Best Graph Databases for Nonprofit - Page 2

Find and compare the best Graph Databases for Nonprofit in 2025

Use the comparison tool below to compare the top Graph Databases for Nonprofit on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Fluree Reviews
    Fluree is an immutable RDF graph database written in Clojure and adhering to W3C standards, supporting JSON and JSON-LD while accommodating various RDF ontologies. It operates with an immutable ledger that secures transactions with cryptographic integrity, alongside a rich RDF graph database capable of various queries. It employs SmartFunctions for enforcing data management rules, including identity and access management and data quality. Additionally, It boasts a scalable, cloud-native architecture utilizing a lightweight Java runtime, with individually scalable ledger and graph database components, embodying a "Data-Centric" ideology that treats data as a reusable asset independent of singular applications.
  • 2
    Grakn Reviews
    The foundation of creating intelligent systems lies in the database, and Grakn serves as a sophisticated knowledge graph database. It features an incredibly user-friendly and expressive data schema that allows for the definition of hierarchies, hyper-entities, hyper-relations, and rules to establish detailed knowledge models. With its intelligent language, Grakn executes logical inferences on data types, relationships, attributes, and intricate patterns in real-time across distributed and stored data. It also offers built-in distributed analytics algorithms, such as Pregel and MapReduce, which can be accessed using straightforward queries within the language. The system provides a high level of abstraction over low-level patterns, simplifying the expression of complex constructs while optimizing query execution automatically. By utilizing Grakn KGMS and Workbase, enterprises can effectively scale their knowledge graphs. Furthermore, this distributed database is engineered to function efficiently across a network of computers through techniques like partitioning and replication, ensuring seamless scalability and performance.
  • 3
    Memstate Reviews

    Memstate

    Memstate

    €200 per GB RAM per server
    Create high-quality, essential applications that deliver real-time performance while significantly reducing both time and costs. Memstate is a groundbreaking solution that streamlines data management. The traditional process of transferring data between disk and RAM is not only highly inefficient, but it also necessitates numerous layers of complex software that can be entirely removed. With Memstate, you can organize and handle your data in memory, achieving seamless persistence, concurrency control, and transactions that meet rigorous ACID standards. This approach can enhance your application’s speed by 100 times and boost developer productivity by tenfold. Although Memstate can be applied in various scenarios, it is primarily tailored to manage complex Online Transaction Processing (OLTP) workloads commonly found in enterprise applications. In-memory operations provide a performance advantage that is exponentially greater than that of disk-based operations. A single Memstate engine is capable of processing millions of read transactions and tens of thousands of write transactions each second, all while maintaining submillisecond latency, making it an exceptional choice for high-demand environments. Embrace this innovative technology to elevate your applications and maximize efficiency across the board.
  • 4
    HyperGraphDB Reviews
    HyperGraphDB serves as a versatile, open-source data storage solution founded on the sophisticated knowledge management framework of directed hypergraphs. Primarily created for persistent memory applications in knowledge management, artificial intelligence, and semantic web initiatives, it can also function as an embedded object-oriented database suitable for Java applications of varying scales, in addition to serving as a graph database or a non-SQL relational database. Built upon a foundation of generalized hypergraphs, HyperGraphDB utilizes tuples as its fundamental storage units, which can consist of zero or more other tuples; these individual tuples are referred to as atoms. The data model can be perceived as relational, permitting higher-order, n-ary relationships, or as graph-based, where edges can connect to an arbitrary assortment of nodes and other edges. Each atom is associated with a strongly-typed value that can be customized extensively, as the type system that governs these values is inherently embedded within the hypergraph structure. This flexibility allows developers to tailor the database according to specific project requirements, making it a robust choice for a wide range of applications.
  • 5
    RecallGraph Reviews
    RecallGraph is a versioned graph data store. It retains all changes its data (vertices, edges) have undergone to get to their current state. It supports point-in time graph traversals that allow the user to query any past state of a graph as well as the present. RecallGraph can be used in situations where data is best represented using a network of edges and vertices (i.e., as a graph). 1. Both edges and vertices can contain properties in the form attribute/value pairs (equivalent of JSON objects). 2. Documents (vertices/edges), can change throughout their lives (both in their individual attributes/values as well as in their relationships to each other). 3. Documents from the past are just as important as their current states, so it is essential to retain and queryable their change history. Also see this blog post for an intro - https://ancillary-proxy.atarimworker.io?url=https%3A%2F%2Fblog.recallgraph.tech%2Fnever-lose-your-old-data-again.
  • 6
    Graph Story Reviews

