Best HPC Software for Linux of 2025

Find and compare the best HPC software for Linux in 2025

Use the comparison tool below to compare the top HPC software for Linux on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    UberCloud Reviews

    UberCloud

    Simr (formerly UberCloud)

    3 Ratings
    Simr (formerly UberCloud) is revolutionizing the world of simulation operations with our flagship solution, Simulation Operations Automation (SimOps). Designed to streamline and automate complex simulation workflows, Simr enhances productivity, collaboration, and efficiency for engineers and scientists across various industries, including automotive, aerospace, biomedical engineering, defense, and consumer electronics. Our cloud-based infrastructure provides scalable and cost-effective solutions, eliminating the need for significant upfront investments in hardware. This ensures that our clients have access to the computational power they need, exactly when they need it, leading to reduced costs and improved operational efficiency. Simr is trusted by some of the world's leading companies, including three of the seven most successful companies globally. One of our notable success stories is BorgWarner, a Tier 1 automotive supplier that leverages Simr to automate its simulation environments, significantly enhancing their efficiency and driving innovation.
  • 2
    Lustre Reviews

    Lustre

    OpenSFS and EOFS

    Free
    The Lustre file system is a parallel, open-source file system designed to cater to the demanding requirements of high-performance computing (HPC) simulation environments often found in leadership class facilities. Whether you are part of our vibrant development community or evaluating Lustre as a potential parallel file system option, you will find extensive resources and support available to aid you. Offering a POSIX-compliant interface, the Lustre file system can efficiently scale to accommodate thousands of clients, manage petabytes of data, and deliver impressive I/O bandwidths exceeding hundreds of gigabytes per second. Its architecture includes essential components such as Metadata Servers (MDS), Metadata Targets (MDT), Object Storage Servers (OSS), Object Server Targets (OST), and Lustre clients. Lustre is specifically engineered to establish a unified, global POSIX-compliant namespace suited for massive computing infrastructures, including some of the largest supercomputing platforms in existence. With its capability to handle hundreds of petabytes of data storage, Lustre stands out as a robust solution for organizations looking to manage extensive datasets effectively. Its versatility and scalability make it a preferable choice for a wide range of applications in scientific research and data-intensive computing.
  • 3
    TrinityX Reviews

