Best Machine Learning Software for Linux of 2025

Find and compare the best Machine Learning software for Linux in 2025

Use the comparison tool below to compare the top Machine Learning software for Linux on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Fraud.net Reviews

    Fraud.net

    Fraud.net, Inc.

    56 Ratings
    See Software
    Learn More
    Don't let fraud erode your bottom line, damage your reputation, or stall your growth. FraudNet's AI-driven platform empowers enterprises to stay ahead of threats, streamline compliance, and manage risk at scale—all in real-time. While fraudsters evolve tactics, our platform detects tomorrow's threats, delivering risk assessments through insights from billions of analyzed transactions. Imagine transforming your fraud prevention with a single, robust platform: comprehensive screening for smoother onboarding and reduced risk exposure, continuous monitoring to proactively identify and block new threats, and precision fraud detection across channels and payment types with real-time, AI-powered risk scoring. Our proprietary machine learning models continuously learn and improve, identifying patterns invisible to traditional systems. Paired with our Data Hub of dozens of third-party data integrations, you'll gain unprecedented fraud and risk protection while slashing false positives and eliminating operational inefficiencies. The impact is undeniable. Leading payment companies, financial institutions, innovative fintechs, and commerce brands trust our AI-powered solutions worldwide, and they're seeing dramatic results: 80% reduction in fraud losses and 97% fewer false positives. With our flexible no-code/low-code architecture, you can scale effortlessly as you grow. Why settle for outdated fraud and risk management systems when you could be building resilience for future opportunities? See the Fraud.Net difference for yourself. Request your personalized demo today and discover how we can help you strengthen your business against threats while empowering growth.
  • 2
    TensorFlow Reviews
    TensorFlow is a comprehensive open-source machine learning platform that covers the entire process from development to deployment. This platform boasts a rich and adaptable ecosystem featuring various tools, libraries, and community resources, empowering researchers to advance the field of machine learning while allowing developers to create and implement ML-powered applications with ease. With intuitive high-level APIs like Keras and support for eager execution, users can effortlessly build and refine ML models, facilitating quick iterations and simplifying debugging. The flexibility of TensorFlow allows for seamless training and deployment of models across various environments, whether in the cloud, on-premises, within browsers, or directly on devices, regardless of the programming language utilized. Its straightforward and versatile architecture supports the transformation of innovative ideas into practical code, enabling the development of cutting-edge models that can be published swiftly. Overall, TensorFlow provides a powerful framework that encourages experimentation and accelerates the machine learning process.
  • 3
    Neural Designer Reviews

