Best IoT Operating Systems for Windows of 2025

Find and compare the best IoT Operating Systems for Windows in 2025

Use the comparison tool below to compare the top IoT Operating Systems for Windows on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    FreeRTOS Reviews
    Developed in collaboration with top chip manufacturers over a span of 15 years, FreeRTOS is now downloaded approximately every 170 seconds and stands as a top-tier real-time operating system (RTOS) tailored for microcontrollers and small microprocessors. Available at no cost under the MIT open source license, FreeRTOS encompasses a kernel along with an expanding collection of IoT libraries that cater to various industries. Prioritizing reliability and user-friendliness, FreeRTOS is renowned for its proven durability, minimal footprint, and extensive device compatibility, making it the go-to standard for microcontroller and small microprocessor applications among leading global enterprises. With a wealth of pre-configured demos and IoT reference integrations readily available, users can easily set up their projects without any hassle. This streamlined process allows for rapid downloading, compiling, and quicker market entry. Furthermore, the ecosystem of partners offers a diverse range of options, including both community-driven contributions and professional support, ensuring that users have access to the resources they need for success. As technology continues to evolve, FreeRTOS remains committed to adapting and enhancing its offerings to meet the ever-changing demands of the industry.
  • 2
    Mbed OS Reviews
    Arm Mbed OS is an open-source operating system tailored for IoT applications, providing all the essential tools for creating IoT devices. This robust OS is equipped to support smart and connected products built on Arm Cortex-M architecture, offering features such as machine learning, secure connectivity stacks, an RTOS kernel, and drivers for various sensors and I/O devices. Specifically designed for the Internet of Things, Arm Mbed OS integrates capabilities in connectivity, machine learning, networking, and security, complemented by a wealth of software libraries, development boards, tutorials, and practical examples. It fosters collaboration across a vast ecosystem, supporting over 70 partners in silicon, modules, cloud services, and OEMs, thereby enhancing choices for developers. By leveraging the Mbed OS API, developers can maintain clean, portable, and straightforward application code while benefiting from advanced security, communication, and machine learning functionalities. This cohesive solution ultimately streamlines the development process, significantly lowering costs, minimizing time investment, and reducing associated risks. Furthermore, Mbed OS empowers innovation, enabling developers to rapidly prototype and deploy IoT solutions with confidence.
  • 3
    RT-Thread Reviews
    RT-Thread, short for Real Time-Thread, is an embedded real-time multi-threaded operating system. It has been designed to support multi-tasking, allowing multiple tasks to run simultaneously. Although a processor core can only run one task at a time, RT-Thread executes every task quickly and switches between them rapidly according to priority, creating the illusion of simultaneous task execution. RT-Thread is mainly written in the C programming language, making it easy to understand and port. It applies object-oriented programming methods to real-time system design, resulting in elegant, structured, modular, and highly customizable code. The system comes in a few varieties. The NANO version is a minimal kernel that requires only 3KB of flash and 1.2KB of RAM. For resource-rich IoT devices, RT-Thread can use an online software package management tool, together with system configuration tools, to achieve an intuitive and rapid modular design.
  • 4
    Raspberry Pi OS Reviews

    Raspberry Pi OS

    Raspberry Pi Foundation

    Raspberry Pi Imager offers a fast and straightforward method for installing Raspberry Pi OS along with various other operating systems onto a microSD card, making it ready for your Raspberry Pi. To understand the installation process, check out our brief 45-second video tutorial. Begin by downloading and installing Raspberry Pi Imager on a computer equipped with an SD card reader. Insert the microSD card intended for your Raspberry Pi into the reader and launch Raspberry Pi Imager. You can explore a variety of operating systems available from both Raspberry Pi and external providers, allowing you to download and install them manually as needed. This tool streamlines the setup process and enhances your Raspberry Pi experience.
  • 5
    Windows for IoT Reviews
    By developing on the Windows platform, you become part of a global network of partners that encompasses a range of hardware and software solutions, integrations, and services. You can take advantage of our ever-evolving feature set and developer-friendly tools, ensuring a seamless experience in building devices. Windows IoT offers a guaranteed 10-Year OS Lifecycle Support through our Long-Term Servicing Channel (LTSC), with no unexpected costs involved. Furthermore, it maintains backward compatibility in accordance with Microsoft's application compatibility promise. Leveraging Windows IoT, you can utilize Azure services to create tailored IoT solutions that meet your specific needs. Azure boasts the most extensive portfolio of cloud services and capabilities, designed to align with the demands of various industries. Additionally, Windows IoT seamlessly integrates with existing device management solutions, enhancing your operational efficiency in the IoT landscape. The combination of these features empowers developers to innovate and streamline their projects effectively.
  • 6
    Micrium OS Reviews
    At the core of every embedded operating system lies a kernel, which plays a crucial role in task scheduling and multitasking to guarantee that the timing demands of your application code are fulfilled, even as you frequently enhance and modify that code with new functionalities. However, Micrium OS offers more than just a kernel; it includes a variety of supplementary modules designed to assist you in addressing the specific requirements of your project. Furthermore, Micrium OS is available completely free for use on Silicon Labs EFM32 and EFR32 devices, allowing you to integrate Micrium’s high-quality components into your projects today without incurring any licensing costs. This accessibility encourages innovation and experimentation, ensuring that developers can focus on creating robust applications without the worry of financial constraints.
  • 7
    Zephyr Reviews
    Ranging from basic embedded environmental sensors and LED wearables to advanced embedded controllers, smartwatches, and IoT wireless applications, this system incorporates configurable architecture-specific stack-overflow protection, kernel object and device driver permission tracking, and thread isolation enhanced by thread-level memory protection across x86, ARC, and ARM architectures, as well as userspace and memory domains. For systems lacking MMU/MPU and those limited by memory capacity, it enables the integration of application-specific code with a tailored kernel to form a monolithic image that can be loaded and run on the hardware of the system. In this setup, both the application and kernel code operate within a unified address space, facilitating efficient resource utilization and performance optimization. This design ensures that even resource-constrained environments can effectively leverage complex applications and functionalities.
  • Previous
  • You're on page 1
  • Next