Best Machine Learning Software for Bitbucket

Find and compare the best Machine Learning software for Bitbucket in 2025

Use the comparison tool below to compare the top Machine Learning software for Bitbucket on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Domino Enterprise MLOps Platform Reviews
    The Domino Enterprise MLOps Platform helps data science teams improve the speed, quality, and impact of data science at scale. Domino is open and flexible, empowering professional data scientists to use their preferred tools and infrastructure. Data science models get into production fast and are kept operating at peak performance with integrated workflows. Domino also delivers the security, governance and compliance that enterprises expect. The Self-Service Infrastructure Portal makes data science teams become more productive with easy access to their preferred tools, scalable compute, and diverse data sets. By automating time-consuming and tedious DevOps tasks, data scientists can focus on the tasks at hand. The Integrated Model Factory includes a workbench, model and app deployment, and integrated monitoring to rapidly experiment, deploy the best models in production, ensure optimal performance, and collaborate across the end-to-end data science lifecycle. The System of Record has a powerful reproducibility engine, search and knowledge management, and integrated project management. Teams can easily find, reuse, reproduce, and build on any data science work to amplify innovation.
  • 2
    Amazon CodeGuru Reviews
    Amazon CodeGuru is an advanced developer tool that leverages machine learning to offer insightful suggestions for enhancing code quality and pinpointing the most costly lines of code within an application. By seamlessly incorporating Amazon CodeGuru into your current software development processes, you can benefit from integrated code reviews that highlight and optimize costly code segments, ultimately leading to cost savings. Additionally, Amazon CodeGuru Profiler assists developers in identifying the most expensive lines of code, providing detailed visualizations and actionable advice for optimizing performance and reducing expenses. Furthermore, the Amazon CodeGuru Reviewer employs machine learning techniques to detect significant issues and elusive bugs during the development phase, thereby elevating the overall quality of the codebase while facilitating more efficient application development. This powerful combination of tools ensures that developers not only write better code but also maintain a focus on cost efficiency throughout the software lifecycle.
  • 3
    TrueFoundry Reviews

    TrueFoundry

    TrueFoundry

    $5 per month
    TrueFoundry is a cloud-native platform-as-a-service for machine learning training and deployment built on Kubernetes, designed to empower machine learning teams to train and launch models with the efficiency and reliability typically associated with major tech companies, all while ensuring scalability to reduce costs and speed up production release. By abstracting the complexities of Kubernetes, it allows data scientists to work in a familiar environment without the overhead of managing infrastructure. Additionally, it facilitates the seamless deployment and fine-tuning of large language models, prioritizing security and cost-effectiveness throughout the process. TrueFoundry features an open-ended, API-driven architecture that integrates smoothly with internal systems, enables deployment on a company's existing infrastructure, and upholds stringent data privacy and DevSecOps standards, ensuring that teams can innovate without compromising on security. This comprehensive approach not only streamlines workflows but also fosters collaboration among teams, ultimately driving faster and more efficient model deployment.
  • 4
    ZenML Reviews
    Simplify your MLOps pipelines. ZenML allows you to manage, deploy and scale any infrastructure. ZenML is open-source and free. Two simple commands will show you the magic. ZenML can be set up in minutes and you can use all your existing tools. ZenML interfaces ensure your tools work seamlessly together. Scale up your MLOps stack gradually by changing components when your training or deployment needs change. Keep up to date with the latest developments in the MLOps industry and integrate them easily. Define simple, clear ML workflows and save time by avoiding boilerplate code or infrastructure tooling. Write portable ML codes and switch from experiments to production in seconds. ZenML's plug and play integrations allow you to manage all your favorite MLOps software in one place. Prevent vendor lock-in by writing extensible, tooling-agnostic, and infrastructure-agnostic code.
  • 5
    Iterative Reviews
    AI teams encounter obstacles that necessitate the development of innovative technologies, which we specialize in creating. Traditional data warehouses and lakes struggle to accommodate unstructured data types such as text, images, and videos. Our approach integrates AI with software development, specifically designed for data scientists, machine learning engineers, and data engineers alike. Instead of reinventing existing solutions, we provide a swift and cost-effective route to bring your projects into production. Your data remains securely stored under your control, and model training occurs on your own infrastructure. By addressing the limitations of current data handling methods, we ensure that AI teams can effectively meet their challenges. Our Studio functions as an extension of platforms like GitHub, GitLab, or BitBucket, allowing seamless integration. You can choose to sign up for our online SaaS version or reach out for an on-premise installation tailored to your needs. This flexibility allows organizations of all sizes to adopt our solutions effectively.
  • 6
    Launchable Reviews
    Having the most skilled developers isn't enough if testing processes are hindering their progress; in fact, a staggering 80% of your software tests may be ineffective. The challenge lies in identifying which 80% is truly unnecessary. We utilize your data to pinpoint the essential 20%, enabling you to accelerate your release process. Our predictive test selection tool, inspired by machine learning techniques employed by leading companies like Facebook, is designed for easy adoption by any organization. We accommodate a variety of programming languages, test frameworks, and continuous integration systems—just integrate Git into your workflow. Launchable employs machine learning to evaluate your test failures alongside your source code, sidestepping traditional code syntax analysis. This flexibility allows Launchable to effortlessly extend its support to nearly any file-based programming language, ensuring it can adapt to various teams and projects with differing languages and tools. Currently, we provide out-of-the-box support for languages including Python, Ruby, Java, JavaScript, Go, C, and C++, with a commitment to continually expand our offerings as new languages emerge. In this way, we help organizations streamline their testing process and enhance overall efficiency.
  • Previous
  • You're on page 1
  • Next