    TrinityX

    Cluster Vision

    Free
    TrinityX is a cluster management solution that is open source and developed by ClusterVision, aimed at ensuring continuous monitoring for environments focused on High-Performance Computing (HPC) and Artificial Intelligence (AI). It delivers a robust support system that adheres to service level agreements (SLAs), enabling researchers to concentrate on their work without the burden of managing intricate technologies such as Linux, SLURM, CUDA, InfiniBand, Lustre, and Open OnDemand. By providing an easy-to-use interface, TrinityX simplifies the process of cluster setup, guiding users through each phase to configure clusters for various applications including container orchestration, conventional HPC, and InfiniBand/RDMA configurations. Utilizing the BitTorrent protocol, it facilitates the swift deployment of AI and HPC nodes, allowing for configurations to be completed in mere minutes. Additionally, the platform boasts a detailed dashboard that presents real-time data on cluster performance metrics, resource usage, and workload distribution, which helps users quickly identify potential issues and optimize resource distribution effectively. This empowers teams to make informed decisions that enhance productivity and operational efficiency within their computational environments.
  • 4
    NVIDIA GPU-Optimized AMI Reviews
    The NVIDIA GPU-Optimized AMI serves as a virtual machine image designed to enhance your GPU-accelerated workloads in Machine Learning, Deep Learning, Data Science, and High-Performance Computing (HPC). By utilizing this AMI, you can quickly launch a GPU-accelerated EC2 virtual machine instance, complete with a pre-installed Ubuntu operating system, GPU driver, Docker, and the NVIDIA container toolkit, all within a matter of minutes. This AMI simplifies access to NVIDIA's NGC Catalog, which acts as a central hub for GPU-optimized software, enabling users to easily pull and run performance-tuned, thoroughly tested, and NVIDIA-certified Docker containers. The NGC catalog offers complimentary access to a variety of containerized applications for AI, Data Science, and HPC, along with pre-trained models, AI SDKs, and additional resources, allowing data scientists, developers, and researchers to concentrate on creating and deploying innovative solutions. Additionally, this GPU-optimized AMI is available at no charge, with an option for users to purchase enterprise support through NVIDIA AI Enterprise. For further details on obtaining support for this AMI, please refer to the section labeled 'Support Information' below. Moreover, leveraging this AMI can significantly streamline the development process for projects requiring intensive computational resources.
  • 5
    Arm Forge Reviews
    Create dependable and optimized code that delivers accurate results across various Server and HPC architectures, utilizing the latest compilers and C++ standards tailored for Intel, 64-bit Arm, AMD, OpenPOWER, and Nvidia GPU platforms. Arm Forge integrates Arm DDT, a premier debugger designed to streamline the debugging process of high-performance applications, with Arm MAP, a respected performance profiler offering essential optimization insights for both native and Python HPC applications, along with Arm Performance Reports that provide sophisticated reporting features. Both Arm DDT and Arm MAP can also be used as independent products, allowing flexibility in application development. This package ensures efficient Linux Server and HPC development while offering comprehensive technical support from Arm specialists. Arm DDT stands out as the preferred debugger for C++, C, or Fortran applications that are parallel or threaded, whether they run on CPUs or GPUs. With its powerful and user-friendly graphical interface, Arm DDT enables users to swiftly identify memory errors and divergent behaviors at any scale, solidifying its reputation as the leading debugger in the realms of research, industry, and academia, making it an invaluable tool for developers. Additionally, its rich feature set fosters an environment conducive to innovation and performance enhancement.
  • 6
    Intel oneAPI HPC Toolkit Reviews
    High-performance computing (HPC) serves as a fundamental element for applications in AI, machine learning, and deep learning. The Intel® oneAPI HPC Toolkit (HPC Kit) equips developers with essential tools to create, analyze, enhance, and expand HPC applications by utilizing the most advanced methods in vectorization, multithreading, multi-node parallelization, and memory management. This toolkit is an essential complement to the Intel® oneAPI Base Toolkit, which is necessary to unlock its complete capabilities. Additionally, it provides users with access to the Intel® Distribution for Python*, the Intel® oneAPI DPC++/C++ compiler, a suite of robust data-centric libraries, and sophisticated analysis tools. You can obtain everything needed to construct, evaluate, and refine your oneAPI projects at no cost. By signing up for an Intel® Developer Cloud account, you gain 120 days of access to the latest Intel® hardware—including CPUs, GPUs, FPGAs—and the full suite of Intel oneAPI tools and frameworks. This seamless experience requires no software downloads, no configuration processes, and no installations, making it incredibly user-friendly for developers at all levels.
  • 7
    Amazon EC2 P4 Instances Reviews
    Amazon EC2 P4d instances are designed for optimal performance in machine learning training and high-performance computing (HPC) applications within the cloud environment. Equipped with NVIDIA A100 Tensor Core GPUs, these instances provide exceptional throughput and low-latency networking capabilities, boasting 400 Gbps instance networking. P4d instances are remarkably cost-effective, offering up to a 60% reduction in expenses for training machine learning models, while also delivering an impressive 2.5 times better performance for deep learning tasks compared to the older P3 and P3dn models. They are deployed within expansive clusters known as Amazon EC2 UltraClusters, which allow for the seamless integration of high-performance computing, networking, and storage resources. This flexibility enables users to scale their operations from a handful to thousands of NVIDIA A100 GPUs depending on their specific project requirements. Researchers, data scientists, and developers can leverage P4d instances to train machine learning models for diverse applications, including natural language processing, object detection and classification, and recommendation systems, in addition to executing HPC tasks such as pharmaceutical discovery and other complex computations. These capabilities collectively empower teams to innovate and accelerate their projects with greater efficiency and effectiveness.
