Best Large Language Models for Database Mart

Find and compare the best Large Language Models for Database Mart in 2025

Use the comparison tool below to compare the top Large Language Models for Database Mart on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Mistral AI Reviews
    Mistral AI stands out as an innovative startup in the realm of artificial intelligence, focusing on open-source generative solutions. The company provides a diverse array of customizable, enterprise-level AI offerings that can be implemented on various platforms, such as on-premises, cloud, edge, and devices. Among its key products are "Le Chat," a multilingual AI assistant aimed at boosting productivity in both personal and professional settings, and "La Plateforme," a platform for developers that facilitates the creation and deployment of AI-driven applications. With a strong commitment to transparency and cutting-edge innovation, Mistral AI has established itself as a prominent independent AI laboratory, actively contributing to the advancement of open-source AI and influencing policy discussions. Their dedication to fostering an open AI ecosystem underscores their role as a thought leader in the industry.
  • 2
    DeepSeek R1 Reviews
    DeepSeek-R1 is a cutting-edge open-source reasoning model created by DeepSeek, aimed at competing with OpenAI's Model o1. It is readily available through web, app, and API interfaces, showcasing its proficiency in challenging tasks such as mathematics and coding, and achieving impressive results on assessments like the American Invitational Mathematics Examination (AIME) and MATH. Utilizing a mixture of experts (MoE) architecture, this model boasts a remarkable total of 671 billion parameters, with 37 billion parameters activated for each token, which allows for both efficient and precise reasoning abilities. As a part of DeepSeek's dedication to the progression of artificial general intelligence (AGI), the model underscores the importance of open-source innovation in this field. Furthermore, its advanced capabilities may significantly impact how we approach complex problem-solving in various domains.
  • 3
    Qwen2.5 Reviews
    Qwen2.5 represents a state-of-the-art multimodal AI system that aims to deliver highly precise and context-sensitive outputs for a diverse array of uses. This model enhances the functionalities of earlier versions by merging advanced natural language comprehension with improved reasoning abilities, creativity, and the capacity to process multiple types of media. Qwen2.5 can effortlessly analyze and produce text, interpret visual content, and engage with intricate datasets, allowing it to provide accurate solutions promptly. Its design prioritizes adaptability, excelling in areas such as personalized support, comprehensive data analysis, innovative content creation, and scholarly research, thereby serving as an invaluable resource for both professionals and casual users. Furthermore, the model is crafted with a focus on user engagement, emphasizing principles of transparency, efficiency, and adherence to ethical AI standards, which contributes to a positive user experience.
  • 4
    Llama 3.1 Reviews
    Introducing an open-source AI model that can be fine-tuned, distilled, and deployed across various platforms. Our newest instruction-tuned model comes in three sizes: 8B, 70B, and 405B, giving you options to suit different needs. With our open ecosystem, you can expedite your development process using a diverse array of tailored product offerings designed to meet your specific requirements. You have the flexibility to select between real-time inference and batch inference services according to your project's demands. Additionally, you can download model weights to enhance cost efficiency per token while fine-tuning for your application. Improve performance further by utilizing synthetic data and seamlessly deploy your solutions on-premises or in the cloud. Take advantage of Llama system components and expand the model's capabilities through zero-shot tool usage and retrieval-augmented generation (RAG) to foster agentic behaviors. By utilizing 405B high-quality data, you can refine specialized models tailored to distinct use cases, ensuring optimal functionality for your applications. Ultimately, this empowers developers to create innovative solutions that are both efficient and effective.
  • 5
    Phi-2 Reviews
    We are excited to announce the launch of Phi-2, a language model featuring 2.7 billion parameters that excels in reasoning and language comprehension, achieving top-tier results compared to other base models with fewer than 13 billion parameters. In challenging benchmarks, Phi-2 competes with and often surpasses models that are up to 25 times its size, a feat made possible by advancements in model scaling and meticulous curation of training data. Due to its efficient design, Phi-2 serves as an excellent resource for researchers interested in areas such as mechanistic interpretability, enhancing safety measures, or conducting fine-tuning experiments across a broad spectrum of tasks. To promote further exploration and innovation in language modeling, Phi-2 has been integrated into the Azure AI Studio model catalog, encouraging collaboration and development within the research community. Researchers can leverage this model to unlock new insights and push the boundaries of language technology.
  • 6
    Gemma 2 Reviews
    The Gemma family consists of advanced, lightweight models developed using the same innovative research and technology as the Gemini models. These cutting-edge models are equipped with robust security features that promote responsible and trustworthy AI applications, achieved through carefully curated data sets and thorough refinements. Notably, Gemma models excel in their various sizes—2B, 7B, 9B, and 27B—often exceeding the performance of some larger open models. With the introduction of Keras 3.0, users can experience effortless integration with JAX, TensorFlow, and PyTorch, providing flexibility in framework selection based on specific tasks. Designed for peak performance and remarkable efficiency, Gemma 2 is specifically optimized for rapid inference across a range of hardware platforms. Furthermore, the Gemma family includes diverse models that cater to distinct use cases, ensuring they adapt effectively to user requirements. These lightweight language models feature a decoder and have been trained on an extensive array of textual data, programming code, and mathematical concepts, which enhances their versatility and utility in various applications.
  • 7
    Phi-3 Reviews
    Introducing a remarkable family of compact language models (SLMs) that deliver exceptional performance while being cost-effective and low in latency. These models are designed to enhance AI functionalities, decrease resource consumption, and promote budget-friendly generative AI applications across various platforms. They improve response times in real-time interactions, navigate autonomous systems, and support applications that demand low latency, all critical to user experience. Phi-3 can be deployed in cloud environments, edge computing, or directly on devices, offering unparalleled flexibility for deployment and operations. Developed in alignment with Microsoft AI principles—such as accountability, transparency, fairness, reliability, safety, privacy, security, and inclusiveness—these models ensure ethical AI usage. They also excel in offline environments where data privacy is essential or where internet connectivity is sparse. With an expanded context window, Phi-3 generates outputs that are more coherent, accurate, and contextually relevant, making it an ideal choice for various applications. Ultimately, deploying at the edge not only enhances speed but also ensures that users receive timely and effective responses.
  • 8
    Phi-4 Reviews
    Phi-4 is an advanced small language model (SLM) comprising 14 billion parameters, showcasing exceptional capabilities in intricate reasoning tasks, particularly in mathematics, alongside typical language processing functions. As the newest addition to the Phi family of small language models, Phi-4 illustrates the potential advancements we can achieve while exploring the limits of SLM technology. It is currently accessible on Azure AI Foundry under a Microsoft Research License Agreement (MSRLA) and is set to be released on Hugging Face in the near future. Due to significant improvements in processes such as the employment of high-quality synthetic datasets and the careful curation of organic data, Phi-4 surpasses both comparable and larger models in mathematical reasoning tasks. This model not only emphasizes the ongoing evolution of language models but also highlights the delicate balance between model size and output quality. As we continue to innovate, Phi-4 stands as a testament to our commitment to pushing the boundaries of what's achievable within the realm of small language models.
  • Previous
  • You're on page 1
  • Next