Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Description

Fuzz testing, commonly referred to as fuzzing, is a technique used in software testing that aims to discover implementation errors by injecting malformed or semi-malformed data in an automated way. For example, consider a scenario involving an integer variable within a program that captures a user's selection among three questions; the user's choice can be represented by the integers 0, 1, or 2, resulting in three distinct cases. Since integers are typically stored as fixed-size variables, a failure to implement the default switch case securely could lead to program crashes and various traditional security vulnerabilities. Fuzzing serves as an automated method for uncovering software implementation issues, enabling the identification of bugs when they occur. A fuzzer is a specialized tool designed to automatically inject semi-random data into the program stack, aiding in the detection of anomalies. The process of generating this data involves the use of generators, while the identification of vulnerabilities often depends on debugging tools that can analyze the program's behavior under the influence of the injected data. These generators typically utilize a mixture of established static fuzzing vectors to enhance the testing process, ultimately contributing to more robust software development practices.

Description

Radamsa serves as a robust test case generator specifically designed for robustness testing and fuzzing, aimed at evaluating how resilient a program is against malformed and potentially harmful inputs. By analyzing sample files containing valid data, it produces a variety of uniquely altered outputs that challenge the software's stability. One of the standout features of Radamsa is its proven track record in identifying numerous bugs in significant programs, alongside its straightforward scriptability and ease of deployment. Fuzzing, a key technique in uncovering unexpected program behaviors, involves exposing the software to a wide range of input types to observe the resultant actions. This process is divided into two main components: sourcing the diverse inputs and analyzing the outcomes, with Radamsa effectively addressing the first component, while a brief shell script generally handles the latter. Testers often possess a general understanding of potential failures and aim to validate whether those concerns are warranted through this method. Ultimately, Radamsa not only simplifies the testing process but also enhances the reliability of software applications by revealing hidden vulnerabilities.

API Access

Has API

API Access

Has API

Screenshots View All

Screenshots View All

Integrations

CI Fuzz
FreeBSD
Git
Make
OpenBSD

Integrations

CI Fuzz
FreeBSD
Git
Make
OpenBSD

Pricing Details

No price information available.
Free Trial
Free Version

Pricing Details

Free
Free Trial
Free Version

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Vendor Details

Company Name

OWASP

Country

United States

Website

owasp.org/www-community/Fuzzing

Vendor Details

Company Name

Aki Helin

Website

gitlab.com/akihe/radamsa

Product Features

Product Features

Alternatives

ClusterFuzz Reviews

ClusterFuzz

Google

Alternatives

Radamsa Reviews

Radamsa

Aki Helin
go-fuzz Reviews

go-fuzz

dvyukov
ClusterFuzz Reviews

ClusterFuzz

Google
go-fuzz Reviews

go-fuzz

dvyukov