  • 8
    Intel Quartus Prime Design Reviews
    Intel presents an extensive array of development tools specifically designed for working with Altera FPGAs, CPLDs, and SoC FPGAs, addressing the needs of hardware engineers, software developers, and system architects alike. The Quartus Prime Design Software acts as a versatile platform that integrates all essential functionalities required for the design of FPGAs, SoC FPGAs, and CPLDs, covering aspects such as synthesis, optimization, verification, and simulation. To support high-level design, Intel offers a set of tools including the Altera FPGA Add-on for the oneAPI Base Toolkit, DSP Builder, the High-Level Synthesis (HLS) Compiler, and the P4 Suite for FPGA, which enhance the development process in fields like digital signal processing and high-level synthesis. Additionally, embedded developers can take advantage of Nios V soft embedded processors along with a variety of embedded design tools such as the Ashling RiscFree IDE and Arm Development Studio (DS) tailored for Altera SoC FPGAs, effectively simplifying the software development process for embedded systems. These resources ensure that developers can create optimized solutions efficiently across different application domains.
  • 9
    Rocky Linux Reviews
    CIQ empowers people to do amazing things by providing innovative and stable software infrastructure solutions for all computing needs. From the base operating system, through containers, orchestration, provisioning, computing, and cloud applications, CIQ works with every part of the technology stack to drive solutions for customers and communities with stable, scalable, secure production environments. CIQ is the founding support and services partner of Rocky Linux, and the creator of the next generation federated computing stack.
  • 10
    HPE Performance Cluster Manager Reviews
    HPE Performance Cluster Manager (HPCM) offers a cohesive system management solution tailored for Linux®-based high-performance computing (HPC) clusters. This software facilitates comprehensive provisioning, management, and monitoring capabilities for clusters that can extend to Exascale-sized supercomputers. HPCM streamlines the initial setup from bare-metal, provides extensive hardware monitoring and management options, oversees image management, handles software updates, manages power efficiently, and ensures overall cluster health. Moreover, it simplifies the scaling process for HPC clusters and integrates seamlessly with numerous third-party tools to enhance workload management. By employing HPE Performance Cluster Manager, organizations can significantly reduce the administrative burden associated with HPC systems, ultimately leading to lowered total ownership costs and enhanced productivity, all while maximizing the return on their hardware investments. As a result, HPCM not only fosters operational efficiency but also supports organizations in achieving their computational goals effectively.
  • 11
    NVIDIA HPC SDK Reviews
    The NVIDIA HPC Software Development Kit (SDK) offers a comprehensive suite of reliable compilers, libraries, and software tools that are crucial for enhancing developer efficiency as well as the performance and adaptability of HPC applications. This SDK includes C, C++, and Fortran compilers that facilitate GPU acceleration for HPC modeling and simulation applications through standard C++ and Fortran, as well as OpenACC® directives and CUDA®. Additionally, GPU-accelerated mathematical libraries boost the efficiency of widely used HPC algorithms, while optimized communication libraries support standards-based multi-GPU and scalable systems programming. The inclusion of performance profiling and debugging tools streamlines the process of porting and optimizing HPC applications, and containerization tools ensure straightforward deployment whether on-premises or in cloud environments. Furthermore, with compatibility for NVIDIA GPUs and various CPU architectures like Arm, OpenPOWER, or x86-64 running on Linux, the HPC SDK equips developers with all the necessary resources to create high-performance GPU-accelerated HPC applications effectively. Ultimately, this robust toolkit is indispensable for anyone looking to push the boundaries of high-performance computing.
  • 12
    NVIDIA Modulus Reviews
    NVIDIA Modulus is an advanced neural network framework that integrates the principles of physics, represented through governing partial differential equations (PDEs), with data to create accurate, parameterized surrogate models that operate with near-instantaneous latency. This framework is ideal for those venturing into AI-enhanced physics challenges or for those crafting digital twin models to navigate intricate non-linear, multi-physics systems, offering robust support throughout the process. It provides essential components for constructing physics-based machine learning surrogate models that effectively merge physics principles with data insights. Its versatility ensures applicability across various fields, including engineering simulations and life sciences, while accommodating both forward simulations and inverse/data assimilation tasks. Furthermore, NVIDIA Modulus enables parameterized representations of systems that can tackle multiple scenarios in real time, allowing users to train offline once and subsequently perform real-time inference repeatedly. As such, it empowers researchers and engineers to explore innovative solutions across a spectrum of complex problems with unprecedented efficiency.
  • Previous
  • You're on page 1
  • Next