Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Description

The Universal Sentence Encoder (USE) transforms text into high-dimensional vectors that are useful for a range of applications, including text classification, semantic similarity, and clustering. It provides two distinct model types: one leveraging the Transformer architecture and another utilizing a Deep Averaging Network (DAN), which helps to balance accuracy and computational efficiency effectively. The Transformer-based variant generates context-sensitive embeddings by analyzing the entire input sequence at once, while the DAN variant creates embeddings by averaging the individual word embeddings, which are then processed through a feedforward neural network. These generated embeddings not only support rapid semantic similarity assessments but also improve the performance of various downstream tasks, even with limited supervised training data. Additionally, the USE can be easily accessed through TensorFlow Hub, making it simple to incorporate into diverse applications. This accessibility enhances its appeal to developers looking to implement advanced natural language processing techniques seamlessly.

Description

Voyage AI has unveiled voyage-code-3, an advanced embedding model specifically designed to enhance code retrieval capabilities. This innovative model achieves superior performance, surpassing OpenAI-v3-large and CodeSage-large by averages of 13.80% and 16.81% across a diverse selection of 32 code retrieval datasets. It accommodates embeddings of various dimensions, including 2048, 1024, 512, and 256, and provides an array of embedding quantization options such as float (32-bit), int8 (8-bit signed integer), uint8 (8-bit unsigned integer), binary (bit-packed int8), and ubinary (bit-packed uint8). With a context length of 32 K tokens, voyage-code-3 exceeds the limitations of OpenAI's 8K and CodeSage Large's 1K context lengths, offering users greater flexibility. Utilizing an innovative approach known as Matryoshka learning, it generates embeddings that feature a layered structure of varying lengths within a single vector. This unique capability enables users to transform documents into a 2048-dimensional vector and subsequently access shorter dimensional representations (such as 256, 512, or 1024 dimensions) without the need to re-run the embedding model, thus enhancing efficiency in code retrieval tasks. Additionally, voyage-code-3 positions itself as a robust solution for developers seeking to improve their coding workflow.

API Access

Has API

API Access

Has API

Screenshots View All

Screenshots View All

Integrations

Elasticsearch
Google Colab
Milvus
Qdrant
TensorFlow
Vespa
Weaviate

Integrations

Elasticsearch
Google Colab
Milvus
Qdrant
TensorFlow
Vespa
Weaviate

Pricing Details

No price information available.
Free Trial
Free Version

Pricing Details

No price information available.
Free Trial
Free Version

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Vendor Details

Company Name

Tensorflow

Founded

2015

Country

United States

Website

www.tensorflow.org/hub/tutorials/semantic_similarity_with_tf_hub_universal_encoder

Vendor Details

Company Name

Voyage AI

Founded

2023

Country

United States

Website

blog.voyageai.com/2024/12/04/voyage-code-3/

Product Features

Product Features

Alternatives

Alternatives

word2vec Reviews

word2vec

Google
voyage-3-large Reviews

voyage-3-large

Voyage AI
Codestral Embed Reviews

Codestral Embed

Mistral AI