Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Description

Wfuzz offers a powerful platform for automating the assessment of web application security, assisting users in identifying and exploiting potential vulnerabilities to enhance the safety of their web applications. Additionally, it can be executed using the official Docker image for convenience. The core functionality of Wfuzz is based on the straightforward principle of substituting any occurrence of the fuzz keyword with a specified payload, which serves as a source of data. This fundamental mechanism enables users to inject various inputs into any field within an HTTP request, facilitating intricate attacks on diverse components of web applications, including parameters, authentication mechanisms, forms, directories and files, headers, and more. Wfuzz's scanning capabilities for web application vulnerabilities are further enhanced by its plugin support, which allows for a wide range of functionalities. As a completely modular framework, Wfuzz invites even novice Python developers to contribute easily, as creating plugins is a straightforward process that requires only a few minutes to get started. By harnessing the power of Wfuzz, security professionals can significantly improve their web application defenses.

Description

Syzkaller functions as an unsupervised, coverage-guided fuzzer aimed at exploring vulnerabilities within kernel environments, offering support for various operating systems such as FreeBSD, Fuchsia, gVisor, Linux, NetBSD, OpenBSD, and Windows. Originally designed with a focus on fuzzing the Linux kernel, its capabilities have been expanded to encompass additional operating systems over time. When a kernel crash is identified within one of the virtual machines, syzkaller promptly initiates the reproduction of that crash. By default, it operates using four virtual machines for this reproduction process and subsequently works to minimize the program responsible for the crash. This reproduction phase can temporarily halt fuzzing activities, as all VMs may be occupied with reproducing the identified issues. The duration for reproducing a single crash can vary significantly, ranging from mere minutes to potentially an hour, depending on the complexity and reproducibility of the crash event. This ability to minimize and analyze crashes enhances the overall effectiveness of the fuzzing process, allowing for better identification of vulnerabilities in the kernel.

API Access

Has API

API Access

Has API

Screenshots View All

Screenshots View All

Integrations

Docker
FreeBSD
Fuchsia Service Maintenance Software
NetBSD
OpenBSD
Python

Integrations

Docker
FreeBSD
Fuchsia Service Maintenance Software
NetBSD
OpenBSD
Python

Pricing Details

Free
Free Trial
Free Version

Pricing Details

Free
Free Trial
Free Version

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Vendor Details

Company Name

Wfuzz

Website

wfuzz.readthedocs.io

Vendor Details

Company Name

Google

Country

United States

Website

github.com/google/syzkaller

Product Features

Product Features

Alternatives

Alternatives

Atheris Reviews

Atheris

Google
LibFuzzer Reviews

LibFuzzer

LLVM Project
ClusterFuzz Reviews

ClusterFuzz

Google
ToothPicker Reviews

ToothPicker

Secure Mobile Networking Lab