    Graph Story

    Graph Story

    $299 per month
    Organizations that choose a do-it-yourself method for implementing a graph database should anticipate a timeline of about 2 to 3 months to achieve a production-ready state. In contrast, with Graph Story’s managed services, your operational database can be set up in just minutes. Discover various graph use cases and explore a side-by-side analysis of self-hosting versus managed services. We can accommodate deployments in your existing infrastructure, whether it's on AWS, Azure, or Google Compute Engine, in any geographical location. If you require VPC peering or IP access restrictions, we can easily adapt to your needs. For those looking to create a proof of concept, initiating a single enterprise graph instance only takes a few clicks. Should you need to scale up to a high-availability, production-ready cluster on demand, we are prepared to assist! Our graph database management tools are designed to simplify your experience, allowing you to monitor CPU, memory, and disk usage effortlessly. You also have access to configurations, logs, and the ability to backup your database and restore snapshots whenever necessary. This level of flexibility ensures that your graph database management aligns perfectly with your operational requirements.
  • 7
    HugeGraph Reviews
    HugeGraph is a high-performance and scalable graph database capable of managing billions of vertices and edges efficiently due to its robust OLTP capabilities. This database allows for seamless storage and querying, making it an excellent choice for complex data relationships. It adheres to the Apache TinkerPop 3 framework, enabling users to execute sophisticated graph queries using Gremlin, a versatile graph traversal language. Key features include Schema Metadata Management, which encompasses VertexLabel, EdgeLabel, PropertyKey, and IndexLabel, providing comprehensive control over graph structures. Additionally, it supports Multi-type Indexes that facilitate exact queries, range queries, and complex conditional queries. The platform also boasts a Plug-in Backend Store Driver Framework that currently supports various databases like RocksDB, Cassandra, ScyllaDB, HBase, and MySQL, while also allowing for easy integration of additional backend drivers as necessary. Moreover, HugeGraph integrates smoothly with Hadoop and Spark, enhancing its data processing capabilities. By drawing on the storage structure of Titan and the schema definitions from DataStax, HugeGraph offers a solid foundation for effective graph database management. This combination of features positions HugeGraph as a versatile and powerful solution for handling complex graph data scenarios.
  • 8
    RushDB Reviews

