Best Data Engineering Tools for Apache Spark

Find and compare the best Data Engineering tools for Apache Spark in 2025

Use the comparison tool below to compare the top Data Engineering tools for Apache Spark on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Sifflet Reviews
    Effortlessly monitor thousands of tables through machine learning-driven anomaly detection alongside a suite of over 50 tailored metrics. Ensure comprehensive oversight of both data and metadata while meticulously mapping all asset dependencies from ingestion to business intelligence. This solution enhances productivity and fosters collaboration between data engineers and consumers. Sifflet integrates smoothly with your existing data sources and tools, functioning on platforms like AWS, Google Cloud Platform, and Microsoft Azure. Maintain vigilance over your data's health and promptly notify your team when quality standards are not satisfied. With just a few clicks, you can establish essential coverage for all your tables. Additionally, you can customize the frequency of checks, their importance, and specific notifications simultaneously. Utilize machine learning-driven protocols to identify any data anomalies with no initial setup required. Every rule is supported by a unique model that adapts based on historical data and user input. You can also enhance automated processes by utilizing a library of over 50 templates applicable to any asset, thereby streamlining your monitoring efforts even further. This approach not only simplifies data management but also empowers teams to respond proactively to potential issues.
  • 2
    Archon Data Store Reviews
    The Archon Data Storeā„¢ is a robust and secure platform built on open-source principles, tailored for archiving and managing extensive data lakes. Its compliance capabilities and small footprint facilitate large-scale data search, processing, and analysis across structured, unstructured, and semi-structured data within an organization. By merging the essential characteristics of both data warehouses and data lakes, Archon Data Store creates a seamless and efficient platform. This integration effectively breaks down data silos, enhancing data engineering, analytics, data science, and machine learning workflows. With its focus on centralized metadata, optimized storage solutions, and distributed computing, the Archon Data Store ensures the preservation of data integrity. Additionally, its cohesive strategies for data management, security, and governance empower organizations to operate more effectively and foster innovation at a quicker pace. By offering a singular platform for both archiving and analyzing all organizational data, Archon Data Store not only delivers significant operational efficiencies but also positions your organization for future growth and agility.
  • 3
    Prophecy Reviews

    Prophecy

    Prophecy

    $299 per month
    Prophecy expands accessibility for a wider range of users, including visual ETL developers and data analysts, by allowing them to easily create pipelines through a user-friendly point-and-click interface combined with a few SQL expressions. While utilizing the Low-Code designer to construct workflows, you simultaneously generate high-quality, easily readable code for Spark and Airflow, which is then seamlessly integrated into your Git repository. The platform comes equipped with a gem builder, enabling rapid development and deployment of custom frameworks, such as those for data quality, encryption, and additional sources and targets that enhance the existing capabilities. Furthermore, Prophecy ensures that best practices and essential infrastructure are offered as managed services, simplifying your daily operations and overall experience. With Prophecy, you can achieve high-performance workflows that leverage the cloud's scalability and performance capabilities, ensuring that your projects run efficiently and effectively. This powerful combination of features makes it an invaluable tool for modern data workflows.
  • 4
    DQOps Reviews

