Best Web-Based IoT Operating Systems of 2025

Find and compare the best Web-Based IoT Operating Systems in 2025

Use the comparison tool below to compare the top Web-Based IoT Operating Systems on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Mongoose OS Reviews

    Mongoose OS

    Cesanta

    $0.89 per unit
    Mongoose OS is an open-source operating system available in two variants: Community and Enterprise. It offers reliable Over-The-Air updates, secure device provisioning, and remote management, ensuring trusted and proven performance in various applications. Released under the Apache 2.0 license, it allows for commercial licensing and support options. Mongoose OS has been integrated into numerous commercial products, with hundreds of millions of devices actively deployed in production settings. As a recognized partner of Google Cloud IoT Core, it is also recommended by Microsoft Azure IoT for its capabilities in OTA updates, automatic device management, and large-scale firmware deployment. The Azure IoT Hub showcases how to effectively manage firmware updates for devices using Mongoose OS through Over-The-Air capabilities, while Google Cloud IoT Core utilizes MQTT for seamless communication between devices. This robust platform continues to evolve, catering to the needs of developers and organizations focusing on IoT solutions.
  • 2
    FreeRTOS Reviews
    Developed in collaboration with top chip manufacturers over a span of 15 years, FreeRTOS is now downloaded approximately every 170 seconds and stands as a top-tier real-time operating system (RTOS) tailored for microcontrollers and small microprocessors. Available at no cost under the MIT open source license, FreeRTOS encompasses a kernel along with an expanding collection of IoT libraries that cater to various industries. Prioritizing reliability and user-friendliness, FreeRTOS is renowned for its proven durability, minimal footprint, and extensive device compatibility, making it the go-to standard for microcontroller and small microprocessor applications among leading global enterprises. With a wealth of pre-configured demos and IoT reference integrations readily available, users can easily set up their projects without any hassle. This streamlined process allows for rapid downloading, compiling, and quicker market entry. Furthermore, the ecosystem of partners offers a diverse range of options, including both community-driven contributions and professional support, ensuring that users have access to the resources they need for success. As technology continues to evolve, FreeRTOS remains committed to adapting and enhancing its offerings to meet the ever-changing demands of the industry.
  • 3
    BlackBerry QNX Reviews
    Accelerate the launch of your critical embedded systems with our commercial real-time operating system (RTOS), along with our comprehensive development tools and services. BlackBerry QNX provides a proven RTOS, hypervisor, and a suite of embedded software designed to ensure your success. Our platform is the preferred choice for applications ranging from ventilators and train control systems to factory automation and medical robotics. Regardless of whether your focus is on achieving safety certification, enhancing security, or maximizing performance, our solutions can help you develop more dependable products. If your goals include improving security or ensuring safety, or if you aim to simplify your cross-platform development workflow, we are here to assist. We specialize in bringing your projects to fruition with an RTOS and hypervisor specifically designed for embedded systems, including options that come pre-certified. Our modular microkernel architecture not only enhances reliability but also reduces the need for duplicative OS development efforts across various products, allowing for more efficient use of resources. By choosing BlackBerry QNX, you are investing in the future of embedded systems development.
  • 4
    Contiki-NG Reviews