    Neural Designer

    Artelnics

    $2495/year (per user)
    2 Ratings
    Neural Designer is a data-science and machine learning platform that allows you to build, train, deploy, and maintain neural network models. This tool was created to allow innovative companies and research centres to focus on their applications, not on programming algorithms or programming techniques. Neural Designer does not require you to code or create block diagrams. Instead, the interface guides users through a series of clearly defined steps. Machine Learning can be applied in different industries. These are some examples of machine learning solutions: - In engineering: Performance optimization, quality improvement and fault detection - In banking, insurance: churn prevention and customer targeting. - In healthcare: medical diagnosis, prognosis and activity recognition, microarray analysis and drug design. Neural Designer's strength is its ability to intuitively build predictive models and perform complex operations.
  • 4
    Herbie.ai Reviews
    Herbie.ai is a multi-national Conversational AI company. (Part of SunSmart Global, 15+ years in enterprise solutions). Digital Transformation of Enterprises Virtual Assistants with Voice Enabled to Automate Business Cases Franchise expanded to 6 countries. Instant connects you with 12+ social media platforms.
  • 5
    InRule Reviews
    InRule Technology® provides explainable, AI-powered intelligence automation. The InRule platform empowers its users to delight customers and improve business outcomes​ by combining process, decision automation and machine learning – without code.
  • 6
    Ametnes Cloud Reviews
    Ametnes: A Streamlined Data App Deployment Management Ametnes is the future of data applications deployment. Our cutting-edge solution will revolutionize the way you manage data applications in your private environments. Manual deployment is a complex process that can be a security concern. Ametnes tackles these challenges by automating the whole process. This ensures a seamless, secure experience for valued customers. Our intuitive platform makes it easy to deploy and manage data applications. Ametnes unlocks the full potential of any private environment. Enjoy efficiency, security and simplicity in a way you've never experienced before. Elevate your data management game - choose Ametnes today!
  • 7
    Dataiku Reviews
    Dataiku serves as a sophisticated platform for data science and machine learning, aimed at facilitating teams in the construction, deployment, and management of AI and analytics projects on a large scale. It enables a diverse range of users, including data scientists and business analysts, to work together in developing data pipelines, crafting machine learning models, and preparing data through various visual and coding interfaces. Supporting the complete AI lifecycle, Dataiku provides essential tools for data preparation, model training, deployment, and ongoing monitoring of projects. Additionally, the platform incorporates integrations that enhance its capabilities, such as generative AI, thereby allowing organizations to innovate and implement AI solutions across various sectors. This adaptability positions Dataiku as a valuable asset for teams looking to harness the power of AI effectively.
  • 8
    PyTorch Reviews
    Effortlessly switch between eager and graph modes using TorchScript, while accelerating your journey to production with TorchServe. The torch-distributed backend facilitates scalable distributed training and enhances performance optimization for both research and production environments. A comprehensive suite of tools and libraries enriches the PyTorch ecosystem, supporting development across fields like computer vision and natural language processing. Additionally, PyTorch is compatible with major cloud platforms, simplifying development processes and enabling seamless scaling. You can easily choose your preferences and execute the installation command. The stable version signifies the most recently tested and endorsed iteration of PyTorch, which is typically adequate for a broad range of users. For those seeking the cutting-edge, a preview is offered, featuring the latest nightly builds of version 1.10, although these may not be fully tested or supported. It is crucial to verify that you meet all prerequisites, such as having numpy installed, based on your selected package manager. Anaconda is highly recommended as the package manager of choice, as it effectively installs all necessary dependencies, ensuring a smooth installation experience for users. This comprehensive approach not only enhances productivity but also ensures a robust foundation for development.
  • 9
    Smart Inventory Planning & Optimization  Reviews
    Smart Software, a leading provider in demand planning, inventory optimization, and supply chain analytics solutions, is based in Belmont, Massachusetts USA. Smart Software was founded in 1981 and has helped thousands of customers plan for future demands using industry-leading statistical analysis. Smart Inventory Planning & Optimization is the company's next generation suite of native web apps. It helps inventory-carrying organizations reduce inventory, improve service levels, and streamline Sales, Inventory, Operations Planning. Smart IP&O is a Digital Supply Chain Platform that hosts three applications: dashboard reporting, inventory optimization, demand planning. Smart IP&O acts as an extension to our customers' ERP systems. It receives daily transaction data, returns forecasts and stock policy values to drive replenishment planning and production planning.
  • 10
    NaturalText Reviews

    NaturalText

    NaturalText

    $5000.00
    NaturalText A.I. Your data can be used to get more. Discover relationships, build collections, and uncover hidden insights in documents and text-based data. NaturalText A.I. NaturalText A.I. uses artificial intelligence technology to uncover hidden data relationships. The software uses a variety of state-of-the art methods to understand context and analyze patterns to reveal insights - all in a human-readable manner. Discover hidden insights in your data It can be difficult, if not impossible, to find everything in your text data. Traditional search can only find information about a document. NaturalText A.I. on the other hand, uncovers new data within millions of documents, including patents and scientific papers. NaturalText A.I. NaturalText A.I. can help you uncover insights in your data that you are not currently seeing.
  • 11
    ClearML Reviews
    ClearML is an open-source MLOps platform that enables data scientists, ML engineers, and DevOps to easily create, orchestrate and automate ML processes at scale. Our frictionless and unified end-to-end MLOps Suite allows users and customers to concentrate on developing ML code and automating their workflows. ClearML is used to develop a highly reproducible process for end-to-end AI models lifecycles by more than 1,300 enterprises, from product feature discovery to model deployment and production monitoring. You can use all of our modules to create a complete ecosystem, or you can plug in your existing tools and start using them. ClearML is trusted worldwide by more than 150,000 Data Scientists, Data Engineers and ML Engineers at Fortune 500 companies, enterprises and innovative start-ups.
  • 12
    Oracle Analytics Cloud Reviews

