Average Ratings 0 Ratings
Average Ratings 1 Rating
Description
The h5py library serves as a user-friendly interface for the HDF5 binary data format in Python. It allows users to handle vast quantities of numerical data and efficiently work with it alongside NumPy. For instance, you can access and manipulate multi-terabyte datasets stored on your disk as if they were standard NumPy arrays. You can organize thousands of datasets within a single file, applying your own categorization and tagging methods. H5py embraces familiar NumPy and Python concepts, such as dictionary and array syntax. For example, it enables you to loop through datasets in a file or examine the .shape and .dtype properties of those datasets. Getting started with h5py requires no prior knowledge of HDF5, making it accessible for newcomers. Besides its intuitive high-level interface, h5py is built on an object-oriented Cython wrapper for the HDF5 C API, ensuring that nearly any operation possible in C with HDF5 can also be performed using h5py. This combination of simplicity and power makes it a popular choice for data handling in the scientific community.
Description
Pandas is an open-source data analysis and manipulation tool that is not only fast and powerful but also highly flexible and user-friendly, all within the Python programming ecosystem. It provides various tools for importing and exporting data across different formats, including CSV, text files, Microsoft Excel, SQL databases, and the efficient HDF5 format. With its intelligent data alignment capabilities and integrated management of missing values, users benefit from automatic label-based alignment during computations, which simplifies the process of organizing disordered data. The library features a robust group-by engine that allows for sophisticated aggregating and transforming operations, enabling users to easily perform split-apply-combine actions on their datasets. Additionally, pandas offers extensive time series functionality, including the ability to generate date ranges, convert frequencies, and apply moving window statistics, as well as manage date shifting and lagging. Users can even create custom time offsets tailored to specific domains and join time series data without the risk of losing any information. This comprehensive set of features makes pandas an essential tool for anyone working with data in Python.
API Access
Has API
API Access
Has API
Integrations
3LC
Amazon SageMaker Data Wrangler
Avanzai
Cleanlab
Coiled
Daft
DagsHub
Dagster+
Dash
Flower
Integrations
3LC
Amazon SageMaker Data Wrangler
Avanzai
Cleanlab
Coiled
Daft
DagsHub
Dagster+
Dash
Flower
Pricing Details
Free
Free Trial
Free Version
Pricing Details
No price information available.
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
HDF5
Website
www.h5py.org
Vendor Details
Company Name
pandas
Founded
2008
Website
pandas.pydata.org
Product Features
Product Features
Data Analysis
Data Discovery
Data Visualization
High Volume Processing
Predictive Analytics
Regression Analysis
Sentiment Analysis
Statistical Modeling
Text Analytics