Best NoSQL Database for Data Sentinel

Find and compare the best NoSQL Database for Data Sentinel in 2025

Use the comparison tool below to compare the top NoSQL Database for Data Sentinel on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    MongoDB Reviews
    Top Pick
    MongoDB is a versatile, document-oriented, distributed database designed specifically for contemporary application developers and the cloud landscape. It offers unparalleled productivity, enabling teams to ship and iterate products 3 to 5 times faster thanks to its adaptable document data model and a single query interface that caters to diverse needs. Regardless of whether you're serving your very first customer or managing 20 million users globally, you'll be able to meet your performance service level agreements in any setting. The platform simplifies high availability, safeguards data integrity, and adheres to the security and compliance requirements for your critical workloads. Additionally, it features a comprehensive suite of cloud database services that support a broad array of use cases, including transactional processing, analytics, search functionality, and data visualizations. Furthermore, you can easily deploy secure mobile applications with built-in edge-to-cloud synchronization and automatic resolution of conflicts. MongoDB's flexibility allows you to operate it in various environments, from personal laptops to extensive data centers, making it a highly adaptable solution for modern data management challenges.
  • 2
    Redis Reviews
    Redis Labs is the home of Redis. Redis Enterprise is the best Redis version. Redis Enterprise is more than a cache. Redis Enterprise can be free in the cloud with NoSQL and data caching using the fastest in-memory database. Redis can be scaled, enterprise-grade resilience, massive scaling, ease of administration, and operational simplicity. Redis in the Cloud is a favorite of DevOps. Developers have access to enhanced data structures and a variety modules. This allows them to innovate faster and has a faster time-to-market. CIOs love the security and expert support of Redis, which provides 99.999% uptime. Use relational databases for active-active, geodistribution, conflict distribution, reads/writes in multiple regions to the same data set. Redis Enterprise offers flexible deployment options. Redis Labs is the home of Redis. Redis JSON, Redis Java, Python Redis, Redis on Kubernetes & Redis gui best practices.
  • 3
    Apache Cassandra Reviews

    Apache Cassandra

    Apache Software Foundation

    1 Rating
    When seeking a database that ensures both scalability and high availability without sacrificing performance, Apache Cassandra stands out as an ideal option. Its linear scalability paired with proven fault tolerance on standard hardware or cloud services positions it as an excellent choice for handling mission-critical data effectively. Additionally, Cassandra's superior capability to replicate data across several datacenters not only enhances user experience by reducing latency but also offers reassurance in the event of regional failures. This combination of features makes it a robust solution for organizations that prioritize data resilience and efficiency.
  • 4
    Amazon DynamoDB Reviews
    Amazon DynamoDB is a versatile key-value and document database that provides exceptional single-digit millisecond performance, regardless of scale. As a fully managed service, it offers multi-region, multimaster durability along with integrated security features, backup and restore capabilities, and in-memory caching designed for internet-scale applications. With the ability to handle over 10 trillion requests daily and support peak loads exceeding 20 million requests per second, it serves a wide range of businesses. Prominent companies like Lyft, Airbnb, and Redfin, alongside major enterprises such as Samsung, Toyota, and Capital One, rely on DynamoDB for their critical operations, leveraging its scalability and performance. This allows organizations to concentrate on fostering innovation without the burden of operational management. You can create an immersive gaming platform that manages player data, session histories, and leaderboards for millions of users simultaneously. Additionally, it facilitates the implementation of design patterns for various applications like shopping carts, workflow engines, inventory management, and customer profiles. DynamoDB is well-equipped to handle high-traffic, large-scale events seamlessly, making it an ideal choice for modern applications.
  • 5
    IBM Cloudant Reviews
    IBM Cloudant® is a robust distributed database tailored for managing the demanding workloads commonly associated with large, rapidly expanding web and mobile applications. Offered as a fully managed service on IBM Cloud™, backed by an SLA, Cloudant allows for the independent scaling of both throughput and storage. You can quickly deploy an instance, set up databases, and adjust throughput capacity and data storage as needed to align with your application’s demands. Furthermore, it ensures data security through encryption, providing optional user-defined key management via IBM Key Protect, while also allowing integration with IBM Identity and Access Management. With a focus on performance and disaster recovery, Cloudant guarantees continuous availability by distributing data across multiple availability zones and six regions, making it an ideal choice for critical applications. This distribution not only enhances app performance but also safeguards against potential data loss, ensuring your applications run smoothly and reliably.
  • 6
    Azure Cosmos DB Reviews
    Azure Cosmos DB offers a fully managed NoSQL database solution tailored for contemporary application development, ensuring single-digit millisecond response times and an impressive availability rate of 99.999 percent, all supported by service level agreements. This service provides automatic, instantaneous scalability and supports open-source APIs for MongoDB and Cassandra, allowing for rapid data operations. With its turnkey multi-master global distribution, users can experience swift read and write operations from any location around the globe. Additionally, Azure Cosmos DB enables organizations to accelerate their decision-making processes by facilitating near-real-time analytics and AI capabilities on the operational data housed within the database. Furthermore, Azure Synapse Link for Azure Cosmos DB integrates effortlessly with Azure Synapse Analytics, ensuring smooth performance without necessitating data movement or compromising the efficiency of the operational data store, enhancing the overall functionality of your data strategy. This integration not only streamlines workflows but also empowers users to derive insights more efficiently.
  • 7
    SAP HANA Reviews
    SAP HANA is an in-memory database designed to handle both transactional and analytical workloads using a single copy of data, regardless of type. It effectively dissolves the barriers between transactional and analytical processes within organizations, facilitating rapid decision-making whether deployed on-premises or in the cloud. This innovative database management system empowers users to create intelligent, real-time solutions, enabling swift decision-making from a unified data source. By incorporating advanced analytics, it enhances the capabilities of next-generation transaction processing. Organizations can build data solutions that capitalize on cloud-native attributes such as scalability, speed, and performance. With SAP HANA Cloud, businesses can access reliable, actionable information from one cohesive platform while ensuring robust security, privacy, and data anonymization, reflecting proven enterprise standards. In today's fast-paced environment, an intelligent enterprise relies on timely insights derived from data, emphasizing the need for real-time delivery of such valuable information. As the demand for immediate access to insights grows, leveraging an efficient database like SAP HANA becomes increasingly critical for organizations aiming to stay competitive.
  • 8
    Couchbase Reviews
    Couchbase distinguishes itself from other NoSQL databases by delivering an enterprise-grade, multicloud to edge solution that is equipped with the powerful features essential for mission-critical applications on a platform that is both highly scalable and reliable. This distributed cloud-native database operates seamlessly in contemporary dynamic settings, accommodating any cloud environment, whether it be customer-managed or a fully managed service. Leveraging open standards, Couchbase merges the advantages of NoSQL with the familiar structure of SQL, thereby facilitating a smoother transition from traditional mainframe and relational databases. Couchbase Server serves as a versatile, distributed database that integrates the benefits of relational database capabilities, including SQL and ACID transactions, with the adaptability of JSON, all built on a foundation that is remarkably fast and scalable. Its applications span various industries, catering to needs such as user profiles, dynamic product catalogs, generative AI applications, vector search, high-speed caching, and much more, making it an invaluable asset for organizations seeking efficiency and innovation.
  • 9
    MarkLogic Reviews