    RushDB

    RushDB

    $9/month
    RushDB is an innovative, open-source graph database that requires no configuration and rapidly converts JSON and CSV files into a fully normalized, queryable Neo4j graph, all while avoiding the complexities associated with schema design, migrations, and manual indexing. Tailored for contemporary applications as well as AI and machine learning workflows, RushDB offers an effortless experience for developers, merging the adaptability of NoSQL with the organized capabilities of relational databases. By incorporating automatic data normalization, ensuring ACID compliance, and featuring a robust API, RushDB streamlines the often challenging processes of data ingestion, relationship management, and query optimization, allowing developers to direct their energies toward building applications rather than managing databases. Some notable features include: 1. Instantaneous data ingestion without the need for configuration 2. Storage and querying capabilities powered by graph technology 3. Support for ACID transactions and seamless schema evolution 4. A developer-friendly API that facilitates querying akin to an SDK 5. High-performance capabilities for search and analytics 6. Flexibility to be self-hosted or cloud-compatible. This combination of features positions RushDB as a transformative solution in the realm of data management.
  • 9
    Neo4j Reviews
    Neo4j's graph platform is designed to help you leverage data and data relationships. Developers can create intelligent applications that use Neo4j to traverse today's interconnected, large datasets in real-time. Neo4j's graph database is powered by a native graph storage engine and processing engine. It provides unique, actionable insights through an intuitive, flexible, and secure database.
  • 10
    JanusGraph Reviews
    JanusGraph stands out as a highly scalable graph database designed for efficiently storing and querying extensive graphs that can comprise hundreds of billions of vertices and edges, all managed across a cluster of multiple machines. This project, which operates under The Linux Foundation, boasts contributions from notable organizations such as Expero, Google, GRAKN.AI, Hortonworks, IBM, and Amazon. It offers both elastic and linear scalability to accommodate an expanding data set and user community. Key features include robust data distribution and replication methods to enhance performance and ensure fault tolerance. Additionally, JanusGraph supports multi-datacenter high availability and provides hot backups for data security. All these capabilities are available without any associated costs, eliminating the necessity for purchasing commercial licenses, as it is entirely open source and governed by the Apache 2 license. Furthermore, JanusGraph functions as a transactional database capable of handling thousands of simultaneous users performing complex graph traversals in real time. It ensures support for both ACID properties and eventual consistency, catering to various operational needs. Beyond online transactional processing (OLTP), JanusGraph also facilitates global graph analytics (OLAP) through its integration with Apache Spark, making it a versatile tool for data analysis and visualization. This combination of features makes JanusGraph a powerful choice for organizations looking to leverage graph data effectively.
  • 11
    xtendr Reviews
    xtendr reveals comprehensive, privacy-focused insights from various independent data sources while ensuring user protection throughout the entire data lifecycle. This innovative platform provides access to previously unreachable data and instills confidence in both privacy and adherence to regulations. Beyond mere anonymity, xtendr addresses the critical gap in multi-party data sharing by offering robust privacy safeguards, effectively serving as a guardian of your data through advanced cryptography, enabling you to unlock your full potential. It represents the pinnacle of privacy-enhancing data collaboration technology, having successfully tackled the long-standing cryptographic challenges associated with data sharing among parties that may not fully trust one another. With xtendr, organizations can advance their operations through an enterprise-level data protection solution that facilitates the formation of data partnerships while safeguarding sensitive information. In today's digital landscape, data is increasingly recognized as a vital currency, with many asserting that it is surpassing oil as the most valuable asset, underscoring its ever-growing significance. As we continue to embrace this digital evolution, the importance of secure data sharing becomes ever more critical for businesses looking to thrive in an interconnected world.
  • 12
    Nebula Graph Reviews
    Designed specifically for handling super large-scale graphs with latency measured in milliseconds, this graph database continues to engage with the community for its preparation, promotion, and popularization. Nebula Graph ensures that access is secured through role-based access control, allowing only authenticated users. The database supports various types of storage engines and its query language is adaptable, enabling the integration of new algorithms. By providing low latency for both read and write operations, Nebula Graph maintains high throughput, effectively simplifying even the most intricate data sets. Its shared-nothing distributed architecture allows for linear scalability, making it an efficient choice for expanding businesses. The SQL-like query language is not only user-friendly but also sufficiently robust to address complex business requirements. With features like horizontal scalability and a snapshot capability, Nebula Graph assures high availability, even during failures. Notably, major internet companies such as JD, Meituan, and Xiaohongshu have successfully implemented Nebula Graph in their production environments, showcasing its reliability and performance in real-world applications. This widespread adoption highlights the database's effectiveness in meeting the demands of large-scale data management.
