC2 UltraClusters
Amazon
Amazon EC2 UltraClusters allow for the scaling of thousands of GPUs or specialized machine learning accelerators like AWS Trainium, granting users immediate access to supercomputing-level performance. This service opens the door to supercomputing for developers involved in machine learning, generative AI, and high-performance computing, all through a straightforward pay-as-you-go pricing structure that eliminates the need for initial setup or ongoing maintenance expenses. Comprising thousands of accelerated EC2 instances placed within a specific AWS Availability Zone, UltraClusters utilize Elastic Fabric Adapter (EFA) networking within a petabit-scale nonblocking network. Such an architecture not only ensures high-performance networking but also facilitates access to Amazon FSx for Lustre, a fully managed shared storage solution based on a high-performance parallel file system that enables swift processing of large datasets with sub-millisecond latency. Furthermore, EC2 UltraClusters enhance scale-out capabilities for distributed machine learning training and tightly integrated HPC tasks, significantly decreasing training durations while maximizing efficiency. This transformative technology is paving the way for groundbreaking advancements in various computational fields. -
3
Amazon EC2
Amazon
2 RatingsAmazon Elastic Compute Cloud (Amazon EC2) is a cloud service that offers flexible and secure computing capabilities. Its primary aim is to simplify large-scale cloud computing for developers. With an easy-to-use web service interface, Amazon EC2 allows users to quickly obtain and configure computing resources with ease. Users gain full control over their computing power while utilizing Amazon’s established computing framework. The service offers an extensive range of compute options, networking capabilities (up to 400 Gbps), and tailored storage solutions that enhance price and performance specifically for machine learning initiatives. Developers can create, test, and deploy macOS workloads on demand. Furthermore, users can scale their capacity dynamically as requirements change, all while benefiting from AWS's pay-as-you-go pricing model. This infrastructure enables rapid access to the necessary resources for high-performance computing (HPC) applications, resulting in enhanced speed and cost efficiency. In essence, Amazon EC2 ensures a secure, dependable, and high-performance computing environment that caters to the diverse demands of modern businesses. Overall, it stands out as a versatile solution for various computing needs across different industries. -
4
Google Cloud GPUs
Google
$0.160 per GPUAccelerate computational tasks such as those found in machine learning and high-performance computing (HPC) with a diverse array of GPUs suited for various performance levels and budget constraints. With adaptable pricing and customizable machines, you can fine-tune your setup to enhance your workload efficiency. Google Cloud offers high-performance GPUs ideal for machine learning, scientific analyses, and 3D rendering. The selection includes NVIDIA K80, P100, P4, T4, V100, and A100 GPUs, providing a spectrum of computing options tailored to meet different cost and performance requirements. You can effectively balance processor power, memory capacity, high-speed storage, and up to eight GPUs per instance to suit your specific workload needs. Enjoy the advantage of per-second billing, ensuring you only pay for the resources consumed during usage. Leverage GPU capabilities on Google Cloud Platform, where you benefit from cutting-edge storage, networking, and data analytics solutions. Compute Engine allows you to easily integrate GPUs into your virtual machine instances, offering an efficient way to enhance processing power. Explore the potential uses of GPUs and discover the various types of GPU hardware available to elevate your computational projects. -
5
Amazon EC2 P4 Instances
Amazon
$11.57 per hourAmazon EC2 P4d instances are designed for optimal performance in machine learning training and high-performance computing (HPC) applications within the cloud environment. Equipped with NVIDIA A100 Tensor Core GPUs, these instances provide exceptional throughput and low-latency networking capabilities, boasting 400 Gbps instance networking. P4d instances are remarkably cost-effective, offering up to a 60% reduction in expenses for training machine learning models, while also delivering an impressive 2.5 times better performance for deep learning tasks compared to the older P3 and P3dn models. They are deployed within expansive clusters known as Amazon EC2 UltraClusters, which allow for the seamless integration of high-performance computing, networking, and storage resources. This flexibility enables users to scale their operations from a handful to thousands of NVIDIA A100 GPUs depending on their specific project requirements. Researchers, data scientists, and developers can leverage P4d instances to train machine learning models for diverse applications, including natural language processing, object detection and classification, and recommendation systems, in addition to executing HPC tasks such as pharmaceutical discovery and other complex computations. These capabilities collectively empower teams to innovate and accelerate their projects with greater efficiency and effectiveness. -
6
Amazon EC2 G4 Instances
Amazon
Amazon EC2 G4 instances are specifically designed to enhance the performance of machine learning inference and applications that require high graphics capabilities. Users can select between NVIDIA T4 GPUs (G4dn) and AMD Radeon Pro V520 GPUs (G4ad) according to their requirements. The G4dn instances combine NVIDIA T4 GPUs with bespoke Intel Cascade Lake CPUs, ensuring an optimal mix of computational power, memory, and networking bandwidth. These instances are well-suited for tasks such as deploying machine learning models, video transcoding, game streaming, and rendering graphics. On the other hand, G4ad instances, equipped with AMD Radeon Pro V520 GPUs and 2nd-generation AMD EPYC processors, offer a budget-friendly option for handling graphics-intensive workloads. Both instance types utilize Amazon Elastic Inference, which permits users to add economical GPU-powered inference acceleration to Amazon EC2, thereby lowering costs associated with deep learning inference. They come in a range of sizes tailored to meet diverse performance demands and seamlessly integrate with various AWS services, including Amazon SageMaker, Amazon ECS, and Amazon EKS. Additionally, this versatility makes G4 instances an attractive choice for organizations looking to leverage cloud-based machine learning and graphics processing capabilities. -
7
Amazon EC2 P5 Instances
Amazon