    Contiki-NG

    Contiki-NG

    $4 per user per month
    Contiki-NG is a free and open-source operating system designed for the next generation of Internet of Things (IoT) devices, emphasizing reliable and secure low-power communication along with standard protocols like IPv6/6LoWPAN, 6TiSCH, RPL, and CoAP. The platform is accompanied by comprehensive documentation, tutorials, a clear roadmap, and a structured development process that facilitates the integration of contributions from the community. By default, unless stated otherwise, the sources of Contiki-NG are available under the 3-clause BSD license, which permits users to utilize and share the code in both binary and source formats, provided that the copyright notice is preserved in the source materials. This licensing model supports an open collaborative environment that promotes innovation and community engagement in IoT development. Contiki-NG aims to foster a vibrant ecosystem for developers and users alike, ensuring that they can build upon and enhance the existing frameworks.
  • 5
    RT-Thread Reviews
    RT-Thread, short for Real Time-Thread, is an embedded real-time multi-threaded operating system. It has been designed to support multi-tasking, allowing multiple tasks to run simultaneously. Although a processor core can only run one task at a time, RT-Thread executes every task quickly and switches between them rapidly according to priority, creating the illusion of simultaneous task execution. RT-Thread is mainly written in the C programming language, making it easy to understand and port. It applies object-oriented programming methods to real-time system design, resulting in elegant, structured, modular, and highly customizable code. The system comes in a few varieties. The NANO version is a minimal kernel that requires only 3KB of flash and 1.2KB of RAM. For resource-rich IoT devices, RT-Thread can use an online software package management tool, together with system configuration tools, to achieve an intuitive and rapid modular design.
  • 6
    LynxOS Reviews