  • 13
    Cayley Reviews
    Cayley is an open-source database tailored for Linked Data, drawing inspiration from the graph database that supports Google's Knowledge Graph, previously known as Freebase. This graph database is crafted for user-friendliness and adept at handling intricate data structures, featuring an integrated query editor, a visualizer, and a Read-Eval-Print Loop (REPL). It supports various query languages, including Gizmo, which is influenced by Gremlin, a GraphQL-like query language, and MQL, a streamlined version catering to Freebase enthusiasts. Cayley's modular architecture allows seamless integration with preferred programming languages and backend storage solutions, making it production-ready, thoroughly tested, and utilized by numerous companies for their operational tasks. Additionally, it is optimized for application use, demonstrating impressive performance metrics; for instance, testing has shown that it can effortlessly manage 134 million quads in LevelDB on consumer-grade hardware from 2014, with multi-hop intersection queries—such as finding films featuring both X and Y—executing in about 150 milliseconds. By default, Cayley is set up to operate in-memory, which is what the backend memstore refers to, thereby enhancing its speed and efficiency for data retrieval and manipulation. Overall, Cayley offers a powerful solution for those looking to leverage linked data in their applications.
  • 14
    GraphBase Reviews
    GraphBase is a Graph Database Management System designed to streamline the development and upkeep of intricate data graphs. While Relational Database Management Systems often struggle with complex and interconnected structures, graph databases offer superior modeling capabilities, enhanced performance, and greater scalability. The existing range of graph database solutions, including triplestores and property graphs, has been available for almost twenty years; although they are effective tools with diverse applications, they still fall short in managing intricate data structures. With the introduction of GraphBase, we aimed to facilitate the handling of complex data architectures, allowing your information to evolve into something greater—Knowledge. We accomplished this by reimagining the management of graph data, ensuring that the graph is prioritized as a fundamental component. In GraphBase, users benefit from a graph equivalent of the familiar "rows and tables" framework, which contributes to the user-friendly nature of Relational Databases, making it easier to navigate and manipulate data. Ultimately, GraphBase transforms how organizations view and interact with their data, paving the way for innovative possibilities.
  • 15
    Graph Engine Reviews
    Graph Engine (GE) is a powerful distributed in-memory data processing platform that relies on a strongly-typed RAM storage system paired with a versatile distributed computation engine. This RAM store functions as a high-performance key-value store that is accessible globally across a cluster of machines. By leveraging this RAM store, GE facilitates rapid random data access over extensive distributed datasets. Its ability to perform swift data exploration and execute distributed parallel computations positions GE as an ideal solution for processing large graphs. The engine effectively accommodates both low-latency online query processing and high-throughput offline analytics for graphs containing billions of nodes. Efficient data processing emphasizes the importance of schema, as strongly-typed data models are vital for optimizing storage, accelerating data retrieval, and ensuring clear data semantics. GE excels in the management of billions of runtime objects, regardless of their size, demonstrating remarkable efficiency. Even minor variations in object count can significantly impact performance, underscoring the importance of every byte. Moreover, GE offers rapid memory allocation and reallocation, achieving impressive memory utilization ratios that further enhance its capabilities. This makes GE not only efficient but also an invaluable tool for developers and data scientists working with large-scale data environments.
  • 16
    Aster SQL-GR Reviews
    Experience powerful graph analytics with simplicity through Aster SQL-GR™, a dedicated graph processing engine designed for tackling intricate business challenges like social network and influencer assessment, fraud detection, supply chain oversight, network evaluation, threat identification, and money laundering—issues that extend beyond fundamental graph navigation. Utilizing the Bulk Synchronous Processing (BSP) model, SQL-GR employs massively iterative, distributed, and parallel processing techniques to effectively address complex graph-related problems. This innovative platform is incredibly scalable, leveraging Teradata Aster’s massively parallel processing (MPP) architecture to distribute graph computations across numerous servers and nodes. Furthermore, SQL-GR operates without the constraints of memory limits or dependence on a single server, allowing users to harness exceptional power and speed for extensive graph analysis at a big data scale. In a world where data complexity is ever-increasing, SQL-GR stands out as an essential tool for businesses aiming to derive meaningful insights from their data.
  • 17
    AnzoGraph DB Reviews