Amazon's Elastic Compute Cloud (EC2) offers P5 instances that utilize NVIDIA H100 Tensor Core GPUs, alongside P5e and P5en instances featuring NVIDIA H200 Tensor Core GPUs, ensuring unmatched performance for deep learning and high-performance computing tasks. With these advanced instances, you can reduce the time to achieve results by as much as four times compared to earlier GPU-based EC2 offerings, while also cutting ML model training costs by up to 40%. This capability enables faster iteration on solutions, allowing businesses to reach the market more efficiently. P5, P5e, and P5en instances are ideal for training and deploying sophisticated large language models and diffusion models that drive the most intensive generative AI applications, which encompass areas like question-answering, code generation, video and image creation, and speech recognition. Furthermore, these instances can also support large-scale deployment of high-performance computing applications, facilitating advancements in fields such as pharmaceutical discovery, ultimately transforming how research and development are conducted in the industry. -
8
Amazon EC2 Capacity Blocks for Machine Learning allow users to secure accelerated computing instances within Amazon EC2 UltraClusters specifically for their machine learning tasks. This service encompasses a variety of instance types, including Amazon EC2 P5en, P5e, P5, and P4d, which utilize NVIDIA H200, H100, and A100 Tensor Core GPUs, along with Trn2 and Trn1 instances that leverage AWS Trainium. Users can reserve these instances for periods of up to six months, with cluster sizes ranging from a single instance to 64 instances, translating to a maximum of 512 GPUs or 1,024 Trainium chips, thus providing ample flexibility to accommodate diverse machine learning workloads. Additionally, reservations can be arranged as much as eight weeks ahead of time. By operating within Amazon EC2 UltraClusters, Capacity Blocks facilitate low-latency and high-throughput network connectivity, which is essential for efficient distributed training processes. This configuration guarantees reliable access to high-performance computing resources, empowering you to confidently plan your machine learning projects, conduct experiments, develop prototypes, and effectively handle anticipated increases in demand for machine learning applications. Furthermore, this strategic approach not only enhances productivity but also optimizes resource utilization for varying project scales.
-
9
NVIDIA DGX Cloud
NVIDIA
The NVIDIA DGX Cloud provides an AI infrastructure as a service that simplifies the deployment of large-scale AI models and accelerates innovation. By offering a comprehensive suite of tools for machine learning, deep learning, and HPC, this platform enables organizations to run their AI workloads efficiently on the cloud. With seamless integration into major cloud services, it offers the scalability, performance, and flexibility necessary for tackling complex AI challenges, all while eliminating the need for managing on-premise hardware. -
10
QumulusAI
QumulusAI
QumulusAI provides unparalleled supercomputing capabilities, merging scalable high-performance computing (HPC) with autonomous data centers to eliminate bottlenecks and propel the advancement of AI. By democratizing access to AI supercomputing, QumulusAI dismantles the limitations imposed by traditional HPC and offers the scalable, high-performance solutions that modern AI applications require now and in the future. With no virtualization latency and no disruptive neighbors, users gain dedicated, direct access to AI servers that are fine-tuned with the latest NVIDIA GPUs (H200) and cutting-edge Intel/AMD CPUs. Unlike legacy providers that utilize a generic approach, QumulusAI customizes HPC infrastructure to align specifically with your unique workloads. Our partnership extends through every phase—from design and deployment to continuous optimization—ensuring that your AI initiatives receive precisely what they need at every stage of development. We maintain ownership of the entire technology stack, which translates to superior performance, enhanced control, and more predictable expenses compared to other providers that rely on third-party collaborations. This comprehensive approach positions QumulusAI as a leader in the supercomputing space, ready to adapt to the evolving demands of your projects. -
11
NVIDIA GPU-Optimized AMI
Amazon
$3.06 per hourThe NVIDIA GPU-Optimized AMI serves as a virtual machine image designed to enhance your GPU-accelerated workloads in Machine Learning, Deep Learning, Data Science, and High-Performance Computing (HPC). By utilizing this AMI, you can quickly launch a GPU-accelerated EC2 virtual machine instance, complete with a pre-installed Ubuntu operating system, GPU driver, Docker, and the NVIDIA container toolkit, all within a matter of minutes. This AMI simplifies access to NVIDIA's NGC Catalog, which acts as a central hub for GPU-optimized software, enabling users to easily pull and run performance-tuned, thoroughly tested, and NVIDIA-certified Docker containers. The NGC catalog offers complimentary access to a variety of containerized applications for AI, Data Science, and HPC, along with pre-trained models, AI SDKs, and additional resources, allowing data scientists, developers, and researchers to concentrate on creating and deploying innovative solutions. Additionally, this GPU-optimized AMI is available at no charge, with an option for users to purchase enterprise support through NVIDIA AI Enterprise. For further details on obtaining support for this AMI, please refer to the section labeled 'Support Information' below. Moreover, leveraging this AMI can significantly streamline the development process for projects requiring intensive computational resources. -
12
Nebius
Nebius
$2.66/hour A robust platform optimized for training is equipped with NVIDIA® H100 Tensor Core GPUs, offering competitive pricing and personalized support. Designed to handle extensive machine learning workloads, it allows for efficient multihost training across thousands of H100 GPUs interconnected via the latest InfiniBand network, achieving speeds of up to 3.2Tb/s per host. Users benefit from significant cost savings, with at least a 50% reduction in GPU compute expenses compared to leading public cloud services*, and additional savings are available through GPU reservations and bulk purchases. To facilitate a smooth transition, we promise dedicated engineering support that guarantees effective platform integration while optimizing your infrastructure and deploying Kubernetes. Our fully managed Kubernetes service streamlines the deployment, scaling, and management of machine learning frameworks, enabling multi-node GPU training with ease. Additionally, our Marketplace features a variety of machine learning libraries, applications, frameworks, and tools designed to enhance your model training experience. New users can take advantage of a complimentary one-month trial period, ensuring they can explore the platform's capabilities effortlessly. This combination of performance and support makes it an ideal choice for organizations looking to elevate their machine learning initiatives. -