    LynxOS

    Lynx Software Technologies

    LynxOS has been utilized in countless embedded devices, demonstrating dependable performance for over three decades in various safety and security-sensitive markets. This operating system offers a proven method for running applications within a Unix-like environment, where a unified kernel manages all resources and application services, making it particularly effective for hardware designs that were developed before the advent of virtualization. We aim to ensure our customers purchase only what is necessary for their specific needs. While real-time operating systems (RTOS) can deliver significant advantages, they are not essential for every embedded system configuration. For a more extensive overview of our resources related to RTOS, we invite you to explore our Embedded Systems Learning Center, which provides valuable information to assist you in making informed software purchasing choices as you design or enhance your system and evaluate potential real-time platform vendors. Moreover, this center is a great resource to help you understand the trade-offs and benefits associated with various embedded system approaches.
  • 7
    MindSphere Reviews
    MindSphere® stands out as a premier solution for industrial IoT delivered as a service. Leveraging cutting-edge analytics and artificial intelligence, it facilitates the development of IoT applications that span from edge devices to the cloud, utilizing data from interconnected products, facilities, and systems to enhance operational efficiency, improve product quality, and foster innovative business models. Constructed on the Mendix application platform, MindSphere enables clients, partners, and the Siemens team to swiftly create and integrate tailored IoT applications. Our knowledgeable team is ready to assist you with any inquiries and guide you in initiating your journey with MindSphere. By connecting assets and transferring data to the cloud, users can gather, oversee, and interpret information in real-time, thus capitalizing on applications and solutions that address genuine challenges. Additionally, you can develop applications that amplify the financial value derived from your data and benefit from an open development and operational environment, allowing for greater flexibility and innovation in your projects. The possibilities with MindSphere are extensive, paving the way for transformative advancements in your business operations.
  • 8
    TizenRT Reviews
    Tizen is a versatile and open-source operating system designed from its inception to meet the diverse requirements of all participants in the mobile and connected device landscape, which encompasses manufacturers, mobile network operators, app developers, and independent software vendors (ISVs). This platform is utilized commercially across various devices, including smart TVs, smartphones, wearable technology like the Gear S and Gear Fit, as well as smart home gadgets. Despite its broad applications, there has been a notable lack of focus on entry-level and budget-friendly IoT devices, such as home appliances that lack displays and wearable bands featuring minimal LCD screens. The aim of TizenRT is to broaden the reach of the Tizen platform to include these types of low-end devices, thereby enhancing its versatility and accommodating a wider array of connected technologies. By doing so, TizenRT hopes to foster innovation and accessibility in the IoT market, ensuring that even the simplest devices can benefit from advanced connectivity.
  • 9
    Apache Mynewt Reviews
    Address the requirements of your application by selecting from a variety of open-source networking frameworks such as Bluetooth Low Energy 5, Bluetooth Mesh, Wi-Fi, LoRaWAN, and several others. It is crucial to incorporate security directly into the code, along with effective lifecycle management for your product. Prepare your IoT ecosystem, which may comprise billions of devices, for tasks related to remote monitoring, troubleshooting, management, and upgrades. You can create, adjust, and develop your image in a matter of hours or even mere minutes, streamlining the deployment process significantly. This flexibility enables rapid adaptation to changing needs and enhances overall efficiency.
  • 10
    Huawei LiteOS Reviews
    Huawei LiteOS is a software platform designed specifically for the Internet of Things (IoT), combining an operating system with middleware. With a remarkably small kernel size of less than 10 KB, it operates efficiently on minimal power, capable of lasting up to five years on a single AA battery. Its quick startup time and secure connectivity features further enhance its usability. These attributes position Huawei LiteOS as an effective one-stop solution for developers, facilitating easier entry into the market and expediting product launch timelines. The platform offers a cohesive open-source API applicable across various IoT sectors, including smart homes, wearables, the Internet of Vehicles, and smart manufacturing. By fostering an open IoT ecosystem, Huawei LiteOS empowers partners to innovate swiftly and propel the development of IoT solutions forward. Its versatility and reliability make it an essential tool in the rapidly evolving landscape of IoT technology.
  • 11
    MicroPython Reviews
    The MicroPython pyboard is a small yet powerful electronic circuit board that operates MicroPython directly on the hardware, enabling a low-level Python environment suitable for managing various electronic projects. This implementation of MicroPython is rich in features, including an interactive prompt, arbitrary precision integers, closures, list comprehension, generators, and exception handling, among others. Remarkably, it is designed to fit and function within a mere 256k of code space and 16k of RAM. MicroPython's primary goal is to maintain a high degree of compatibility with standard Python, facilitating seamless code transfer from desktop environments to microcontrollers or embedded systems. Additionally, this flexibility makes it an excellent choice for hobbyists and professionals alike, as they can leverage their existing Python skills in new hardware applications.
  • 12
    TinyOS Reviews
    TinyOS is a freely available operating system under the BSD license, specifically crafted for energy-efficient wireless devices that are utilized in various applications like sensor networks, ubiquitous computing, personal area networks, smart buildings, and smart meters. Its development and support come from a global community comprised of both academic and industrial contributors, with an impressive average of 35,000 downloads annually. Recently, the transition to GitHub for hosting has been finalized, which involves gradually phasing out the existing TinyOS development mailing lists for bug tracking and issues, in favor of utilizing GitHub's tracking system. We extend our gratitude to all the dedicated developers who are actively enhancing TinyOS and facilitating pull requests for improvements, thereby fostering a collaborative development environment that benefits all users. This evolution signifies a major step forward in streamlining communication and collaboration within the TinyOS community.
  • 13
    Amazon FreeRTOS Reviews
    FreeRTOS is a real-time operating system that is open source and tailored for microcontrollers, simplifying the programming, deployment, security, connectivity, and management of small, low-power edge devices. Available at no cost under the MIT open source license, FreeRTOS features a kernel alongside an expanding array of software libraries that cater to various industries and applications. This system allows seamless and secure integration of compact, low-energy devices with AWS Cloud services, such as AWS IoT Core, as well as with more robust edge devices running AWS IoT Greengrass. Designed with a focus on both reliability and user-friendliness, FreeRTOS provides the assurance of long-term support releases, making it an attractive choice for developers. Microcontrollers, which are characterized by their simple and resource-limited processors, can be found in a diverse range of products, from home appliances and sensors to fitness trackers, industrial automation systems, and vehicles. As the demand for efficient and manageable IoT solutions grows, FreeRTOS remains a crucial tool for developers working in this expanding field.
  • 14
    Nucleus RTOS Reviews