    AnzoGraph DB

    Cambridge Semantics

    AnzoGraph DB boasts an extensive array of analytical features that can significantly improve your analytical framework. Check out this video to discover how AnzoGraph DB operates as a Massively Parallel Processing (MPP) native graph database specifically designed for data harmonization and analytics. This horizontally scalable graph database is optimized for online analytics and tackling data harmonization issues. Addressing challenges related to linked data, AnzoGraph DB stands out as a leading analytical graph database in the market. It offers robust online performance suitable for enterprise-scale graph applications, ensuring efficiency and speed. AnzoGraph DB employs familiar SPARQL*/OWL for semantic graphs, while also accommodating Labeled Property Graphs (LPGs). Its vast array of analytical, machine learning, and data science tools empowers users to uncover new insights at remarkable speed and scale. By prioritizing context and relationships among data, you can enhance your analysis significantly. Additionally, the database enables ultra-fast data loading and execution of analytical queries, making it an invaluable asset for any data-driven organization.
  • 18
    Sparksee Reviews

    Sparksee

    Sparsity Technologies

    Sparksee, which was previously referred to as DEX, optimizes both space and performance while maintaining a compact design that enables swift analysis of extensive networks. It supports a wide range of programming languages including .Net, C++, Python, Objective-C, and Java, making it versatile across various operating systems. The graph data is efficiently organized using bitmap data structures, achieving significant compression ratios. These bitmaps are divided into chunks that align with disk pages, enhancing input/output locality for better performance. By leveraging bitmaps, computations are executed using binary logic instructions that facilitate efficient processing in pipelined architectures. The system features complete native indexing, which ensures rapid access to all graph data structures. Node connections are also encoded as bitmaps, further reducing their storage footprint. Advanced I/O strategies are implemented to minimize the frequency of data pages being loaded into memory, ensuring optimal resource usage. Each unique value in the database is stored only once, effectively eliminating unnecessary redundancy, and contributing to overall efficiency. This combination of features makes Sparksee a powerful tool for handling large-scale graph data analyses.
  • 19
    TerminusDB Reviews
    Simplifying data collaboration is our mission. Whether you're a developer eager to push the boundaries of innovation or a data specialist seeking effective version control, our platform caters to all needs. TerminusDB is an open-source knowledge graph database designed to facilitate secure, efficient, and private revision control and teamwork. By using TerminusDB, you can enhance your productivity when collaborating with teammates or developing data-heavy applications. It offers a comprehensive set of revision control functionalities. With TerminusHub, users can oversee database access and work together on shared resources seamlessly. Our platform boasts versatile capabilities for data storage, sharing, and versioning, making it suitable for both team-based collaboration and integration into applications. You can operate locally and sync changes when you're ready. Our tools also simplify querying, data cleaning, and visualization tasks. By incorporating robust version control and collaborative features, we empower both enterprise and individual users, enabling remote data teams to collaborate efficiently on projects. Together, we can drive innovation through effective data teamwork.
  • 20
    TIBCO Graph Database Reviews
    To fully appreciate the significance of ever-changing business data, it is essential to grasp the intricate connections within that data on a deeper level. In contrast to traditional databases, a graph database prioritizes these relationships, employing Graph theory and Linear Algebra to navigate and illustrate the interconnections among complex data networks, sources, and points. The TIBCO® Graph Database empowers users to uncover, store, and transform intricate dynamic data into actionable insights. This platform enables users to swiftly create data and computational models that foster dynamic interactions across various organizational silos. By leveraging knowledge graphs, organizations can derive immense value by linking their diverse data assets and uncovering relationships that enhance the optimization of resources and workflows. Furthermore, the combination of OLTP and OLAP capabilities within a single, robust enterprise database provides a comprehensive solution. With optimistic ACID transaction properties integrated alongside native storage and access, businesses can confidently manage their data-driven operations. Ultimately, this advanced technology not only simplifies data management but also paves the way for innovative decision-making processes.
  • 21
    RelationalAI Reviews