13
Amazon EC2 G5 Instances
Amazon
$1.006 per hourThe Amazon EC2 G5 instances represent the newest generation of NVIDIA GPU-powered instances, designed to cater to a variety of graphics-heavy and machine learning applications. They offer performance improvements of up to three times for graphics-intensive tasks and machine learning inference, while achieving a remarkable 3.3 times increase in performance for machine learning training when compared to the previous G4dn instances. Users can leverage G5 instances for demanding applications such as remote workstations, video rendering, and gaming, enabling them to create high-quality graphics in real time. Additionally, these instances provide machine learning professionals with an efficient and high-performing infrastructure to develop and implement larger, more advanced models in areas like natural language processing, computer vision, and recommendation systems. Notably, G5 instances provide up to three times the graphics performance and a 40% improvement in price-performance ratio relative to G4dn instances. Furthermore, they feature a greater number of ray tracing cores than any other GPU-equipped EC2 instance, making them an optimal choice for developers seeking to push the boundaries of graphical fidelity. With their cutting-edge capabilities, G5 instances are poised to redefine expectations in both gaming and machine learning sectors. -
14
Parasail
Parasail
$0.80 per million tokensParasail is a network designed for deploying AI that offers scalable and cost-effective access to high-performance GPUs tailored for various AI tasks. It features three main services: serverless endpoints for real-time inference, dedicated instances for private model deployment, and batch processing for extensive task management. Users can either deploy open-source models like DeepSeek R1, LLaMA, and Qwen, or utilize their own models, with the platform’s permutation engine optimally aligning workloads with hardware, which includes NVIDIA’s H100, H200, A100, and 4090 GPUs. The emphasis on swift deployment allows users to scale from a single GPU to large clusters in just minutes, providing substantial cost savings, with claims of being up to 30 times more affordable than traditional cloud services. Furthermore, Parasail boasts day-zero availability for new models and features a self-service interface that avoids long-term contracts and vendor lock-in, enhancing user flexibility and control. This combination of features makes Parasail an attractive choice for those looking to leverage high-performance AI capabilities without the usual constraints of cloud computing. -
15
Azure FXT Edge Filer
Microsoft
Develop a hybrid storage solution that seamlessly integrates with your current network-attached storage (NAS) and Azure Blob Storage. This on-premises caching appliance enhances data accessibility whether it resides in your datacenter, within Azure, or traversing a wide-area network (WAN). Comprising both software and hardware, the Microsoft Azure FXT Edge Filer offers exceptional throughput and minimal latency, designed specifically for hybrid storage environments that cater to high-performance computing (HPC) applications. Utilizing a scale-out clustering approach, it enables non-disruptive performance scaling of NAS capabilities. You can connect up to 24 FXT nodes in each cluster, allowing for an impressive expansion to millions of IOPS and several hundred GB/s speeds. When performance and scalability are critical for file-based tasks, Azure FXT Edge Filer ensures that your data remains on the quickest route to processing units. Additionally, managing your data storage becomes straightforward with Azure FXT Edge Filer, enabling you to transfer legacy data to Azure Blob Storage for easy access with minimal latency. This solution allows for a balanced approach between on-premises and cloud storage, ensuring optimal efficiency in data management while adapting to evolving business needs. Furthermore, this hybrid model supports organizations in maximizing their existing infrastructure investments while leveraging the benefits of cloud technology. -
16
AWS ParallelCluster
Amazon
AWS ParallelCluster is a free, open-source tool designed for efficient management and deployment of High-Performance Computing (HPC) clusters within the AWS environment. It streamlines the configuration of essential components such as compute nodes, shared filesystems, and job schedulers, while accommodating various instance types and job submission queues. Users have the flexibility to engage with ParallelCluster using a graphical user interface, command-line interface, or API, which allows for customizable cluster setups and oversight. The tool also works seamlessly with job schedulers like AWS Batch and Slurm, making it easier to transition existing HPC workloads to the cloud with minimal adjustments. Users incur no additional costs for the tool itself, only paying for the AWS resources their applications utilize. With AWS ParallelCluster, users can effectively manage their computing needs through a straightforward text file that allows for the modeling, provisioning, and dynamic scaling of necessary resources in a secure and automated fashion. This ease of use significantly enhances productivity and optimizes resource allocation for various computational tasks. -
17
Intel Tiber AI Cloud
Intel
FreeThe Intel® Tiber™ AI Cloud serves as a robust platform tailored to efficiently scale artificial intelligence workloads through cutting-edge computing capabilities. Featuring specialized AI hardware, including the Intel Gaudi AI Processor and Max Series GPUs, it enhances the processes of model training, inference, and deployment. Aimed at enterprise-level applications, this cloud offering allows developers to create and refine models using well-known libraries such as PyTorch. Additionally, with a variety of deployment choices, secure private cloud options, and dedicated expert assistance, Intel Tiber™ guarantees smooth integration and rapid deployment while boosting model performance significantly. This comprehensive solution is ideal for organizations looking to harness the full potential of AI technologies. -
18
CloudPe
Leapswitch Networks
₹931/month CloudPe, a global provider of cloud solutions, offers scalable and secure cloud technology tailored to businesses of all sizes. CloudPe is a joint venture between Leapswitch Networks, Strad Solutions and combines industry expertise to deliver innovative solutions. Key Offerings: Virtual Machines: High performance VMs for various business requirements, including hosting websites and building applications. GPU Instances - NVIDIA GPUs for AI and machine learning. High-performance computing is also available. Kubernetes-as-a-Service: Simplified container orchestration for deploying and managing containerized applications efficiently. S3-Compatible storage: Highly scalable, cost-effective storage solution. Load balancers: Intelligent load-balancing to distribute traffic equally across resources and ensure fast and reliable performance. Why choose CloudPe? 1. Reliability 2. Cost Efficiency 3. Instant Deployment -
