Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Description

Radamsa serves as a robust test case generator specifically designed for robustness testing and fuzzing, aimed at evaluating how resilient a program is against malformed and potentially harmful inputs. By analyzing sample files containing valid data, it produces a variety of uniquely altered outputs that challenge the software's stability. One of the standout features of Radamsa is its proven track record in identifying numerous bugs in significant programs, alongside its straightforward scriptability and ease of deployment. Fuzzing, a key technique in uncovering unexpected program behaviors, involves exposing the software to a wide range of input types to observe the resultant actions. This process is divided into two main components: sourcing the diverse inputs and analyzing the outcomes, with Radamsa effectively addressing the first component, while a brief shell script generally handles the latter. Testers often possess a general understanding of potential failures and aim to validate whether those concerns are warranted through this method. Ultimately, Radamsa not only simplifies the testing process but also enhances the reliability of software applications by revealing hidden vulnerabilities.

Description

Go-fuzz serves as a coverage-guided fuzzing tool designed specifically for testing Go packages, making it particularly effective for those that handle intricate inputs, whether they are textual or binary in nature. This method of testing is crucial for strengthening systems that need to process data from potentially harmful sources, such as network interactions. Recently, go-fuzz has introduced initial support for fuzzing Go Modules, inviting users to report any issues they encounter with detailed descriptions. It generates random input data, which is often invalid, and the function must return a value of 1 to indicate that the fuzzer should elevate the priority of that input in future fuzzing attempts, provided that it should not be stored in the corpus, even if it uncovers new coverage; a return value of 0 signifies the opposite, while other values are reserved for future enhancements. The fuzz function is required to reside in a package that go-fuzz can recognize, meaning the code under test cannot be located within the main package, although fuzzing of internal packages is permitted. This structured approach ensures that the testing process remains efficient and focused on identifying vulnerabilities in the code.

API Access

Has API

API Access

Has API

Screenshots View All

Screenshots View All

Integrations

FreeBSD
Git
Make
OpenBSD

Integrations

FreeBSD
Git
Make
OpenBSD

Pricing Details

Free
Free Trial
Free Version

Pricing Details

Free
Free Trial
Free Version

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Vendor Details

Company Name

Aki Helin

Website

gitlab.com/akihe/radamsa

Vendor Details

Company Name

dvyukov

Website

github.com/dvyukov/go-fuzz

Product Features

Product Features

Alternatives

Alternatives

Honggfuzz Reviews

Honggfuzz

Google
LibFuzzer Reviews

LibFuzzer

LLVM Project
ClusterFuzz Reviews

ClusterFuzz

Google
Atheris Reviews

Atheris

Google
go-fuzz Reviews

go-fuzz

dvyukov