    Oracle Analytics Cloud

    Oracle

    $16 User Per Month - Oracle An
    Oracle Analytics is a comprehensive platform designed for all analytics user roles, integrating AI and machine learning across the board to boost productivity and enable smarter business decisions. Whether you opt for Oracle Analytics Cloud, our cloud-native service, or Oracle Analytics Server, our on-premises solution, you can ensure robust security and governance without compromise.
  • 13
    Ray Reviews

    Ray

    Anyscale

    Free
    You can develop on your laptop, then scale the same Python code elastically across hundreds or GPUs on any cloud. Ray converts existing Python concepts into the distributed setting, so any serial application can be easily parallelized with little code changes. With a strong ecosystem distributed libraries, scale compute-heavy machine learning workloads such as model serving, deep learning, and hyperparameter tuning. Scale existing workloads (e.g. Pytorch on Ray is easy to scale by using integrations. Ray Tune and Ray Serve native Ray libraries make it easier to scale the most complex machine learning workloads like hyperparameter tuning, deep learning models training, reinforcement learning, and training deep learning models. In just 10 lines of code, you can get started with distributed hyperparameter tune. Creating distributed apps is hard. Ray is an expert in distributed execution.
  • 14
    Dagster+ Reviews

    Dagster+

    Dagster Labs

    $0
    Dagster is the cloud-native open-source orchestrator for the whole development lifecycle, with integrated lineage and observability, a declarative programming model, and best-in-class testability. It is the platform of choice data teams responsible for the development, production, and observation of data assets. With Dagster, you can focus on running tasks, or you can identify the key assets you need to create using a declarative approach. Embrace CI/CD best practices from the get-go: build reusable components, spot data quality issues, and flag bugs early.
  • 15
    Prodigy Reviews

    Prodigy

    Explosion

    $490 one-time fee
    Revolutionary machine teaching is here with an exceptionally efficient annotation tool driven by active learning. Prodigy serves as a customizable annotation platform so effective that data scientists can handle the annotation process themselves, paving the way for rapid iteration. The advancements in today's transfer learning technologies allow for the training of high-quality models using minimal examples. By utilizing Prodigy, you can fully leverage contemporary machine learning techniques, embracing a more flexible method for data gathering. This will enable you to accelerate your workflow, gain greater autonomy, and deliver significantly more successful projects. Prodigy merges cutting-edge insights from the realms of machine learning and user experience design. Its ongoing active learning framework ensures that you only need to annotate those examples the model is uncertain about. The web application is not only powerful and extensible but also adheres to the latest user experience standards. The brilliance lies in its straightforward design: it encourages you to concentrate on one decision at a time, keeping you actively engaged – akin to a swipe-right approach for data. Additionally, this streamlined process fosters a more enjoyable and effective annotation experience overall.
  • 16
    MindsDB Reviews
    MindsDB is the only AGI data solution that connects and unifies petabyte scale enterprise data, enabling enterprise-wide informed decision-making in real-time.
  • 17
    Gradient Reviews