19
AWS HPC
Amazon
AWS High Performance Computing (HPC) services enable users to run extensive simulations and deep learning tasks in the cloud, offering nearly limitless computing power, advanced file systems, and high-speed networking capabilities. This comprehensive set of services fosters innovation by providing a diverse array of cloud-based resources, such as machine learning and analytics tools, which facilitate swift design and evaluation of new products. Users can achieve peak operational efficiency thanks to the on-demand nature of these computing resources, allowing them to concentrate on intricate problem-solving without the limitations of conventional infrastructure. AWS HPC offerings feature the Elastic Fabric Adapter (EFA) for optimized low-latency and high-bandwidth networking, AWS Batch for efficient scaling of computing tasks, AWS ParallelCluster for easy cluster setup, and Amazon FSx for delivering high-performance file systems. Collectively, these services create a flexible and scalable ecosystem that is well-suited for a variety of HPC workloads, empowering organizations to push the boundaries of what’s possible in their respective fields. As a result, users can experience greatly enhanced performance and productivity in their computational endeavors. -
20
WhiteFiber
WhiteFiber
WhiteFiber operates as a comprehensive AI infrastructure platform that specializes in delivering high-performance GPU cloud services and HPC colocation solutions specifically designed for AI and machine learning applications. Their cloud services are meticulously engineered for tasks involving machine learning, expansive language models, and deep learning, equipped with advanced NVIDIA H200, B200, and GB200 GPUs alongside ultra-fast Ethernet and InfiniBand networking, achieving an impressive GPU fabric bandwidth of up to 3.2 Tb/s. Supporting a broad range of scaling capabilities from hundreds to tens of thousands of GPUs, WhiteFiber offers various deployment alternatives such as bare metal, containerized applications, and virtualized setups. The platform guarantees enterprise-level support and service level agreements (SLAs), incorporating unique cluster management, orchestration, and observability tools. Additionally, WhiteFiber’s data centers are strategically optimized for AI and HPC colocation, featuring high-density power, direct liquid cooling systems, and rapid deployment options, while also ensuring redundancy and scalability through cross-data center dark fiber connectivity. With a commitment to innovation and reliability, WhiteFiber stands out as a key player in the AI infrastructure ecosystem. -
21
CUDO Compute
CUDO Compute
$1.73 per hourCUDO Compute is an advanced cloud platform for high-performance GPU computing that is specifically tailored for artificial intelligence applications, featuring both on-demand and reserved clusters that can efficiently scale to meet user needs. Users have the option to utilize a diverse array of powerful GPUs from a global selection, including top models like the NVIDIA H100 SXM, H100 PCIe, and a variety of other high-performance graphics cards such as the A800 PCIe and RTX A6000. This platform enables users to launch instances in a matter of seconds, granting them comprehensive control to execute AI workloads quickly while ensuring they can scale operations globally and adhere to necessary compliance standards. Additionally, CUDO Compute provides adaptable virtual machines suited for agile computing tasks, making it an excellent choice for development, testing, and lightweight production scenarios, complete with minute-based billing, rapid NVMe storage, and extensive customization options. For teams that demand direct access to hardware, dedicated bare metal servers are also available, maximizing performance without the overhead of virtualization, thus enhancing efficiency for resource-intensive applications. This combination of features makes CUDO Compute a compelling choice for organizations looking to leverage the power of AI in their operations. -
22
GPU Trader
GPU Trader
$0.99 per hourGPU Trader serves as a robust and secure marketplace designed for enterprises, linking organizations to high-performance GPUs available through both on-demand and reserved instance models. This platform enables immediate access to powerful GPUs, making it ideal for applications in AI, machine learning, data analytics, and other high-performance computing tasks. Users benefit from flexible pricing structures and customizable instance templates, which allow for seamless scalability while ensuring they only pay for the resources they utilize. The service is built on a foundation of complete security, employing a zero-trust architecture along with transparent billing processes and real-time performance tracking. By utilizing a decentralized architecture, GPU Trader enhances GPU efficiency and scalability, efficiently managing workloads across a distributed network. With the capability to oversee workload dispatch and real-time monitoring, the platform employs containerized agents that autonomously perform tasks on GPUs. Additionally, AI-driven validation processes guarantee that all GPUs available meet stringent performance criteria, thereby offering reliable resources to users. This comprehensive approach not only optimizes performance but also fosters an environment where organizations can confidently leverage GPU resources for their most demanding projects. -
23
AWS Parallel Computing Service
Amazon
$0.5977 per hourAWS Parallel Computing Service (AWS PCS) is a fully managed service designed to facilitate the execution and scaling of high-performance computing tasks while also aiding in the development of scientific and engineering models using Slurm on AWS. This service allows users to create comprehensive and adaptable environments that seamlessly combine computing, storage, networking, and visualization tools, enabling them to concentrate on their research and innovative projects without the hassle of managing the underlying infrastructure. With features like automated updates and integrated observability, AWS PCS significantly improves the operations and upkeep of computing clusters. Users can easily construct and launch scalable, dependable, and secure HPC clusters via the AWS Management Console, AWS Command Line Interface (AWS CLI), or AWS SDK. The versatility of the service supports a wide range of applications, including tightly coupled workloads such as computer-aided engineering, high-throughput computing for tasks like genomics analysis, GPU-accelerated computing, and specialized silicon solutions like AWS Trainium and AWS Inferentia. Overall, AWS PCS empowers researchers and engineers to harness advanced computing capabilities without needing to worry about the complexities of infrastructure setup and maintenance. -
