Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Description

We are excited to announce the launch of Phi-2, a language model featuring 2.7 billion parameters that excels in reasoning and language comprehension, achieving top-tier results compared to other base models with fewer than 13 billion parameters. In challenging benchmarks, Phi-2 competes with and often surpasses models that are up to 25 times its size, a feat made possible by advancements in model scaling and meticulous curation of training data. Due to its efficient design, Phi-2 serves as an excellent resource for researchers interested in areas such as mechanistic interpretability, enhancing safety measures, or conducting fine-tuning experiments across a broad spectrum of tasks. To promote further exploration and innovation in language modeling, Phi-2 has been integrated into the Azure AI Studio model catalog, encouraging collaboration and development within the research community. Researchers can leverage this model to unlock new insights and push the boundaries of language technology.

Description

Phi-4-mini-reasoning is a transformer-based language model with 3.8 billion parameters, specifically designed to excel in mathematical reasoning and methodical problem-solving within environments that have limited computational capacity or latency constraints. Its optimization stems from fine-tuning with synthetic data produced by the DeepSeek-R1 model, striking a balance between efficiency and sophisticated reasoning capabilities. With training that encompasses over one million varied math problems, ranging in complexity from middle school to Ph.D. level, Phi-4-mini-reasoning demonstrates superior performance to its base model in generating lengthy sentences across multiple assessments and outshines larger counterparts such as OpenThinker-7B, Llama-3.2-3B-instruct, and DeepSeek-R1. Equipped with a 128K-token context window, it also facilitates function calling, which allows for seamless integration with various external tools and APIs. Moreover, Phi-4-mini-reasoning can be quantized through the Microsoft Olive or Apple MLX Framework, enabling its deployment on a variety of edge devices, including IoT gadgets, laptops, and smartphones. Its design not only enhances user accessibility but also expands the potential for innovative applications in mathematical fields.

API Access

Has API

API Access

Has API

Screenshots View All

Screenshots View All

Integrations

Microsoft Azure
Airtrain
Axolotl
Database Mart
Hugging Face
LLaMA-Factory
LM-Kit.NET
Microsoft Foundry
Microsoft Foundry Models
NativeMind
Oumi
Private LLM
RunPod

Integrations

Microsoft Azure
Airtrain
Axolotl
Database Mart
Hugging Face
LLaMA-Factory
LM-Kit.NET
Microsoft Foundry
Microsoft Foundry Models
NativeMind
Oumi
Private LLM
RunPod

Pricing Details

No price information available.
Free Trial
Free Version

Pricing Details

No price information available.
Free Trial
Free Version

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Vendor Details

Company Name

Microsoft

Founded

1975

Country

United States

Website

microsoft.com

Vendor Details

Company Name

Microsoft

Founded

1975

Country

United States

Website

azure.microsoft.com/en-us/blog/one-year-of-phi-small-language-models-making-big-leaps-in-ai/

Product Features

Product Features

Alternatives

Alternatives

Phi-3 Reviews

Phi-3

Microsoft
Phi-4-reasoning Reviews

Phi-4-reasoning

Microsoft
Pixtral Large Reviews

Pixtral Large

Mistral AI
Mistral 7B Reviews

Mistral 7B

Mistral AI
DeepSeek R1 Reviews

DeepSeek R1

DeepSeek