Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Description

Sulley is a comprehensive fuzz testing framework and engine that incorporates various extensible components. In my view, it surpasses the functionality of most previously established fuzzing technologies, regardless of whether they are commercial or available in the public domain. The framework is designed to streamline not only the representation of data but also its transmission and instrumentation processes. As a fully automated fuzzing solution developed entirely in Python, Sulley operates without requiring human intervention. Beyond impressive capabilities in data generation, Sulley offers a range of essential features expected from a contemporary fuzzer. It meticulously monitors network activity and keeps detailed records for thorough analysis. Additionally, Sulley is equipped to instrument and evaluate the health of the target system, with the ability to revert to a stable state using various methods when necessary. It efficiently detects, tracks, and categorizes faults that arise during testing. Furthermore, Sulley has the capability to perform fuzzing in parallel, which dramatically enhances testing speed. It can also autonomously identify unique sequences of test cases that lead to faults, thereby improving the overall effectiveness of the testing process. This combination of features positions Sulley as a powerful tool for security testing and vulnerability detection.

Description

American fuzzy lop is a security-focused fuzzer that utilizes a unique form of compile-time instrumentation along with genetic algorithms to automatically generate effective test cases that can uncover new internal states within the targeted binary. This approach significantly enhances the functional coverage of the code being fuzzed. Additionally, the compact and synthesized test cases produced by the tool can serve as a valuable resource for initiating other, more demanding testing processes in the future. Unlike many other instrumented fuzzers, afl-fuzz is engineered for practicality, boasting a minimal performance overhead while employing a diverse array of effective fuzzing techniques and strategies for minimizing effort. It requires almost no setup and can effortlessly manage complicated, real-world scenarios, such as those found in common image parsing or file compression libraries. As an instrumentation-guided genetic fuzzer, it excels at generating complex file semantics applicable to a wide variety of challenging targets, making it a versatile choice for security testing. Its ability to adapt to different environments further enhances its appeal for developers seeking robust solutions.

API Access

Has API

API Access

Has API

Screenshots View All

Screenshots View All

Integrations

Python
C
C++
ClusterFuzz
FreeBSD
Go
Google ClusterFuzz
Java
NetBSD
OCaml
Objective-C
OpenBSD
QEMU
Rust

Integrations

Python
C
C++
ClusterFuzz
FreeBSD
Go
Google ClusterFuzz
Java
NetBSD
OCaml
Objective-C
OpenBSD
QEMU
Rust

Pricing Details

Free
Free Trial
Free Version

Pricing Details

Free
Free Trial
Free Version

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Vendor Details

Company Name

OpenRCE

Website

github.com/OpenRCE/sulley

Vendor Details

Company Name

Google

Country

United States

Website

github.com/google/AFL

Product Features

Product Features

Alternatives

LibFuzzer Reviews

LibFuzzer

LLVM Project

Alternatives

LibFuzzer Reviews

LibFuzzer

LLVM Project
afl-unicorn Reviews

afl-unicorn

Battelle
Honggfuzz Reviews

Honggfuzz

Google