    Nucleus RTOS

    Siemens Digital Industries Software

    Nucleus® RTOS empowers system developers to meet the intricate demands of modern embedded designs. By combining a robust kernel with essential tooling features, Nucleus is perfectly suited for applications that prioritize scalability, connectivity, security, power efficiency, and reliable deterministic performance. This real-time operating system is not only proven and dependable but also fully optimized for various applications. It has demonstrated success in demanding sectors that require stringent safety and security standards, including industrial systems, medical devices, airborne systems, and automotive applications. Nucleus features a stable deterministic kernel designed to occupy minimal memory, complemented by a lightweight process model that enhances memory partitioning. Additionally, it supports dynamic loading and unloading of processes, allowing for increased modularity in applications, thus providing developers with the flexibility needed for diverse project requirements. This adaptability ensures that Nucleus RTOS can effectively cater to the evolving landscape of embedded technology.
  • 15
    Device OS Reviews
    The Device OS provides a user-friendly programming framework that simplifies the creation of applications for your devices. With just a single line of code, you can securely transmit messages to the web. There are four essential communication primitives available for interaction with the web via the Device Cloud. This platform stands out as the only IoT solution that offers a complete integration of hardware, software, connectivity, and cloud infrastructure right from the start, enabling you to quickly and safely execute OTA updates of any size. The setup process is straightforward, allowing you to implement remote updates within minutes without the need for custom integrations. Our distinctive Intelligent Firmware Release feature incorporates context awareness, allowing fleet-wide OTA firmware updates to be completed in mere minutes. Moreover, Particle supports both individual device and fleet-wide OTA functionalities that effortlessly scale with your fleet, accommodating everything from prototypes to full-scale production. This ensures that as your needs evolve, the platform can adapt accordingly.
  • 16
    Micrium OS Reviews
    At the core of every embedded operating system lies a kernel, which plays a crucial role in task scheduling and multitasking to guarantee that the timing demands of your application code are fulfilled, even as you frequently enhance and modify that code with new functionalities. However, Micrium OS offers more than just a kernel; it includes a variety of supplementary modules designed to assist you in addressing the specific requirements of your project. Furthermore, Micrium OS is available completely free for use on Silicon Labs EFM32 and EFR32 devices, allowing you to integrate Micrium’s high-quality components into your projects today without incurring any licensing costs. This accessibility encourages innovation and experimentation, ensuring that developers can focus on creating robust applications without the worry of financial constraints.
  • 17
    MIPS Embedded OS (MEOS) Reviews
    We work alongside both open-source communities and commercial entities to ensure that MIPS is well-supported across many leading Real Time Operating Systems (RTOS) as well as emerging IoT-targeted Operating Systems. Furthermore, we have created the MIPS Embedded Operating System (MEOS), which incorporates Virtualization extensions specifically designed for deeply embedded applications and the IoT sector. As MIPS’ proprietary real-time operating system, MEOS is prioritized for updates, ensuring it is the first to incorporate new cores and architectural advancements. The latest release, version 3.1, introduces a virtualization library that transforms MEOS into a hypervisor compatible with MIPS cores featuring the MIPS Virtualization module. Additionally, we are committed to fostering the development of open-source real-time and IoT operating systems by providing engineering resources and supplying necessary development hardware and tools whenever feasible. This collaborative approach not only enhances the ecosystem but also accelerates innovation in the field.
  • 18
    RIOT Reviews
    RIOT serves as the backbone for the Internet of Things in a similar way to how Linux supports the broader Internet. Developed by an enthusiastic global community that includes companies, academic institutions, and hobbyists, RIOT is a free and open source operating system. It is designed to accommodate a wide range of low-power IoT devices and microcontroller architectures, including 32-bit, 16-bit, and 8-bit systems, as well as various external devices. The primary goal of RIOT is to uphold essential open standards that foster a connected, secure, resilient, and privacy-conscious Internet of Things. It features strong security measures such as DTLS for transport layer security, encryption via IEEE 802.15.4, Secure Firmware Updates (SUIT), and a suite of cryptographic packages alongside crypto secure elements. Furthermore, RIOT's modular design allows it to be customized according to specific application requirements. The project maintains compatibility with all widely used network technologies and Internet standards, demonstrating a commitment to innovation and often being an early adopter in the field of networking. Overall, RIOT represents a collaborative effort to shape a secure and efficient IoT landscape.