    Gradient

    Gradient

    $8 per month
    Discover a fresh library or dataset while working in a notebook environment. Streamline your preprocessing, training, or testing processes through an automated workflow. Transform your application into a functioning product by deploying it effectively. You have the flexibility to utilize notebooks, workflows, and deployments either together or on their own. Gradient is fully compatible with all major frameworks and libraries, ensuring seamless integration. Powered by Paperspace's exceptional GPU instances, Gradient allows you to accelerate your projects significantly. Enhance your development speed with integrated source control, connecting effortlessly to GitHub to oversee all your work and computing resources. Launch a GPU-enabled Jupyter Notebook right from your browser in mere seconds, using any library or framework of your choice. It's simple to invite collaborators or share a public link for your projects. This straightforward cloud workspace operates on free GPUs, allowing you to get started almost instantly with an easy-to-navigate notebook environment that's perfect for machine learning developers. Offering a robust and hassle-free setup with numerous features, it just works. Choose from pre-existing templates or integrate your own unique configurations, and take advantage of a free GPU to kickstart your projects!
  • 18
    KServe Reviews
    KServe is a robust model inference platform on Kubernetes that emphasizes high scalability and adherence to standards, making it ideal for trusted AI applications. This platform is tailored for scenarios requiring significant scalability and delivers a consistent and efficient inference protocol compatible with various machine learning frameworks. It supports contemporary serverless inference workloads, equipped with autoscaling features that can even scale to zero when utilizing GPU resources. Through the innovative ModelMesh architecture, KServe ensures exceptional scalability, optimized density packing, and smart routing capabilities. Moreover, it offers straightforward and modular deployment options for machine learning in production, encompassing prediction, pre/post-processing, monitoring, and explainability. Advanced deployment strategies, including canary rollouts, experimentation, ensembles, and transformers, can also be implemented. ModelMesh plays a crucial role by dynamically managing the loading and unloading of AI models in memory, achieving a balance between user responsiveness and the computational demands placed on resources. This flexibility allows organizations to adapt their ML serving strategies to meet changing needs efficiently.
  • 19
    NVIDIA Triton Inference Server Reviews
    The NVIDIA Triton™ inference server provides efficient and scalable AI solutions for production environments. This open-source software simplifies the process of AI inference, allowing teams to deploy trained models from various frameworks, such as TensorFlow, NVIDIA TensorRT®, PyTorch, ONNX, XGBoost, Python, and more, across any infrastructure that relies on GPUs or CPUs, whether in the cloud, data center, or at the edge. By enabling concurrent model execution on GPUs, Triton enhances throughput and resource utilization, while also supporting inferencing on both x86 and ARM architectures. It comes equipped with advanced features such as dynamic batching, model analysis, ensemble modeling, and audio streaming capabilities. Additionally, Triton is designed to integrate seamlessly with Kubernetes, facilitating orchestration and scaling, while providing Prometheus metrics for effective monitoring and supporting live updates to models. This software is compatible with all major public cloud machine learning platforms and managed Kubernetes services, making it an essential tool for standardizing model deployment in production settings. Ultimately, Triton empowers developers to achieve high-performance inference while simplifying the overall deployment process.
  • 20
    BentoML Reviews
    Deploy your machine learning model in the cloud within minutes using a consolidated packaging format that supports both online and offline operations across various platforms. Experience a performance boost with throughput that is 100 times greater than traditional flask-based model servers, achieved through our innovative micro-batching technique. Provide exceptional prediction services that align seamlessly with DevOps practices and integrate effortlessly with widely-used infrastructure tools. The unified deployment format ensures high-performance model serving while incorporating best practices for DevOps. This service utilizes the BERT model, which has been trained with the TensorFlow framework to effectively gauge the sentiment of movie reviews. Our BentoML workflow eliminates the need for DevOps expertise, automating everything from prediction service registration to deployment and endpoint monitoring, all set up effortlessly for your team. This creates a robust environment for managing substantial ML workloads in production. Ensure that all models, deployments, and updates are easily accessible and maintain control over access through SSO, RBAC, client authentication, and detailed auditing logs, thereby enhancing both security and transparency within your operations. With these features, your machine learning deployment process becomes more efficient and manageable than ever before.
  • 21
    Flyte Reviews