24
Bright Cluster Manager
NVIDIA
Bright Cluster Manager offers a variety of machine learning frameworks including Torch, Tensorflow and Tensorflow to simplify your deep-learning projects. Bright offers a selection the most popular Machine Learning libraries that can be used to access datasets. These include MLPython and NVIDIA CUDA Deep Neural Network Library (cuDNN), Deep Learning GPU Trainer System (DIGITS), CaffeOnSpark (a Spark package that allows deep learning), and MLPython. Bright makes it easy to find, configure, and deploy all the necessary components to run these deep learning libraries and frameworks. There are over 400MB of Python modules to support machine learning packages. We also include the NVIDIA hardware drivers and CUDA (parallel computer platform API) drivers, CUB(CUDA building blocks), NCCL (library standard collective communication routines). -
25
Oracle Cloud Infrastructure Compute
Oracle
$0.007 per hour 1 RatingOracle Cloud Infrastructure (OCI) offers a range of compute options that are not only speedy and flexible but also cost-effective, catering to various workload requirements, including robust bare metal servers, virtual machines, and efficient containers. OCI Compute stands out by providing exceptionally adaptable VM and bare metal instances that ensure optimal price-performance ratios. Users can tailor the exact number of cores and memory to align with their applications' specific demands, which translates into high performance for enterprise-level tasks. Additionally, the platform simplifies the application development process through serverless computing, allowing users to leverage technologies such as Kubernetes and containerization. For those engaged in machine learning, scientific visualization, or other graphic-intensive tasks, OCI offers NVIDIA GPUs designed for performance. It also includes advanced capabilities like RDMA, high-performance storage options, and network traffic isolation to enhance overall efficiency. With a consistent track record of delivering superior price-performance compared to other cloud services, OCI's virtual machine shapes provide customizable combinations of cores and memory. This flexibility allows customers to further optimize their costs by selecting the precise number of cores needed for their workloads, ensuring they only pay for what they use. Ultimately, OCI empowers organizations to scale and innovate without compromising on performance or budget. -
26
Azure Virtual Machines
Microsoft
Transition your essential business operations and critical workloads to the Azure infrastructure to enhance your operational effectiveness. You can operate SQL Server, SAP, Oracle® applications, and high-performance computing on Azure Virtual Machines. Opt for your preferred Linux distribution or Windows Server for your virtual instances. Configure virtual machines equipped with as much as 416 vCPUs and 12 TB of memory to meet your needs. Enjoy impressive performance with up to 3.7 million local storage IOPS for each VM. Leverage advanced connectivity options, including up to 30 Gbps Ethernet and the cloud’s pioneering 200 Gbps InfiniBand deployment. Choose from a variety of processors, including AMD, Ampere (Arm-based), or Intel, based on your specific requirements. Safeguard sensitive information by encrypting data, securing VMs against cyber threats, managing network traffic securely, and ensuring adherence to regulatory standards. Utilize Virtual Machine Scale Sets to create applications that can easily scale. Optimize your cloud expenditure with Azure Spot Virtual Machines and reserved instances to maximize cost-effectiveness. Establish your private cloud environment using Azure Dedicated Host, and ensure that mission-critical applications operate reliably on Azure to bolster overall resiliency. This strategic move not only enhances performance but also positions your business for future growth and innovation. -
27
Burncloud
Burncloud
$0.03/hour Burncloud is one of the leading cloud computing providers, focusing on providing businesses with efficient, reliable and secure GPU rental services. Our platform is based on a systemized design that meets the high-performance computing requirements of different enterprises. Core Services Online GPU Rental Services - We offer a wide range of GPU models to rent, including data-center-grade devices and edge consumer computing equipment, in order to meet the diverse computing needs of businesses. Our best-selling products include: RTX4070, RTX3070 Ti, H100PCIe, RTX3090 Ti, RTX3060, NVIDIA4090, L40 RTX3080 Ti, L40S RTX4090, RTX3090, A10, H100 SXM, H100 NVL, A100PCIe 80GB, and many more. Our technical team has a vast experience in IB networking and has successfully set up five 256-node Clusters. Contact the Burncloud customer service team for cluster setup services. -
28
TrinityX
Cluster Vision
FreeTrinityX is a cluster management solution that is open source and developed by ClusterVision, aimed at ensuring continuous monitoring for environments focused on High-Performance Computing (HPC) and Artificial Intelligence (AI). It delivers a robust support system that adheres to service level agreements (SLAs), enabling researchers to concentrate on their work without the burden of managing intricate technologies such as Linux, SLURM, CUDA, InfiniBand, Lustre, and Open OnDemand. By providing an easy-to-use interface, TrinityX simplifies the process of cluster setup, guiding users through each phase to configure clusters for various applications including container orchestration, conventional HPC, and InfiniBand/RDMA configurations. Utilizing the BitTorrent protocol, it facilitates the swift deployment of AI and HPC nodes, allowing for configurations to be completed in mere minutes. Additionally, the platform boasts a detailed dashboard that presents real-time data on cluster performance metrics, resource usage, and workload distribution, which helps users quickly identify potential issues and optimize resource distribution effectively. This empowers teams to make informed decisions that enhance productivity and operational efficiency within their computational environments. -
29
Elastic GPU Service
Alibaba