  • 19
    Fuschia OS Reviews
    Fuchsia is an innovative open-source operating system developed by Google that is currently undergoing continuous enhancement. The system is being constructed from the kernel upwards to address the demands of today’s expanding network of connected devices. Although Fuchsia is still in a state of rapid evolution, its foundational principles and values have remained largely consistent throughout its development. The main architectural principles that steer Fuchsia’s design are rooted in security, updatability, inclusivity, and pragmatism. These guiding principles—secure, updatable, inclusive, and pragmatic—form the backbone of Fuchsia's ongoing design and development efforts. As a community-driven project, Fuchsia encourages high-quality, well-tested contributions from anyone interested in participating. Even though there are various frameworks that have been suggested to influence its design, Fuchsia remains a dynamic work in progress. As it continues to evolve, Fuchsia aims to adapt to the changing needs of developers, manufacturers, and consumers alike, ensuring it remains relevant in an ever-shifting technological landscape. The commitment to an open-source model underlines the importance of collaboration and community engagement in shaping the future of Fuchsia.
  • 20
    Zephyr Reviews
    Ranging from basic embedded environmental sensors and LED wearables to advanced embedded controllers, smartwatches, and IoT wireless applications, this system incorporates configurable architecture-specific stack-overflow protection, kernel object and device driver permission tracking, and thread isolation enhanced by thread-level memory protection across x86, ARC, and ARM architectures, as well as userspace and memory domains. For systems lacking MMU/MPU and those limited by memory capacity, it enables the integration of application-specific code with a tailored kernel to form a monolithic image that can be loaded and run on the hardware of the system. In this setup, both the application and kernel code operate within a unified address space, facilitating efficient resource utilization and performance optimization. This design ensures that even resource-constrained environments can effectively leverage complex applications and functionalities.
  • 21
    balenaOS Reviews
    The advent of containers is set to transform the landscape of connected devices, with balenaOS standing out as the premier solution for their deployment. Designed to endure challenging networking scenarios and sudden power losses, it is a stripped-down version of Linux that includes only the essential services for running Docker efficiently on embedded hardware. Built on the foundation of Yocto Linux, it allows for seamless adaptation across a wide range of device types and CPU architectures. The project is actively maintained in a transparent manner, fostering a community that is encouraged to contribute. In our initiative to create balenaCloud—a platform that integrates modern software development tools with connected hardware—we began by adapting Docker for ARM processors in 2013. This experience highlighted the necessity for a dedicated operating system tailored to this specific use case: a lightweight OS perfectly suited for executing containers on embedded devices. Furthermore, this focus on optimization ensures that developers can maximize the potential of their connected solutions.
  • 22
    Apache NuttX Reviews
    NuttX is a real-time operating system (RTOS) that prioritizes compliance with standards and maintains a compact footprint. It is adaptable, functioning effectively across microcontroller environments ranging from 8-bit to 32-bit, with its core standards being Posix and ANSI. To enhance its functionality, NuttX integrates additional standard APIs from Unix and various popular RTOSs, including VxWorks, particularly for features not encompassed by these core standards or unsuitable for deeply embedded systems, like the fork() function. Currently, Apache NuttX is in the Incubation phase at The Apache Software Foundation (ASF), with support from the Incubator. This incubation phase is mandatory for all newly accepted projects until a thorough evaluation confirms that their infrastructure, communication, and decision-making processes have reached a level of stability comparable to that of established ASF projects. The goal is to ensure that all projects can operate effectively and contribute meaningfully to the community.
  • Previous
  • You're on page 1
  • Next