Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
Sulley is a comprehensive fuzz testing framework and engine that incorporates various extensible components. In my view, it surpasses the functionality of most previously established fuzzing technologies, regardless of whether they are commercial or available in the public domain. The framework is designed to streamline not only the representation of data but also its transmission and instrumentation processes. As a fully automated fuzzing solution developed entirely in Python, Sulley operates without requiring human intervention. Beyond impressive capabilities in data generation, Sulley offers a range of essential features expected from a contemporary fuzzer. It meticulously monitors network activity and keeps detailed records for thorough analysis. Additionally, Sulley is equipped to instrument and evaluate the health of the target system, with the ability to revert to a stable state using various methods when necessary. It efficiently detects, tracks, and categorizes faults that arise during testing. Furthermore, Sulley has the capability to perform fuzzing in parallel, which dramatically enhances testing speed. It can also autonomously identify unique sequences of test cases that lead to faults, thereby improving the overall effectiveness of the testing process. This combination of features positions Sulley as a powerful tool for security testing and vulnerability detection.
Description
American fuzzy lop is a security-focused fuzzer that utilizes a unique form of compile-time instrumentation along with genetic algorithms to automatically generate effective test cases that can uncover new internal states within the targeted binary. This approach significantly enhances the functional coverage of the code being fuzzed. Additionally, the compact and synthesized test cases produced by the tool can serve as a valuable resource for initiating other, more demanding testing processes in the future. Unlike many other instrumented fuzzers, afl-fuzz is engineered for practicality, boasting a minimal performance overhead while employing a diverse array of effective fuzzing techniques and strategies for minimizing effort. It requires almost no setup and can effortlessly manage complicated, real-world scenarios, such as those found in common image parsing or file compression libraries. As an instrumentation-guided genetic fuzzer, it excels at generating complex file semantics applicable to a wide variety of challenging targets, making it a versatile choice for security testing. Its ability to adapt to different environments further enhances its appeal for developers seeking robust solutions.
API Access
Has API
API Access
Has API
Integrations
Python
C
C++
ClusterFuzz
FreeBSD
Go
Google ClusterFuzz
Java
NetBSD
OCaml
Integrations
Python
C
C++
ClusterFuzz
FreeBSD
Go
Google ClusterFuzz
Java
NetBSD
OCaml
Pricing Details
Free
Free Trial
Free Version
Pricing Details
Free
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
OpenRCE
Website
github.com/OpenRCE/sulley
Vendor Details
Company Name
Country
United States
Website
github.com/google/AFL