    MarkLogic

    Progress Software

    Unlock the potential of your data, expedite insightful decision-making, and attain agility in data management securely with the MarkLogic data platform. This platform allows you to merge your data with all relevant metadata within a unified service, leading to quicker and more informed decision-making. Experience a reliable and efficient approach to securely link data and metadata, derive meaningful insights, and access high-quality contextualized information throughout your organization using the MarkLogic data platform. Gain real-time insights into your customers to deliver relevant and seamless interactions, uncover new opportunities to drive innovation, and facilitate compliant access within a single data framework. With MarkLogic, you have a solid foundation that supports your essential business and technical goals both now and in the future, ensuring you stay ahead in a dynamic market.
  • 10
    Neo4j Reviews
    Neo4j's graph platform is designed to help you leverage data and data relationships. Developers can create intelligent applications that use Neo4j to traverse today's interconnected, large datasets in real-time. Neo4j's graph database is powered by a native graph storage engine and processing engine. It provides unique, actionable insights through an intuitive, flexible, and secure database.
  • 11
    Apache CouchDB Reviews

    Apache CouchDB

    The Apache Software Foundation

    Apache CouchDB™ provides seamless access to your data wherever you require it. The Couch Replication Protocol is utilized across a wide range of projects and products, accommodating diverse computing environments that include everything from globally distributed server clusters to mobile devices and web browsers. You can securely store your data on your own servers or with any major cloud service provider. Both web-based and native applications benefit from CouchDB's native JSON support and its capability to handle binary data efficiently for all storage requirements. The Couch Replication Protocol facilitates smooth data transfers between server clusters, mobile phones, and web browsers, delivering an impressive offline-first user experience while ensuring strong performance and reliability. Additionally, CouchDB features a developer-friendly query language and offers optional MapReduce functionality, enabling straightforward, efficient, and comprehensive data retrieval, making it an excellent choice for developers looking for flexibility and power in their data management solutions. This versatility in accessing and managing data makes CouchDB a valuable asset for modern application development.
  • 12
    Apache HBase Reviews

    Apache HBase

    The Apache Software Foundation

    Utilize Apache HBase™ when you require immediate and random read/write capabilities for your extensive data sets. This initiative aims to manage exceptionally large tables that can contain billions of rows across millions of columns on clusters built from standard hardware. It features automatic failover capabilities between RegionServers to ensure reliability. Additionally, it provides an intuitive Java API for client interaction, along with a Thrift gateway and a RESTful Web service that accommodates various data encoding formats, including XML, Protobuf, and binary. Furthermore, it supports the export of metrics through the Hadoop metrics system, enabling data to be sent to files or Ganglia, as well as via JMX for enhanced monitoring and management. With these features, HBase stands out as a robust solution for handling big data challenges effectively.
  • 13
    Azure Table Storage Reviews
    Utilize Azure Table storage to manage petabytes of semi-structured data efficiently while keeping expenses low. In contrast to various data storage solutions, whether local or cloud-based, Table storage enables seamless scaling without the need for manual sharding of your dataset. Additionally, concerns about data availability are mitigated through the use of geo-redundant storage, which ensures that data is replicated three times within a single region and an extra three times in a distant region, enhancing data resilience. This storage option is particularly advantageous for accommodating flexible datasets—such as user data from web applications, address books, device details, and various other types of metadata—allowing you to develop cloud applications without restricting the data model to specific schemas. Each row in a single table can possess a unique structure, for instance, featuring order details in one entry and customer data in another, which grants you the flexibility to adapt your application and modify the table schema without requiring downtime. Furthermore, Table storage is designed with a robust consistency model to ensure reliable data access. Overall, it provides an adaptable and scalable solution for modern data management needs.
  • Previous
  • You're on page 1
  • Next