$69.51 per monthElastic computing instances equipped with GPU accelerators are ideal for various applications, including artificial intelligence, particularly deep learning and machine learning, high-performance computing, and advanced graphics processing. The Elastic GPU Service delivers a comprehensive system that integrates both software and hardware, enabling users to allocate resources with flexibility, scale their systems dynamically, enhance computational power, and reduce expenses related to AI initiatives. This service is applicable in numerous scenarios, including deep learning, video encoding and decoding, video processing, scientific computations, graphical visualization, and cloud gaming, showcasing its versatility. Furthermore, the Elastic GPU Service offers GPU-accelerated computing capabilities along with readily available, scalable GPU resources, which harness the unique strengths of GPUs in executing complex mathematical and geometric calculations, especially in floating-point and parallel processing. When compared to CPUs, GPUs can deliver an astounding increase in computing power, often being 100 times more efficient, making them an invaluable asset for demanding computational tasks. Overall, this service empowers businesses to optimize their AI workloads while ensuring that they can meet evolving performance requirements efficiently. -
30
Intel oneAPI HPC Toolkit
Intel
High-performance computing (HPC) serves as a fundamental element for applications in AI, machine learning, and deep learning. The Intel® oneAPI HPC Toolkit (HPC Kit) equips developers with essential tools to create, analyze, enhance, and expand HPC applications by utilizing the most advanced methods in vectorization, multithreading, multi-node parallelization, and memory management. This toolkit is an essential complement to the Intel® oneAPI Base Toolkit, which is necessary to unlock its complete capabilities. Additionally, it provides users with access to the Intel® Distribution for Python*, the Intel® oneAPI DPC++/C++ compiler, a suite of robust data-centric libraries, and sophisticated analysis tools. You can obtain everything needed to construct, evaluate, and refine your oneAPI projects at no cost. By signing up for an Intel® Developer Cloud account, you gain 120 days of access to the latest Intel® hardware—including CPUs, GPUs, FPGAs—and the full suite of Intel oneAPI tools and frameworks. This seamless experience requires no software downloads, no configuration processes, and no installations, making it incredibly user-friendly for developers at all levels. -
31
Massed Compute
Massed Compute
$21.60 per hourMassed Compute provides advanced GPU computing solutions designed specifically for AI, machine learning, scientific simulations, and data analytics needs. As an esteemed NVIDIA Preferred Partner, it offers a wide range of enterprise-grade NVIDIA GPUs, such as the A100, H100, L40, and A6000, to guarantee peak performance across diverse workloads. Clients have the option to select bare metal servers for enhanced control and performance or opt for on-demand compute instances, which provide flexibility and scalability according to their requirements. Additionally, Massed Compute features an Inventory API that facilitates the smooth integration of GPU resources into existing business workflows, simplifying the processes of provisioning, rebooting, and managing instances. The company's infrastructure is located in Tier III data centers, which ensures high availability, robust redundancy measures, and effective cooling systems. Furthermore, with SOC 2 Type II compliance, the platform upholds stringent standards for security and data protection, making it a reliable choice for organizations. In an era where computational power is crucial, Massed Compute stands out as a trusted partner for businesses aiming to harness the full potential of GPU technology. -
32
AceCloud
AceCloud
$0.0073 per hourAceCloud serves as an all-encompassing public cloud and cybersecurity solution, aimed at providing businesses with a flexible, secure, and efficient infrastructure. The platform's public cloud offerings feature a range of computing options tailored for various needs, including RAM-intensive, CPU-intensive, and spot instances, along with advanced GPU capabilities utilizing NVIDIA models such as A2, A30, A100, L4, L40S, RTX A6000, RTX 8000, and H100. By delivering Infrastructure as a Service (IaaS), it allows users to effortlessly deploy virtual machines, storage solutions, and networking resources as needed. Its storage offerings include object and block storage, along with volume snapshots and instance backups, all designed to maintain data integrity and ensure easy access. In addition, AceCloud provides managed Kubernetes services for effective container orchestration and accommodates private cloud setups, offering options such as fully managed cloud solutions, one-time deployments, hosted private clouds, and virtual private servers. This holistic approach enables organizations to optimize their cloud experience while enhancing security and performance. -
33
Arm Forge
Arm
Create dependable and optimized code that delivers accurate results across various Server and HPC architectures, utilizing the latest compilers and C++ standards tailored for Intel, 64-bit Arm, AMD, OpenPOWER, and Nvidia GPU platforms. Arm Forge integrates Arm DDT, a premier debugger designed to streamline the debugging process of high-performance applications, with Arm MAP, a respected performance profiler offering essential optimization insights for both native and Python HPC applications, along with Arm Performance Reports that provide sophisticated reporting features. Both Arm DDT and Arm MAP can also be used as independent products, allowing flexibility in application development. This package ensures efficient Linux Server and HPC development while offering comprehensive technical support from Arm specialists. Arm DDT stands out as the preferred debugger for C++, C, or Fortran applications that are parallel or threaded, whether they run on CPUs or GPUs. With its powerful and user-friendly graphical interface, Arm DDT enables users to swiftly identify memory errors and divergent behaviors at any scale, solidifying its reputation as the leading debugger in the realms of research, industry, and academia, making it an invaluable tool for developers. Additionally, its rich feature set fosters an environment conducive to innovation and performance enhancement. -
34
Lambda GPU Cloud
Lambda
$1.25 per hour 1 RatingTrain advanced models in AI, machine learning, and deep learning effortlessly. With just a few clicks, you can scale your computing resources from a single machine to a complete fleet of virtual machines. Initiate or expand your deep learning endeavors using Lambda Cloud, which allows you to quickly get started, reduce computing expenses, and seamlessly scale up to hundreds of GPUs when needed. Each virtual machine is equipped with the latest version of Lambda Stack, featuring prominent deep learning frameworks and CUDA® drivers. In mere seconds, you can access a dedicated Jupyter Notebook development environment for every machine directly through the cloud dashboard. For immediate access, utilize the Web Terminal within the dashboard or connect via SSH using your provided SSH keys. By creating scalable compute infrastructure tailored specifically for deep learning researchers, Lambda is able to offer substantial cost savings. Experience the advantages of cloud computing's flexibility without incurring exorbitant on-demand fees, even as your workloads grow significantly. This means you can focus on your research and projects without being hindered by financial constraints. -