    RelationalAI represents a cutting-edge database system tailored for advanced data applications that leverage relational knowledge graphs. By focusing on data-centric application design, it effectively merges data with logic into modular models. These intelligent applications possess the capability to comprehend and utilize every relationship present within a model. The system employs a knowledge graph framework that allows for the articulation of knowledge in the form of executable models. These models offer the benefit of being easily expanded through declarative programs that are accessible and understandable to humans. With RelationalAI's versatile and expressive declarative language, developers can achieve a remarkable reduction in code size, ranging from 10 to 100 times less. This accelerates the development of applications and enhances their quality by involving non-technical users in the creation process while automating complex programming tasks. By leveraging the adaptable graph data model, users can build a robust data-centric architecture. Additionally, the integration of models paves the way for the exploration of new relationships, effectively dismantling barriers that exist between various applications. Ultimately, this innovative approach not only streamlines development but also fosters collaboration across different domains.
  • 22
    Luna for Apache Cassandra Reviews
    Luna offers a subscription service for Apache Cassandra support and expertise through DataStax, allowing users to take advantage of open-source Cassandra while benefiting from the knowledge and experience of the team that created most of its code and has supported some of the largest deployments globally. With Luna, you gain access to best practices, expert advice, and SLA-based support to ensure your Cassandra setup remains optimal. You can scale your operations without sacrificing performance or latency, effectively managing even the most demanding real-time workloads with ease. The service empowers you to create dynamic and highly-interactive customer experiences with exceptionally fast read and write capabilities. Additionally, Luna helps resolve issues and adhere to best practices in managing Cassandra clusters. The support provided encompasses the entire application life cycle, facilitating a deeper collaboration with your team throughout the implementation process, ensuring that your needs are met at every stage. Ultimately, Luna enhances your ability to harness the full potential of Cassandra for your business objectives.
  • 23
    Locstat Reviews
    Locstat is a cutting-edge graph intelligence platform that offers tailored industry-specific and point solutions through the integration of graph-based AI, analytics, and event processing, allowing organizations to swiftly enhance their data solutions for the future. Studies indicate that embracing forward-thinking, AI-enhanced digitalization strategies can yield substantial advantages and improvements for organizations. Our success in boosting customer efficiencies has led to notable returns on investment, corroborated by independent research firms. This underscores the effectiveness of advanced analytics technologies in addressing the intricate challenges of today more economically compared to traditional relational database solutions. As the demand for innovative data strategies grows, organizations that leverage these advanced tools can position themselves for long-term success.
  • 24
    FalkorDB Reviews
    FalkorDB is an exceptionally rapid, multi-tenant graph database that is finely tuned for GraphRAG, ensuring accurate and relevant AI/ML outcomes while minimizing hallucinations and boosting efficiency. By utilizing sparse matrix representations alongside linear algebra, it adeptly processes intricate, interconnected datasets in real-time, leading to a reduction in hallucinations and an increase in the precision of responses generated by large language models. The database is compatible with the OpenCypher query language, enhanced by proprietary features that facilitate expressive and efficient graph data querying. Additionally, it incorporates built-in vector indexing and full-text search functions, which allow for intricate search operations and similarity assessments within a unified database framework. FalkorDB's architecture is designed to support multiple graphs, permitting the existence of several isolated graphs within a single instance, which enhances both security and performance for different tenants. Furthermore, it guarantees high availability through live replication, ensuring that data remains perpetually accessible, even in high-demand scenarios. This combination of features positions FalkorDB as a robust solution for organizations seeking to manage complex graph data effectively.
  • 25
    Oracle Spatial and Graph Reviews
    Graph databases, which are a key feature of Oracle's converged database solution, remove the necessity for establishing a distinct database and transferring data. This allows analysts and developers to conduct fraud detection in the banking sector, uncover relationships and links to data, and enhance traceability in smart manufacturing, all while benefiting from enterprise-level security, straightforward data ingestion, and robust support for various data workloads. The Oracle Autonomous Database incorporates Graph Studio, offering one-click setup, built-in tools, and advanced security measures. Graph Studio streamlines the management of graph data and facilitates the modeling, analysis, and visualization throughout the entire graph analytics lifecycle. Oracle supports both property and RDF knowledge graphs, making it easier to model relational data as graph structures. Additionally, interactive graph queries can be executed directly on the graph data or via a high-performance in-memory graph server, enabling efficient data processing and analysis. This integration of graph technology enhances the overall capabilities of data management within Oracle's ecosystem.