    Flyte

    Union.ai

    Free
    Flyte is a robust platform designed for automating intricate, mission-critical data and machine learning workflows at scale. It simplifies the creation of concurrent, scalable, and maintainable workflows, making it an essential tool for data processing and machine learning applications. Companies like Lyft, Spotify, and Freenome have adopted Flyte for their production needs. At Lyft, Flyte has been a cornerstone for model training and data processes for more than four years, establishing itself as the go-to platform for various teams including pricing, locations, ETA, mapping, and autonomous vehicles. Notably, Flyte oversees more than 10,000 unique workflows at Lyft alone, culminating in over 1,000,000 executions each month, along with 20 million tasks and 40 million container instances. Its reliability has been proven in high-demand environments such as those at Lyft and Spotify, among others. As an entirely open-source initiative licensed under Apache 2.0 and backed by the Linux Foundation, it is governed by a committee representing multiple industries. Although YAML configurations can introduce complexity and potential errors in machine learning and data workflows, Flyte aims to alleviate these challenges effectively. This makes Flyte not only a powerful tool but also a user-friendly option for teams looking to streamline their data operations.
  • 22
    OpenCV Reviews
    OpenCV, which stands for Open Source Computer Vision Library, is a freely available software library designed for computer vision and machine learning. Its primary goal is to offer a unified framework for developing computer vision applications and to enhance the integration of machine perception in commercial products. As a BSD-licensed library, OpenCV allows companies to easily adapt and modify its code to suit their needs. It boasts over 2500 optimized algorithms encompassing a wide array of both traditional and cutting-edge techniques in computer vision and machine learning. These powerful algorithms enable functionalities such as facial detection and recognition, object identification, human action classification in videos, camera movement tracking, and monitoring of moving objects. Additionally, OpenCV supports the extraction of 3D models, creation of 3D point clouds from stereo camera input, image stitching for high-resolution scene capture, similarity searches within image databases, red-eye removal from flash photographs, and even eye movement tracking and landscape recognition, showcasing its versatility in various applications. The extensive capabilities of OpenCV make it a valuable resource for developers and researchers alike.
  • 23
    Giskard Reviews
    Giskard provides interfaces to AI & Business teams for evaluating and testing ML models using automated tests and collaborative feedback. Giskard accelerates teamwork to validate ML model validation and gives you peace-of-mind to eliminate biases, drift, or regression before deploying ML models into production.
  • 24
    Apache PredictionIO Reviews
    Apache PredictionIO® is a robust open-source machine learning server designed for developers and data scientists to build predictive engines for diverse machine learning applications. It empowers users to swiftly create and launch an engine as a web service in a production environment using easily customizable templates. Upon deployment, it can handle dynamic queries in real-time, allowing for systematic evaluation and tuning of various engine models, while also enabling the integration of data from multiple sources for extensive predictive analytics. By streamlining the machine learning modeling process with structured methodologies and established evaluation metrics, it supports numerous data processing libraries, including Spark MLLib and OpenNLP. Users can also implement their own machine learning algorithms and integrate them effortlessly into the engine. Additionally, it simplifies the management of data infrastructure, catering to a wide range of analytics needs. Apache PredictionIO® can be installed as a complete machine learning stack, which includes components such as Apache Spark, MLlib, HBase, and Akka HTTP, providing a comprehensive solution for predictive modeling. This versatile platform effectively enhances the ability to leverage machine learning across various industries and applications.
  • 25
    ZenML Reviews
    Simplify your MLOps pipelines. ZenML allows you to manage, deploy and scale any infrastructure. ZenML is open-source and free. Two simple commands will show you the magic. ZenML can be set up in minutes and you can use all your existing tools. ZenML interfaces ensure your tools work seamlessly together. Scale up your MLOps stack gradually by changing components when your training or deployment needs change. Keep up to date with the latest developments in the MLOps industry and integrate them easily. Define simple, clear ML workflows and save time by avoiding boilerplate code or infrastructure tooling. Write portable ML codes and switch from experiments to production in seconds. ZenML's plug and play integrations allow you to manage all your favorite MLOps software in one place. Prevent vendor lock-in by writing extensible, tooling-agnostic, and infrastructure-agnostic code.
  • Previous
  • You're on page 1
  • 2
  • 3
  • Next