35
Node AI
Node AI
Reduce your expenses and time spent on infrastructure so you can focus more on growing your business. Maximize the return on your GPU investments with our platform, which blends complexity with ease of use, offering clients a straightforward way to access a worldwide network of AI nodes. Upon submitting their computational tasks to Node AI, clients benefit from immediate distribution across our robust, secure network of high-performance AI nodes. These tasks are executed simultaneously, utilizing the capabilities of the L1 Blockchain for secure, efficient, and verifiable computation. The results, once verified, are encrypted and promptly sent back to clients, guaranteeing both confidentiality and integrity. This streamlined process allows businesses to leverage advanced technology without the usual headaches associated with infrastructure management. -
36
XRCLOUD
XRCLOUD
$4.13 per monthGPU cloud computing is a service leveraging GPU technology to provide high-speed, real-time parallel and floating-point computing capabilities. This service is particularly well-suited for diverse applications, including 3D graphics rendering, video processing, deep learning, and scientific research. Users can easily manage GPU instances in a manner similar to standard ECS, significantly alleviating computational burdens. The RTX6000 GPU features thousands of computing units, demonstrating impressive efficiency in parallel processing tasks. For enhanced deep learning capabilities, it offers rapid completion of extensive computations. Additionally, GPU Direct facilitates seamless transmission of large data sets across networks. With an integrated acceleration framework, it enables quick deployment and efficient distribution of instances, allowing users to focus on essential tasks. We provide exceptional performance in the cloud at clear and competitive pricing. Furthermore, our pricing model is transparent and budget-friendly, offering options for on-demand billing, along with opportunities for increased savings through resource subscriptions. This flexibility ensures that users can optimize their cloud resources according to their specific needs and budget. -
37
Replicate
Replicate
FreeReplicate is a comprehensive platform designed to help developers and businesses seamlessly run, fine-tune, and deploy machine learning models with just a few lines of code. It hosts thousands of community-contributed models that support diverse use cases such as image and video generation, speech synthesis, music creation, and text generation. Users can enhance model performance by fine-tuning models with their own datasets, enabling highly specialized AI applications. The platform supports custom model deployment through Cog, an open-source tool that automates packaging and deployment on cloud infrastructure while managing scaling transparently. Replicate’s pricing model is usage-based, ensuring customers pay only for the compute time they consume, with support for a variety of GPU and CPU options. The system provides built-in monitoring and logging capabilities to track model performance and troubleshoot predictions. Major companies like Buzzfeed, Unsplash, and Character.ai use Replicate to power their AI features. Replicate’s goal is to democratize access to scalable, production-ready machine learning infrastructure, making AI deployment accessible even to non-experts. -
38
HorizonIQ
HorizonIQ
HorizonIQ serves as a versatile IT infrastructure provider, specializing in managed private cloud, bare metal servers, GPU clusters, and hybrid cloud solutions that prioritize performance, security, and cost-effectiveness. The managed private cloud offerings, based on Proxmox VE or VMware, create dedicated virtual environments specifically designed for AI tasks, general computing needs, and enterprise-grade applications. By integrating private infrastructure with over 280 public cloud providers, HorizonIQ's hybrid cloud solutions facilitate real-time scalability while optimizing costs. Their comprehensive packages combine computing power, networking, storage, and security, catering to diverse workloads ranging from web applications to high-performance computing scenarios. With an emphasis on single-tenant setups, HorizonIQ guarantees adherence to important compliance standards such as HIPAA, SOC 2, and PCI DSS, providing a 100% uptime SLA and proactive management via their Compass portal, which offers clients visibility and control over their IT resources. This commitment to reliability and customer satisfaction positions HorizonIQ as a leader in the IT infrastructure landscape. -
39
Thunder Compute
Thunder Compute
$0.27 per hourThunder Compute is an innovative cloud service that abstracts GPUs over TCP, enabling developers to effortlessly transition from CPU-only environments to expansive GPU clusters with a single command. By simulating a direct connection to remote GPUs, it allows CPU-only systems to function as if they possess dedicated GPU resources, all while those physical GPUs are utilized across multiple machines. This technique not only enhances GPU utilization but also lowers expenses by enabling various workloads to share a single GPU through dynamic memory allocation. Developers can conveniently initiate their projects on CPU-centric setups and seamlessly scale up to large GPU clusters with minimal configuration, thus avoiding the costs related to idle computation resources during the development phase. With Thunder Compute, users gain on-demand access to powerful GPUs such as NVIDIA T4, A100 40GB, and A100 80GB, all offered at competitive pricing alongside high-speed networking. The platform fosters an efficient workflow, making it easier for developers to optimize their projects without the complexities typically associated with GPU management. -
40
FluidStack
FluidStack
