Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
A data science platform designed to enhance productivity offers unmatched features that facilitate the development and assessment of superior machine learning (ML) models. By leveraging enterprise-trusted data swiftly, businesses can achieve greater flexibility and meet their data-driven goals through simpler deployment of ML models. Cloud-based solutions enable organizations to uncover valuable business insights efficiently. The journey of constructing a machine learning model is inherently iterative, and this ebook meticulously outlines the stages involved in its creation. Readers can engage with notebooks to either build or evaluate various machine learning algorithms. Experimenting with AutoML can yield impressive data science outcomes, allowing users to create high-quality models with greater speed and ease. Moreover, automated machine learning processes quickly analyze datasets, recommending the most effective data features and algorithms while also fine-tuning models and clarifying their results. This comprehensive approach ensures that businesses can harness the full potential of their data, driving innovation and informed decision-making.
Description
By combining the advantages of a notebook with the functionality of an IDE, experts are empowered to analyze data while simultaneously developing reliable code, all supported by a fully automated cloud infrastructure. Zerve revolutionizes the data science development environment, providing teams focused on data science and machine learning with a cohesive platform to explore, collaborate, construct, and deploy their AI projects like never before. This innovative tool ensures true language interoperability, allowing users to seamlessly integrate Python, R, SQL, or Markdown within the same workspace, facilitating the connection of various code blocks. Zerve eliminates the frustrations of lengthy code execution or cumbersome containers by enabling unlimited parallel processing throughout the entire development process. Furthermore, artifacts generated during analysis are automatically serialized, versioned, stored, and preserved, making it simple to modify any step in the data pipeline without the need to reprocess earlier stages. Users also benefit from precise control over computing resources and additional memory, which is essential for handling intricate data transformations. With Zerve, data science teams can enhance their workflow efficiency and streamline project management significantly.
API Access
Has API
API Access
Has API
Integrations
Amazon API Gateway
Amazon Web Services (AWS)
Docker
GitHub
MariaDB
Markdown
MySQL
Oracle Cloud Infrastructure
PostgreSQL
Python
Integrations
Amazon API Gateway
Amazon Web Services (AWS)
Docker
GitHub
MariaDB
Markdown
MySQL
Oracle Cloud Infrastructure
PostgreSQL
Python
Pricing Details
No price information available.
Free Trial
Free Version
Pricing Details
No price information available.
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
Oracle
Founded
1977
Country
United States
Website
www.oracle.com/data-science/
Vendor Details
Company Name
Zerve AI
Founded
2023
Country
Ireland
Website
www.zerve.ai/
Product Features
Data Science
Access Control
Advanced Modeling
Audit Logs
Data Discovery
Data Ingestion
Data Preparation
Data Visualization
Model Deployment
Reports
Machine Learning
Deep Learning
ML Algorithm Library
Model Training
Natural Language Processing (NLP)
Predictive Modeling
Statistical / Mathematical Tools
Templates
Visualization
Product Features
Data Science
Access Control
Advanced Modeling
Audit Logs
Data Discovery
Data Ingestion
Data Preparation
Data Visualization
Model Deployment
Reports
Machine Learning
Deep Learning
ML Algorithm Library
Model Training
Natural Language Processing (NLP)
Predictive Modeling
Statistical / Mathematical Tools
Templates
Visualization