    DQOps

    DQOps

    $499 per month
    DQOps is a data quality monitoring platform for data teams that helps detect and address quality issues before they impact your business. Track data quality KPIs on data quality dashboards and reach a 100% data quality score. DQOps helps monitor data warehouses and data lakes on the most popular data platforms. DQOps offers a built-in list of predefined data quality checks verifying key data quality dimensions. The extensibility of the platform allows you to modify existing checks or add custom, business-specific checks as needed. The DQOps platform easily integrates with DevOps environments and allows data quality definitions to be stored in a source repository along with the data pipeline code.
  • 5
    Querona Reviews
    We make BI and Big Data analytics easier and more efficient. Our goal is to empower business users, make BI specialists and always-busy business more independent when solving data-driven business problems. Querona is a solution for those who have ever been frustrated by a lack in data, slow or tedious report generation, or a long queue to their BI specialist. Querona has a built-in Big Data engine that can handle increasing data volumes. Repeatable queries can be stored and calculated in advance. Querona automatically suggests improvements to queries, making optimization easier. Querona empowers data scientists and business analysts by giving them self-service. They can quickly create and prototype data models, add data sources, optimize queries, and dig into raw data. It is possible to use less IT. Users can now access live data regardless of where it is stored. Querona can cache data if databases are too busy to query live.
  • 6
    Databricks Data Intelligence Platform Reviews
    The Databricks Data Intelligence Platform empowers every member of your organization to leverage data and artificial intelligence effectively. Constructed on a lakehouse architecture, it establishes a cohesive and transparent foundation for all aspects of data management and governance, enhanced by a Data Intelligence Engine that recognizes the distinct characteristics of your data. Companies that excel across various sectors will be those that harness the power of data and AI. Covering everything from ETL processes to data warehousing and generative AI, Databricks facilitates the streamlining and acceleration of your data and AI objectives. By merging generative AI with the integrative advantages of a lakehouse, Databricks fuels a Data Intelligence Engine that comprehends the specific semantics of your data. This functionality enables the platform to optimize performance automatically and manage infrastructure in a manner tailored to your organization's needs. Additionally, the Data Intelligence Engine is designed to grasp the unique language of your enterprise, making the search and exploration of new data as straightforward as posing a question to a colleague, thus fostering collaboration and efficiency. Ultimately, this innovative approach transforms the way organizations interact with their data, driving better decision-making and insights.
  • 7
    IBM Databand Reviews
    Keep a close eye on your data health and the performance of your pipelines. Achieve comprehensive oversight for pipelines utilizing cloud-native technologies such as Apache Airflow, Apache Spark, Snowflake, BigQuery, and Kubernetes. This observability platform is specifically designed for Data Engineers. As the challenges in data engineering continue to escalate due to increasing demands from business stakeholders, Databand offers a solution to help you keep pace. With the rise in the number of pipelines comes greater complexity. Data engineers are now handling more intricate infrastructures than they ever have before while also aiming for quicker release cycles. This environment makes it increasingly difficult to pinpoint the reasons behind process failures, delays, and the impact of modifications on data output quality. Consequently, data consumers often find themselves frustrated by inconsistent results, subpar model performance, and slow data delivery. A lack of clarity regarding the data being provided or the origins of failures fosters ongoing distrust. Furthermore, pipeline logs, errors, and data quality metrics are often gathered and stored in separate, isolated systems, complicating the troubleshooting process. To address these issues effectively, a unified observability approach is essential for enhancing trust and performance in data operations.
  • 8
    Molecula Reviews
    Molecula serves as an enterprise feature store that streamlines, enhances, and manages big data access to facilitate large-scale analytics and artificial intelligence. By consistently extracting features, minimizing data dimensionality at the source, and channeling real-time feature updates into a centralized repository, it allows for millisecond-level queries, computations, and feature re-utilization across various formats and locations without the need to duplicate or transfer raw data. This feature store grants data engineers, scientists, and application developers a unified access point, enabling them to transition from merely reporting and interpreting human-scale data to actively forecasting and recommending immediate business outcomes using comprehensive data sets. Organizations often incur substantial costs when preparing, consolidating, and creating multiple copies of their data for different projects, which delays their decision-making processes. Molecula introduces a groundbreaking approach for continuous, real-time data analysis that can be leveraged for all mission-critical applications, dramatically improving efficiency and effectiveness in data utilization. This transformation empowers businesses to make informed decisions swiftly and accurately, ensuring they remain competitive in an ever-evolving landscape.
  • 9
    Delta Lake Reviews
    Delta Lake serves as an open-source storage layer that integrates ACID transactions into Apache Sparkā„¢ and big data operations. In typical data lakes, multiple pipelines operate simultaneously to read and write data, which often forces data engineers to engage in a complex and time-consuming effort to maintain data integrity because transactional capabilities are absent. By incorporating ACID transactions, Delta Lake enhances data lakes and ensures a high level of consistency with its serializability feature, the most robust isolation level available. For further insights, refer to Diving into Delta Lake: Unpacking the Transaction Log. In the realm of big data, even metadata can reach substantial sizes, and Delta Lake manages metadata with the same significance as the actual data, utilizing Spark's distributed processing strengths for efficient handling. Consequently, Delta Lake is capable of managing massive tables that can scale to petabytes, containing billions of partitions and files without difficulty. Additionally, Delta Lake offers data snapshots, which allow developers to retrieve and revert to previous data versions, facilitating audits, rollbacks, or the replication of experiments while ensuring data reliability and consistency across the board.
  • 10
    witboost Reviews
    Witboost is an adaptable, high-speed, and effective data management solution designed to help businesses fully embrace a data-driven approach while cutting down on time-to-market, IT spending, and operational costs. The system consists of various modules, each serving as a functional building block that can operate independently to tackle specific challenges or be integrated to form a comprehensive data management framework tailored to your organization’s requirements. These individual modules enhance particular data engineering processes, allowing for a seamless combination that ensures swift implementation and significantly minimizes time-to-market and time-to-value, thereby lowering the overall cost of ownership of your data infrastructure. As urban environments evolve, smart cities increasingly rely on digital twins to forecast needs and mitigate potential issues, leveraging data from countless sources and managing increasingly intricate telematics systems. This approach not only facilitates better decision-making but also ensures that cities can adapt efficiently to ever-changing demands.
  • 11
    Kestra Reviews
    Kestra is a free, open-source orchestrator based on events that simplifies data operations while improving collaboration between engineers and users. Kestra brings Infrastructure as Code to data pipelines. This allows you to build reliable workflows with confidence. The declarative YAML interface allows anyone who wants to benefit from analytics to participate in the creation of the data pipeline. The UI automatically updates the YAML definition whenever you make changes to a work flow via the UI or an API call. The orchestration logic can be defined in code declaratively, even if certain workflow components are modified.
  • Previous
  • You're on page 1
  • Next