$1.49 per monthAchieve prices that are 3-5 times more competitive than conventional cloud services. FluidStack combines underutilized GPUs from data centers globally to provide unmatched economic advantages in the industry. With just one platform and API, you can deploy over 50,000 high-performance servers in mere seconds. Gain access to extensive A100 and H100 clusters equipped with InfiniBand in just a few days. Utilize FluidStack to train, fine-tune, and launch large language models on thousands of cost-effective GPUs in a matter of minutes. By connecting multiple data centers, FluidStack effectively disrupts monopolistic GPU pricing in the cloud. Experience computing speeds that are five times faster while enhancing cloud efficiency. Instantly tap into more than 47,000 idle servers, all with tier 4 uptime and security, through a user-friendly interface. You can train larger models, set up Kubernetes clusters, render tasks more quickly, and stream content without delays. The setup process requires only one click, allowing for custom image and API deployment in seconds. Additionally, our engineers are available around the clock through Slack, email, or phone, acting as a seamless extension of your team to ensure you receive the support you need. This level of accessibility and assistance can significantly streamline your operations. -
41
Paperspace
DigitalOcean
$5 per monthCORE serves as a robust computing platform designed for various applications, delivering exceptional performance. Its intuitive point-and-click interface allows users to quickly begin their tasks with minimal hassle. Users can execute even the most resource-intensive applications seamlessly. CORE provides virtually unlimited computing capabilities on demand, enabling users to reap the advantages of cloud technology without incurring hefty expenses. The team version of CORE includes powerful features for organizing, filtering, creating, and connecting users, machines, and networks. Gaining a comprehensive overview of your infrastructure is now simpler than ever, thanks to its user-friendly and straightforward GUI. The management console is both simple and powerful, facilitating tasks such as integrating VPNs or Active Directory effortlessly. What once required days or weeks can now be accomplished in mere moments, transforming complex network setups into manageable tasks. Moreover, CORE is trusted by some of the most innovative organizations globally, underscoring its reliability and effectiveness. This makes it an invaluable asset for teams looking to enhance their computing capabilities and streamline operations. -
42
Arm Allinea Studio is a comprehensive set of tools designed for the development of server and high-performance computing (HPC) applications specifically on Arm architectures. This suite includes compilers and libraries tailored for Arm, as well as tools for debugging and optimization. Among its offerings, the Arm Performance Libraries deliver optimized standard core mathematical libraries that enhance the performance of HPC applications running on Arm processors. These libraries feature routines accessible through both Fortran and C interfaces. Additionally, the Arm Performance Libraries incorporate OpenMP, ensuring a wide range of support across various BLAS, LAPACK, FFT, and sparse routines, ultimately aimed at maximizing performance in multi-processor environments. With these tools, developers can efficiently harness the full potential of Arm-based platforms for their computational needs.
-
43
TensorWave
TensorWave
TensorWave is a cloud platform designed for AI and high-performance computing (HPC), exclusively utilizing AMD Instinct Series GPUs to ensure optimal performance. It features a high-bandwidth and memory-optimized infrastructure that seamlessly scales to accommodate even the most rigorous training or inference tasks. Users can access AMD’s leading GPUs in mere seconds, including advanced models like the MI300X and MI325X, renowned for their exceptional memory capacity and bandwidth, boasting up to 256GB of HBM3E and supporting speeds of 6.0TB/s. Additionally, TensorWave's architecture is equipped with UEC-ready functionalities that enhance the next generation of Ethernet for AI and HPC networking, as well as direct liquid cooling systems that significantly reduce total cost of ownership, achieving energy cost savings of up to 51% in data centers. The platform also incorporates high-speed network storage, which provides transformative performance, security, and scalability for AI workflows. Furthermore, it ensures seamless integration with a variety of tools and platforms, accommodating various models and libraries to enhance user experience. TensorWave stands out for its commitment to performance and efficiency in the evolving landscape of AI technology. -
44
Civo
Civo
$250 per monthCivo is a cloud-native service provider focused on delivering fast, simple, and cost-effective cloud infrastructure for modern applications and AI workloads. The platform features managed Kubernetes clusters with rapid 90-second launch times, helping developers accelerate development cycles and scale with ease. Alongside Kubernetes, Civo offers compute instances, managed databases, object storage, load balancers, and high-performance cloud GPUs powered by NVIDIA A100, including environmentally friendly carbon-neutral options. Their pricing is predictable and pay-as-you-go, ensuring transparency and no surprises for businesses. Civo supports machine learning workloads with fully managed auto-scaling environments starting at $250 per month, eliminating the need for ML or Kubernetes expertise. The platform includes comprehensive dashboards and developer tools, backed by strong compliance certifications such as ISO27001 and SOC2. Civo also invests in community education through its Academy, meetups, and extensive documentation. With trusted partnerships and real-world case studies, Civo helps businesses innovate faster while controlling infrastructure costs. -
45
Qlustar
Qlustar
FreeQlustar presents an all-encompassing full-stack solution that simplifies the setup, management, and scaling of clusters while maintaining control and performance. It enhances your HPC, AI, and storage infrastructures with exceptional ease and powerful features. The journey begins with a bare-metal installation using the Qlustar installer, followed by effortless cluster operations that encompass every aspect of management. Experience unparalleled simplicity and efficiency in both establishing and overseeing your clusters. Designed with scalability in mind, it adeptly handles even the most intricate workloads with ease. Its optimization for speed, reliability, and resource efficiency makes it ideal for demanding environments. You can upgrade your operating system or handle security patches without requiring reinstallations, ensuring minimal disruption. Regular and dependable updates safeguard your clusters against potential vulnerabilities, contributing to their overall security. Qlustar maximizes your computing capabilities, ensuring peak efficiency for high-performance computing settings. Additionally, its robust workload management, built-in high availability features, and user-friendly interface provide a streamlined experience, making operations smoother than ever before. This comprehensive approach ensures that your computing infrastructure remains resilient and adaptable to changing needs.